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PRECONDITIONED
DIRICHLET-DIRICHLET METHODS FOR
OPTIMAL CONTROL OF ELLIPTIC PDE

Daniel Loghin

Abstract

The discretization of optimal control of elliptic partial differential equa-
tions problems yields optimality conditions in the form of large sparse
linear systems with block structure. Correspondingly, when the solution
method is a Dirichlet-Dirichlet non-overlapping domain decomposition
method, we need to solve interface problems which inherit the block
structure. It is therefore natural to consider block preconditioners act-
ing on the interface variables for the acceleration of Krylov methods
with substructuring preconditioners.
In this paper we describe a generic technique which employs a precon-
ditioner block structure based on the fractional Sobolev norms corre-
sponding to the domains of the boundary operators arising in the matrix
interface problem, some of which may include a dependence on the con-
trol regularization parameter. We illustrate our approach on standard
linear elliptic control problems. We present analysis which shows that
the resulting iterative method converges independently of the size of the
problem. We include numerical results which indicate that performance
is also independent of the control regularization parameter and exhibits
only a mild dependence on the number of the subdomains.
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1 Introduction

Optimal control problems with PDE constraints represent an important class
of optimization problem with applications covering virtually every field in
science and engineering. It is typical that these are challenging problems,
particularly when nonlinearity is present or when the constraints are not of
equality type. Another equally important challenge is the size of the resulting
linear systems; often solutions can only be achieved iteratively, using some
of the standard methodology (multigrid, Krylov subspace solvers, domain de-
composition). We review briefly below some existing work in this regard.

1.1 Preconditioned Krylov methods

Given the block structure of the linear system, it is natural to devise block
preconditioners. Such approaches are included in [26], [25], [20], [28], [21],
[19], [24]. While they offer various generic options of block preconditioners,
in all cases it is the distributed elliptic control problem with constant co-
efficients that is invariably considered. Some exceptions are represented by
[13] (abstract formulation with state and control constraints), [12] (gradient
inequality constraints), [16] (boundary control).

Block preconditioners are also extended to some other systems: Stokes flow
[30], [18], Navier-Stokes flow [4], [5], although a different approach is used (the
reduced space method), which involves elimination of some of the variables;
the problem is also a nonlinear boundary control problem.

1.2 Multigrid methods

The use of multigrid methods for PDE constrained optimization problems is
outlined in the SIAM review paper [6]. The main approach for multigrid to
work is to reduce the problem to a positive-definite formulation, so that the
standard formulation is applicable. The reduction is not always achievable,
so the technique is not guaranteed to be available. Instead, one could work
with a technique called one-shot multigrid, first introduced by Ta’asan [29],
which is essentially a monolithic method that applies multigrid directly to the
system of equations arising from first order optimality conditions (also known
as the Karush-Kuhn-Tucker system), without decoupling or solving smaller
problems. The technique requires a so-called collective smoothing approach,
which may be problem dependent. Note that another occurence of multigrid
methods for PDE-constrained optimization is as black-box solvers for block
matrix preconditioners inside a preconditioned Krylov method approach (see,
e.g. [19]).
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1.3 Domain decomposition methods (DD)

The literature describing domain decomposition methods for PDE-constrained
optimization is more limited. In fact, even for the Stokes problem (constrained
Laplacian), the methods described are technical and often not optimal. Main
contributions use off-the-shelf solvers (Schwarz approaches [22], [23], PETSc
[4], [10, Ch. 16]). The only attempts to tackle the model problem using
advanced DD methodology are the balancing Neumann-Neumann approaches
in [8], [9], [3], followed a decade later by a short FETI-DP contribution for
linear elasticity control [11]. For a recent contribution with a substructuring
approach for topology optimization see [14].

2 Problem formulation

We start by introducing some notation, followed by the problem formulation
of our optimal control problem.

2.1 Notation and definitions

Throughout the paper we will use the following notation and standard results.
Given an open simply-connected domain U in R2, its boundary will be denoted
by ∂U . We denote by C∞0 (U) the space of infinitely differentiable functions
defined on U with compact support in U . We will also denote by L2(U)
the Lebesgue space of square-integrable functions defined on U endowed with
inner-product (·, ·) and by Hm(U) the Sobolev space of order m equipped with
norm ‖·‖m,U and semi-norm | · |m,U with the convention H0(U) = L2(U). The
Sobolev spaces of real index 0 ≤ s ≤ m are defined as interpolation spaces of
index θ = 1− s/m for the pair [Hm(U), L2(U)]

Hs(Ω) := [Hm(U), L2(U)]θ θ = 1− s/m.

For any s, the space Hs
0(U) denotes the completion of C∞0 (U) in Hs(U) (see

e.g. [15, p 60]). In particular, we shall be interested in the interpolation space

H1/2(U) = [H1(U), L2(U)]1/2.

for which there holds H
1/2
0 (U) ≡ H1/2(U). Another space of interest is

H
1/2
00 (U) which is a subspace of H

1/2
0 (U) and is defined as the interpolation

space of index 1/2 for the pair [H1
0 (U), L2(U)]

H
1/2
00 (U) = [H1

0 (U), H0(U)]1/2.
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Norms on H1/2(U), H
1/2
00 (U) will be denoted by the same notation | · |1/2,U or

‖ · ‖1/2,U , with the assumption that it is evident from the context which space
is under consideration.

2.2 Optimal control problems with elliptic constraints

Let Ω denote an open bounded domain in R2 with Lipschitz boundary ∂Ω and
let Ωd ⊆ Ω. Consider the following linear distributed control problem

PDECO :



Find (y, u) ∈ H1
0 (Ω)× L2(Ωd) such that

1

2
‖y − yd‖2L2(Ωd) +

α2

2
‖u‖2L2(Ω) = min!

subject to

 Ly = f + u in Ω,

y = 0 on ∂Ω,

where the unknowns are the state y and the control u while the problem data
is given by the desired state yd ∈ L2(Ω) and the PDE data f ∈ L2(Ω), with α2

a regularization parameter. L is a general second-order elliptic operator; for
the purpose of a simpler exposition, we will assume throughout that  L = −∆.

Let now V = H1
0 (Ω), Q = L2(Ω) and consider the weak formulation of the

above control problem, with the constant term ‖yd‖2L2(Ωd) ignored:

WF :



Find (y, u) ∈ V ×Q such that

1

2
m(y, y)− c(y) +

α2

2
q(u, u) = min!

subject to

a(y, v)− b(u, v) = `(v) ∀v ∈ V,

where

m(y, z) = (y, z)L2(Ωd) , q(w, v) = (w, v)L2(Ω) , b(w, v) = (w, v)L2(Ω) ,

`(v) = (f, v)L2(Ω) , c(z) = (yd, z)L2(Ω) , a(z, v) = (∇z,∇v)L2(Ω) .

Let now Vh ⊂ V , Qh ⊂ Q denote suitable finite dimensional spaces. With the
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above notation, the discrete weak formulation reads

DWF :



Find (yh, uh) ∈ Vh ×Qh such that

1

2
m(yh, yh)− c(yh) +

α2

2
q(uh, uh) = min!

subject to

a(yh, vh)− b(uh, vh) = `(vh) ∀vh ∈ Vh,

which in turn yields the quadratic programming problem

QP :



Find y ∈ Rn,u ∈ Rm such that

1

2
yTMy − cTy +

α2

2
uTQu = min!

subject to

Ay −Bu = b,

where A,M ∈ Rn×n, B ∈ Rn×m, Q ∈ Rm×m,b, c ∈ Rn. The first order condi-
tions for the above QP problem yield the following linear system of equations:M 0 AT

0 α2Q −BT
A −B 0

y
u
p

 =

c
0
b


When dimVh = dimQh = n and Ωd = Ω, the matrices M,Q,B are equal
and invertible M = Q = B ∈ Rn×n and the linear system can be reduced to
positive-definite form [

αA −M
M αAT

] [
y
p̂

]
=

[
b̂
c

]
,

with p̂ = p/α, b̂ = αb. We discuss next an approach that allows for the design
of optimal domain decomposition solvers.

2.3 An auxiliary problem: reaction-diffusion system

Motivated by the above discussion, we consider the block linear system

Kx =

[
αA −M
M αA

] [
x1

x2

]
=

[
f1
f2

]
. (1)
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We associate with this problem the system of PDE −α∆u1 − u2 = f1 in Ω,
u1 − α∆u2 = f2 in Ω,

u1 = u2 = 0 on ∂Ω.

Equivalently,

RD :

{
 Lu := −α∆u + Su = f in Ω,

u = 0 on ∂Ω,
S =

[
0 −1
1 0

]
.

The weak formulation of the above problem reads{
Find u ∈ V × V such that for all v ∈ V × V

B(u,v) = (f ,v) ,

where V = H1
0 (Ω) and

B(w,v) =

∫
Ω

(
α∇w : ∇v + wTSv

)
dΩ.

In the next section we consider a non-overlapping domain decomposition method
for the solution of the linear system arising from the discretization of the above
weak formulation.

3 Domain decomposition formulation.

In the following we describe a standard domain decomposition (DD) strategy
of our PDE system and consider the resulting discrete formulation.

3.1 Non-overlapping DD for reaction-diffusion systems.

Consider a non-overlapping decomposition of Ω:

Ω̄ =

N⋃
i=1

Ω̄i, Ωi ∩ Ωj ≡ ∅ (i 6= j),

and let Γ ⊂ Rd−1 denote the set of internal boundaries associated with the
above partition of Ω

Γ =

N⋃
i=1

Γi (Γi := ∂Ωi \ ∂Ω).

We will use the notation vi := v |Ωi .
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Let ui |Γi= λλλi. Our model problem decouples as  Lui = f in Ωi,
ui = 0 on ∂Ω ∩ ∂Ωi,
ui = λλλi on Γi.

Moreover, letting ui = u
{1}
i + u

{2}
i , the above system will split as


 Lu
{1}
i = f in Ωi,

u
{1}
i = 0 on ∂Ω ∩ ∂Ωi,

u
{1}
i = 0 on Γi.


 Lu
{2}
i = 0 in Ωi,

u
{2}
i = 0 on ∂Ω ∩ ∂Ωi,

u
{2}
i = λλλi on Γi.

Multiplying by vi ∈ [H1
D(Ωi)]

2 =
{
wi ∈ [H1(Ωi)]

2 : wi|∂Ω = 0
}

and integrat-
ing we get

B(u
{1}
i ,vi) = (f ,vi) +

∫
Γi

ni · ∇u
{1}
i vids(Γi)

B(u
{2}
i ,vi) =

∫
Γi

ni · ∇u
{2}
i vids(Γi).

Adding and then summing over i we find

B(u,v) = (f ,v) +

N∑
i=1

∫
Γi

ni · ∇u
{1}
i vids(Γi) +

N∑
i=1

∫
Γi

ni · ∇u
{2}
i vids(Γi)

which yields the Steklov-Poincaré equation for λλλi:

N∑
i=1

∫
Γi

ni · ∇u
{2}
i vids(Γi) = −

N∑
i=1

∫
Γi

ni · ∇u
{1}
i vids(Γi).

Let ηηη ∈ Λ := [H
1/2
00 (Γ)]2 and let vi be the solution to the problem  Lvi = 0 in Ωi,

vi = 0 on ∂Ωi \ Γi,
vi = ηiηiηi on Γi.

We call vi the  L-extension of the boundary data ηηηi to Ωi:

vi = Giηηηi.

The Steklov-Poincaré matrix operator S : Λ→ Λ′ is defined via

(Sηηη,µµµ): =

N∑
i=1

∫
Γi

ni · ∇(Giηηηi) µµµids(Γi) =:

N∑
i=1

(Siηηηi,µµµi).



DD PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATIONS 182

We note here that Gi are matrix Green’s functions for LLL restricted to Ωi.
The following result describes the continuity and coercivity properties of S.

Lemma 3.1. There exist constants α1, α2 such that for all ηηη,µµµ ∈ Λ

α1‖ηηη‖2Λ ≤ (Sηηη,ηηη) , (Sηηη,µµµ) ≤ α2‖ηηη‖Λ‖µµµ‖Λ. (2)

Proof. The proof is straightforward to adapt from [1].

Our domain decomposition problem is summarised below.

(i)

  Lu
{1}
i = f in Ωi,

u
{1}
i = 0 on ∂Ωi,

(ii)

{
Sλλλ = −

N∑
i=1

ni · ∇u
{1}
i on Γ,

(iii)


 Lu
{2}
i = 0 in Ωi,

u
{2}
i = λλλi on Γi.

u
{2}
i = 0 on ∂Ωi \ Γi.

The resulting solution is

u|Ωi = u
{1}
i + u

{2}
i .

3.2 Matrix formulation

Consider now the linear system (1) permuted to the block form

Ku =

[
KII KIB

KBI KBB

] [
uI
uB

]
=

[
fI
fB

]
where

KII =

N⊕
i=1

[
αAIiIi −MIiIi

MIiIi αAIiIi

]
and uI ∈ RnI ,uB ∈ RnB with

nI =

N∑
i=1

nIi , nI + nB = n.

Let
S = KBB −KBIK

−1
II KIB .
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Steps (i–iii) in our DD approach above represent a Schur complement ap-
proach:

(i) KIIu
{1}
I = fI ,

(ii) SuB = fB −KBIu
{1}
I .

(iii) KIIu
{2}
I = −KIBuB .

where S is the discrete representation of S. We note that steps (i) and (iii)
involve N decoupled linear systems which can be solved in parallel. The crux
of the problem is step (ii) which in general cannot be solved via a direct solver
with optimal complexity, as S is a dense matrix of size increasing with N as
well as n. However, if we approach this problem in an iterative context, sparse
approximations to S can be devised and employed successfully. We describe
next a useful preconditioner for S based on the properties inherited from
the Steklov-Poincaré operator. We first review briefly the concept of discrete
interpolation norms; these are norms which arise naturally when considering
fractional Sobolev spaces, as is the case here (cf. Eqn (2)).

3.3 Discrete interpolation norms

Let Xh = (Vh, ‖ · ‖X), Yh = (Vh, ‖ · ‖Y ) denote two finite-dimensional spaces
with

Vh = span {φi}1≤i≤n
and

‖uh‖X = ‖u‖HX , ‖uh‖Y = ‖u‖HY ,

where
(HX)ij = (φi, φj)X , (HY )ij = (φi, φj)Y .

We define for all θ ∈ [0, 1] [2]

‖u‖2Hθ = ‖u‖2HY + ‖E1−θu‖2HY .

where E = J1/2 := (H−1
Y HX)1/2. Then

Hθ = HY + (E1−θ)THY E
1−θ = HY +HY J

1−θ.

The above derivation follows the definition of interpolation norms of Lions and
Magenes [15]. It is shown in [2] that the norm induced by Hθ and the Sobolev
norm ‖ · ‖θ are equivalent over the interpolation space [Xh, Yh]θ. Given that
the properties in Lemma 3.1 involve fractional Sobolev spaces, we are led to
consider the following discrete interpolation norms.
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Let U ⊂ Rd. Let X = H1
0 (U), Y = L2(U) and consider the interpolation space

H
1/2
00 (U) = [H1

0 (U), L2(U)]1/2. Let Vh = span {φi} ⊂ H1
0 (U) and let

(L0)ij = (φi, φj) , (L1)ij = (∇φi,∇φj)

Then J = L−1
0 L1 and

H1/2 = L0 + L0J
1/2 = L0 + L0(L−1

0 L1)1/2.

We show below that the availability of the discrete interpolation norm induced
by H1/2 allows for the construction of optimal preconditioners for our optimal
control problem.

3.4 Generalized Lanczos approximations

The computation of H−1
1/2r, where r ∈ RnB , which arises in the implementa-

tion of our preconditioner (see next subsection) can be achieved via a sparse
procedure by using a generalized Lanczos method. This approach was out-
lined in [1]; we include a brief summary below. Given matrices L0, L1, the
generalised Lanczos algorithm applied to the stencil [L−1

1 , L−1
0 ] constructs

L−1
1 −orthogonal vectors vi (Lanczos vectors) such that

L−1
0 Vk = L−1

1 VkTk + βk+1L
−1
1 vk+1e

T
k , V Tk L

−1
1 Vk = Ik

where Tk is a symmetric positive definite tridiagonal matrix of small size k.
Given a vector r, the computation H−1

1/2r can be approximated by

H−1
1/2r ≈ z := L−1

0 Vk(Ik + T
1/2
k )−1e1‖r‖L−1

1
. (3)

The above expression involves sparse computations (inverses of nearly tridi-
agonal matrices L0, L1) with the exception of the matrix square-root computa-
tion on a small matrix of size k×k and the multiplication by Vk ∈ RnB×k, both
of which require dense algebra; however, this does not affect the complexity
of order O(nB) of the overall procedure.

3.5 Interface preconditioners

Consider the equivalent problem

(KP−1)(Pu) = f .

where P is the block preconditioner

P =

[
KII KIB

PBB

]
.
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Note that if PBB = S

KP−1 =

[
I

KBIK
−1
II I

]
.

and convergence is guaranteed in 2 iterations [17]. In this sense, this choice
of preconditioner is optimal. As S corresponds to an operator acting on the
interface Γ, we will refer to PBB as an interface preconditioner.
Since Γ is a one-dimensional manifold in Ω, we adapt the above definition of
H1/2 as follows. Let Sh = span {φi} ⊂ H1

0 (Γ) where φi are the restrictions to
Γ of the basis elements used to represent a piecewise polynomial function on
Ω. Define

(L0)ij = (φi, φj)L2(Γ) , (L1)ij = (∇Γφi,∇Γφj)L2(Γ) ,

where ∇Γ is the tangential gradient operator:

∇Γv = ∇v − n(n · ∇v).

Then the corresponding discrete interpolation norm of index 1/2 is

H1/2 = L0 + L0(L−1
0 L1)1/2.

A result similar to that of Lemma 3.1 holds for S. Since the lemma refers to
the product space Λ = [H1/2(Γ)]2, we introduce the following block-diagonal
matrix:

H :=

[
H1/2

H1/2

]
.

Thus, H can be viewed as a matrix inducing a vector discrete fractional
Sobolev norm of index 1/2.

Proposition 3.2. There exist constants α̃1, α̃2 such that for all βββ,ρρρ ∈ RnB

α̃1‖βββ‖2H ≤ βββ
TSβββ, βββTSρρρ ≤ α̃2‖βββ‖H‖ρρρ‖H .

Proof. Define Λh = Sh × Sh and let {φφφi}1≤i≤nB denote a product basis gen-
erated from the basis of Sh. Let ηηηh,µµµh ∈ Λh have representations

ηηηh =

nB∑
i=1

βββiφi, µµµµµµµµµh =

nB∑
i=1

ρρρiφi.

Note now that the discrete version of (2) holds with the same constants:

α1‖ηηηh‖2Λ ≤ (Sηηηh, ηηηh) , (Sηηηh,µµµh) ≤ α2‖ηηηh‖Λ‖µµµh‖Λ.
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The result then follows from the equivalence of ‖ · ‖Λ and ‖ · ‖H on Sh × Sh,
and by noting that

(Sηηηh, ηηηh) = βββTSβββ, (Sηηηh,µµµh) = βββTSρρρ.

The relevance of this result is directly related to the convergence of the pre-
conditioned GMRES method. The following result is adapted from [7] (see
also [27]).

Proposition 3.3. The residuals of the GMRES algorithm in the H−1-inner
product applied to a linear system with coefficient matrix S and right precon-
ditioner H satisfy ‖rk‖H−1

‖r0‖H−1

≤
(

1− α̃2
1

α̃2
2

)k/2
.

We therefore expect that preconditioned GMRES with right preconditioner P
applied to linear system (1) will converge in a number of steps independent of
the size of the problem. We illustrate this in the numerics section below.

4 Numerical experiments

Consider our model problem

PDECO :



Find (y, u) ∈ H1
0 (Ω)× L2(Ω) such that

1

2
‖y − yd‖2L2(Ωd) +

α2

2
‖u‖2L2(Ω) = min!

subject to

−∆y + cy = f + u in Ω,

y = 0 on ∂Ω.

We experiment with the following test problems, both posed on Ω = (0, 1)2.
Test problem 1 (Nguyen, Heikenschloss 2005, [8]):

f = 1, c = 1, yd(x1, x2) = sinπx1 sinπx2.

Test problem 2 (Pearson, Wathen 2012, [20]):

f = 0, c = 0, yd =

{
1 in

(
0, 1

2

)2
=: Ω1,

0 in Ω \ Ω1.
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We used a mixed finite element method for discretizing the weak formulation
of the equivalent reaction-diffusion system RD (cf. end of section 1) corre-
sponding to Vh being the space of piecewise linear polynomials defined on
an isotropic mesh of triangles. We solved the linear system Kx = f using
GMRES or flexible GMRES (fGMRES), as required, preconditioned by the
block-triangular preconditioner

P =

[
KII KIB

PBB

]
.

We worked with two choices of PBB :

• exact implementation: PBB = H, where H is the discrete fractional
Sobolev norm described in section 2.

• Lanczos approximation: PBB = HLan, where HLan denotes the Lanczos
approximation (3) of the inverses of the diagonal blocks of H to vectors
arising in the preconditioning step of fGMRES.

The starting guess x0 was computed as the solution of the linear system(
KII KIB

O PBB

)
x0 = f .

This choice ensures that the initial residual has the block form

r0 =

(
0
r0

2

)
so that the Arnoldi basis generated by GMRES has the same zero pattern.
This leads to important savings, as the orthogonal basis generated is non-zero
only on the constraint interface space. This was taken into account in our im-
plementation of fGMRES, so that only the non-zero part of the Arnoldi basis
was stored. We note that this is mathematically equivalent to using fGMRES
on the Schur complement problem, but employing a global stopping criterion.
The stopping criterion was ‖f −Kxm‖2/‖f −Kx0‖2 < 10−6. The size of the
Lanczos basis used in the approximation of H−1

Lan was in all cases k = 15. We
experimented with a range of domain subdivisions (N), mesh-sizes (n) and
regularization parameters (α2). The iteration counts are included in Tables
1, 3 for the exact implementation of P and in Tables 2, 4 for the Lanczos
approximation. We observe that in all experiments the independence of the
size of the problem is present, as indicated by the theory. We also observe
that there is a mild dependence on the regularization parameter α2. This
is a parameter that was not considered in our analysis, just as the number
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α2 = 1 10−2 10−4

N = 4 16 64 4 16 64 4 16 64

n = 12,675 13 16 21 14 16 22 16 18 21

33,282 13 16 22 14 17 22 16 18 22

132,098 13 16 22 14 17 22 16 18 22

Table 1: GMRES iterations for Problem 1 using PBB = H.

α2 = 1 10−2 10−4

N = 4 16 64 4 16 64 4 16 64

n = 12,675 12 14 20 14 17 21 16 18 22

33,282 13 14 19 14 16 21 16 19 23

132,098 14 15 17 15 17 21 17 21 23

Table 2: fGMRES iterations for Problem 1 using PBB = HLan.

of subdomains was not. However, for this latter parameter also, the number
of iterations grows only slowly. We recall here that our method is a one-level
method, without the application of a coarse grid solve as many DD approaches

α2 = 1 10−2 10−4

N = 4 16 64 4 16 64 4 16 64

n = 12,675 13 17 22 13 17 24 15 20 26

33,282 13 17 23 13 18 24 15 21 26

132,098 12 17 24 13 18 24 14 21 27

Table 3: GMRES iterations for Problem 2 using PBB = H.

α2 = 1 10−2 10−4

N = 4 16 64 4 16 64 4 16 64

n = 12,675 12 16 22 13 18 23 15 20 26

33,282 13 16 22 14 18 23 15 22 27

132,098 14 17 20 14 19 23 15 22 28

Table 4: fGMRES iterations for Problem 2 using PBB = HLan.
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are known to require for scalability. Finally, we remark that the practical ver-
sion of our preconditioner, given by the generalized Lanczos approximation
outperforms in some cases the exact (but inefficient) version of the precondi-
tioner. This is an occurence also noted in the case when the same procedure
is applied for the domain decomposition solution of a discrete scalar elliptic
problem [1].

5 Conclusion

We introduced a domain decomposition approach based on a reformulation
of the first order conditions into a system related to a certain system of PDE
(reaction diffusion system). The approach involves applying domain decompo-
sition to this related system, with a key ingredient the interface preconditioner
based on discrete fractional Sobolev norms. The resulting solver was analyzed
and shown to have performance independent of the size of the problem. We
found experimentally that the dependence on the other parameters in the
problem is only mild. This makes for a robust and promising approach which
we hope to extend to other types of PDE constrained optimization problems.
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