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DC-Programming versus /j-Superiorization for
Discrete Tomography
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Abstract

In this paper we focus on the reconstruction of sparse solutions to under-
determined systems of linear equations with variable bounds. The problem is
motivated by sparse and gradient-sparse reconstruction in binary and discrete
tomography from limited data. To address the /p-minimization problem we con-
sider two approaches: DC-programming and ¢o-superiorization. We show that
{o-minimization over bounded polyhedra can be equivalently formulated as a
DC program. Unfortunately, standard DC algorithms based on convex program-
ming often get trapped in local minima. On the other hand, ¢y-superiorization
yields comparable results at significantly lower costs.

1 Introduction
We consider the £y-minimization problem

min || Dz||o subjectto z € P C R, (1.1)
over a polyhedron P. Matrix D € {0,1}"™*" is a diagonal matrix that selects entries
inz, |zllo := |supp(z)| := [{i € {1,2,...,n}: z; # 0}| counts the nonzeros

entries and is typically coined ¢y-norm. || - ||p is not a norm and problem (1.1) is
known to be NP-hard. See e.g. [Nat95] for the case of affine linear constraints
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P ={z € R": Ax = b}, with A € R™*", b € R™. In this work we focus of
polyhedra of the form

P={zxeR": Ax =b,Cz > d}, (1.2)

described by linear equalities and inequalities, with A € R™*", C' € RFX" b € R™,
d € Rk

1.1 Motivation

Our work is motivated by the image reconstruction problem from few linear measure-
ments, e.g. discrete tomography [HK99], where typically there are known bounds on
the image values. Moreover we aim to reconstruct an image that exhibits some struc-
ture, e.g. sparsity/gradient-sparsity.

Recovering a structured signal/image from few linear measurements is a central
point in both compressed sensing (CS) [FR13] and discrete tomography [HK99]. In
CS the signal structure is described by means of a low complexity model. The most
basic model is signal sparsity and the associated ¢y-minimization problem writes

min ||z|o subject to Az =b. (1.3)

If z is sparse, i.e. € X5 := {z: ||z|lo < s} and the measurement matrix A € R™>™
satisfies certain conditions, like e.g. being well-conditioned when restricted to X,
see [FR13], one can consider instead of (1.3) the easier ¢;-minimization problem

min ||z||; subject to Az =1b. (1.4)

The theory of CS implies that if m > C - slog(n/s) and the entries of A follow a
normal distribution. i.e. a;; ~ N(0, 1), the problem (1.3) can be solved in polynomial
time via (1.4). If one could solve (1.3) directly, then m > 2s measurements would
suffice to recover any s-sparse solution. Interestingly, if one approximates the £(-
norm by an £,,-quasi-norm, where 0 < p < 1, then one can recover a s-sparse vector
via £,-minimization

min ||z|, subject to Az =1b, (1.5)
as soon as m > C1(p) - s + Ca(p) - p - s - log(n/s), see [CSO8]. Hence, although
non-convex metrics are generally more challenging to minimize, they have the advan-
tage to enable reconstructing a sparse signal from substantially fewer measurements

than the convex ¢;-minimzation counterpart. This has been (empirically) observed
[YLHX15] also for other £y-norm substitutes like e.g.

min [|z|l; — ||z]2 subject to Az =b. (1.6)
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1.2 Objectives

Solution approaches for (1.3) are typically approximated by related concave pro-
grams like (1.5) or (1.6), which are usually solved by DC-programming [THPDOS5],
see [Man96, YLHX15]. In DC-programming, see Sect. 3, one solves a sequence of
easier (convex) problems of the same type. Similarly, in a superiorization [Cenl5,
CZ13] framework, see Sect. 4, one successively applies a basic algorithm, e.g. fea-
sibility seeking, that is bounded perturbation resilient to find a “better” feasible so-
lution in terms of a cost function. Our objective is to apply both frameworks to
problems (1.1), (1.3), or a related problem like e.g. (1.5) for some p € (0,1). In
particular are interested in:

e How and why the two approaches differ?

e If superiorization is applicable to sparse recovery and if yes, how?

2 Preliminaries

2.1 Basic Definitions and Notation

The extended real line is denoted by R := R U {£oo}. For n € N, we use the
shorthands [n] = {1,2,...,n} and [n]p = {0,1,2,...,n}. Vectors x € R™ are
column vectors and indexed by superscripts. x| denotes the transposed vector
and (z,y) or 2 "y the Euclidean inner product. T stands for the transpose. To save
space, however, we will sometimes simply write e.g. z = (x, y) instead of correctly
denoting z = ((z) ", (y)T)T, for 2 = (y). 1 = (1,1,...,1)7 denotes the all

one-vector whose dimension will always be clear from the context. The dimension
1

of a vector  we denote by dim(z). The (quasi)-norms ||z|, = (Zie[n] |xi|p) B
p > 0 will be called /,-(quasi-)norms. |[|z||oc := max;e[,) |2;| is the maximum
norm. The ¢y-measure (not a norm!) stands for the cardinality of the support of
z, ie. ||z|lo := |supp(z)|, with supp(xz) = {i € [n]: z; # 0}. The sign vector
sign(x) € R™ is defined component-wise as

1, x; >0,
(sign(z)); = 0, z;=0, 2.1
-1, =z; <0.

Note that [lzflo = (3_;c(, sign(|zs|). The Euclidean unit ball is denoted by B(0),
while we write B, (0) := {z: ||z||oo < 1} for the unit ball w.r.t. the max-norm.

For some matrix A € R™*", the nullspace is denoted by N(A) and its range by
R(A).
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We consider images u(z), z € Q C R? discretized as follows. 2 is assumed
to be a rectangle covered by a regular grid graph G = (V, E) of size |V| = n.
Accordingly, we identify V = Hie[2] [nilo € Z%, n; € N. Thus, vertices v € V are

indexed by (i,5) " € Z2 with ranges i € [n1]o,j € [n2]o, and
n = nins. 2.2)

As a result, discretization of u(x), x € €2, yields the vector u € R™, where we keep
the symbol w for simplicity.
Consider the one-dimensional discrete derivative operator

_17 1= ja
9: R™ - R™ L, Oij =< +1, j=i+1, (2.3)
0, otherwise.

Forming corresponding operators 01, 0, for each coordinate, conforming to the ranges
of 4, j such that (4, j) € V, we obtain the discrete gradient operator

_ a1 ®12 pPXNn
V= (I1 ®82) e RP™, 2.4)

where ® denotes the Kronecker product and I;, ¢ = 1, 2, are identity matrices with
appropriate dimensions. The anisotropic discretized total variation (TV) is given by

TV (u) == || Vul;. (2.5)

The image gradient sparsity is given by || Vul|o.

For simplicity we will consider as basic feasible set the polyhedron P = {z €
R": Ax = b,Cx > d}, with A € R™*", C € R¥*", h € R™, d € R¥ assumed to be
non-empty. This is a particular closed and convex set, which for the applications we
have in mind can also be assumed to be bounded.

We denote the class of proper convex and lower semicontinuous (Isc) functions
by

Fo(R™) := {f: R™ — R: f is proper, convex and Isc }. (2.6)

Hence, the indicator function §p : R* — R of P defined as

5?@):{ o0, x€ P,

0, =¢?P,

is Isc since P is closed. The epigraph of f: R™ — R is the set of points lying on or
above its graph, that is

epi(f) := {(z,0) € R" x R: f(z) < a} CR". 2.7
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For a function f: R® — R the function f*: R® — R defined by
7 (p) = swp {(p.z) = f(@)} 2.8)
zeR™

is called the (Fenchel) conjugate of f. The conjugate f* is the pointwise supremum
of the affine functions p +— (p,x) — « parametrized by (z,«) € epi(f), which
implies that f* is Isc convex.

A mapping F': R™ — R" is called L-Lipschitz continuous for some L > 0 if

|F(z) — F(y)|| < L||x — yl|, forall z,y € R™. (2.9)
The unit sphere in R™ is defined as
S"t={geR"||g =1} (2.10)

The set of vertices of the unit hypercube in R™ is denoted by G = {—1,1}".
For any g € S"~! we define |g;| = max {|gx| : k € [n]}. The set of univariate
positive infinitesimal functions is

P ={z(A) €R: 2(A) > 0,A > 0,A7"2(A) =0 0}. (2.11)

Given a set of points S = {z'}}¥, C R", the convex hull of S, denoted by
conv(.9) is the set of all convex combinations of its points, i.e.

conv(S) = Z izt s o >0, Z a;=1,2€85%. (2.12)
i€[N] i€[N]
Let us recall the orthogonal (metric) projection operator Po : R™ — C onto a

non-empty, closed and convex set C' C R™. For each point x € R", there exists a
unique nearest point, denoted by Pc(z). That s,

|z — Po (z)|| < |lz —y| forally € C. (2.13)

The metric projection P is characterized [GR84, Section 3] by the following two
properties:
Po(z) e C (2.14)

and
(x — Po(z),Po(x)—yy >0forallz € R, y € C, (2.15)

and if C'is a hyperplane, then (2.15) becomes an equality.
The subdifferential set denoted by 0 f () of f : R® — R at a point z € R where
f(z) € R, is defined as
Of(x) ={£ €R": f(2) > f(z) +({,z—z),Vz € R"}. (2.16)

We agree that 9 (x) = 0 if f(x) is not finite. Elements of the subdifferential set are
called subgradients.
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2.2 Equivalence of {y- and /,-Minimization over Bounded Polyhedra

We consider here a variation of problem (1.1)

min || Dz||g subjectto € PN By (0) (2.17)
along with the associated ¢,,-minimization problem

min || Dz||, subjectto = € PN By (0). (2.18)

Since we intersect P = {z € R™: Az = b, Cz > d} with the B, (0) ball our feasible
set becomes a bounded polyhedron, hence a polytope.

Along the lines of [FM11] we establish the equivalence of (2.17) and (2.18) for
a sufficiently small p > 0. As in [FM11] we rewrite the objective of (2.17) as a
step function and reformulate (2.18) as a concave optimization problem. Using that
[Dzllo = >;epn) Dii sign(|2i|) and introducing an auxilary variable y; for |x;| we
rewrite (2.17) as

min(D]l)T sign(y) subjectto z€ P, —y<z <y, -1<z<1. (2.19
Similarly we can rewrite (2.18) as
min(D1) "yP subjectto z€ P, —y<zx <y —-1<xz <1, (2.20)

where the p-power should be understood component-wise, i.e. y? := (y7,...,yP) €
R™. We define now a subset of the bounded feasible region of the two above problems
as follows

F={(z,y) ER™: 2P, —y<a<y -1<z<1,0<y<1}. (221)

We can consider further w.l.0.g. J as the feasible set of both minimization problems
(2.19) and (2.20), since in view of the inequalities —y < z < y,||z[|ec < 1 the
inequalities 0 < ¢ < 1 do not influence the solutions z.

Observe now that problem

min(D1) " yP subjectto  (x,y) € F

is a concave problem with a polytope as feasible set. Hence it’s infimum is attained
at a vertex of J.

Lemma 2.1. [Roc70, Corollary 32.3.3 and 32.3.4] Let f : R* — R be a con-
cave function, and let C C R™ be a nonempty polyhedral convex set contained in
dom f :={z: f(x) < oo}. Suppose that C contains no lines, and that f is bounded
below on C. Then the infimum of f relative to C is attained at one of the (finitely
many) extreme points of C.
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Theorem 2.2. The {y-norm minimization problem (2.17) is equivalent to the {,,-norm
minimization problem (2.18) for some py < 1. Furthermore, there exists a vertex of &
that is an exact solution of the {y-norm minimization problem (2.17), or equivalently
of (2.19), and is a global solution of the {,-norm minimization problem (2.18), or
equivalently of the concave problem (2.20), for some pg = 1/qo where gy € N.

Proof. Note that the objective function of (2.20) is concave fory > 0,p =: 1/¢q < 1,
and that

0<(D1)Ty? = (D1)Ty'/7 < (D1) " sign(y), for 0<y<1. (222

Since (D1) "'/ > 0 holds on the bounded polyhedral set F, it follows by Lem. 2.1
that y — (D1)"y'/? has a vertex (z(q),y(q)) of F as a solution for each ¢ € N.
Since J has a finite number of vertices, one vertex, say (Z, 3), will repeatedly solve
(2.20) for some increasing infinite sequence in a subset Q) := {qo,q1,q2,...} C N.
Hence for ¢; € @

(Dll)Tﬂqii = min (D]l)quii < inf (D1)7 sign(y), (2.23)

(z,y)eTF (z,9)eTF

where the last inequality above follows from (2.22). Letting ¢ — oo it follows from
(2.23) that

(D1)7 sign(j) = lim (D1)7§# < inf (D1)” sign(y).
i—00 (z,y)€F
Since (z,9) € J, it follows that (Z, §) solves (2.19). Furthermore (Z, §) is a vertex
of J. O

From the proof of Thm. 2.2, in particular (2.22), we also obtain the following
result. This will be further used in order to design a descent direction for the superi-
orization algorithm in Section 4.

Proposition 2.3. Let p > 0, not necessary p < 1 and 0 < y < 1. Then
ép(y) = (D1)Ty” < || Dyllo =: do(y)- (2.24)

Moreover, a nonascent direction for ¢y, is a nonascent direction for ¢y.

Further we note that ¢,, above is differentiable and a nonascent direction for ¢,
and ¢ is the gradient of ¢, = pDyP~ 1.
Remark 2.1. Alternatives to the £,,-quasinorms exists throughout the literature, such
as,

lz[/(Jz| + ), or 1 —exp(—|z|/a),

for some small a@ > 0. These functions are particular instances of f, : R — R, of
the form f,(x) = rqo(|z]), where r,(0) = 0, r, is increasing and concave on R,

7!, and t — 74(t)/t is non-increasing. Then >, fo(x;) can be used as a proxy for
the £,-quasinorm and for £, for an appropriate choice of parameter a > 0.
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2.3 Sparse Regularization for Binary Tomography

In this section we recast the sparse binary tomography problem as (2.17). We con-
sider the problem of reconstructing a vectorized binary image u € {0,1}" from a
limited number of tomographic projections

Mu = q. (2.25)

Each pixel is associated with some unknown binary variable u; € {0, 1}. Each entry
in ¢ € R™, called tomographic measurement or single projection, corresponds to the
integrated gray values of u along the single ray, see Fig. 2.1. Hence the integral can be
split into the sum of products M;;u;, where each matrix entry M;; > 0 corresponds
to the length of the intersection of the ¢-th ray with the j-th pixel. If ray ¢ and pixel
J do not intersect then M;; = 0. Stacking all equations for all the rays together
leads to the linear equations in (2.25) and provides the following representation of

Figure 2.1: Parallelbeam geometry set-up: a set of parallel rays is shot through the
object from different directions. These are typically coined as one projection. Two
projections are illustrated above. (Left) [llustration of a single projection correspond-
ing to a measurement along one ray. The image domain () is tiled into pixels or
mathematically Haar-basis functions. Hence, a single projection corresponds to the
line integral over a piecewise constant function.

the reconstruction problem
Mu=gq, we{0,1}". (2.26)

The binary reconstruction problem (2.26) is NP-complete for more than two pro-
jections. Our approach here is to relax the constraints and to move the combinatorial
difficulty into the objective. This leads us to

min [Jul|o subjectto Mu=ygq, ue€|0,1]". (2.27)
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Consequently, we obtained a convex feasible set of the form (1.2), with A := M,
b:=¢q,C:=1¢€R"™", d:=0 € R"and m equals the number of rays. Moreover
|lu|lso < 1 and our polyhedron

P={u: Mu=q,uel0,1]"}
is bounded.
Remark 2.2. Note that problem (2.27) is equivalent to
min |ul/} subjectto  Mu=gq, wue€l0,1]"
for a small but finite p < 1. In view of the non-negativity of w it is not necessary to
introduce auxiliary variables for |u| as done in the previous section.
2.4 Gradient-Sparse Regularization for Discrete Tomography

Our objective in this section is to introduce a second regularization model from dis-
crete tomography and to recast it as (2.17). Like previously, we wish to reconstruct a
vectorized image u € R™ from a limited number of tomographic projections (2.25).
We now have a small range of signal values in u due to few materials only (e.g. bone,
fat, water etc.). In particular, we have an upper bound on the maximal absolute value
of u,

u; € [0, up], Vi € [n].

Moreover, we assume that the image to be reconstructed is gradient-sparse, i.e.
|Vul|o < n. This leads us to the following reconstruction problem

min || Vullo subjectto  Mu = ¢, u >0, ||t oo < up. (2.28)
Rescaling, with @ := u/uy, and M := u, M, leads to

min |[Villo  subjectto Ma =g, @ >0, il < 1. (2.29)
We further simplify notation by setting u <— @. We note that (2.29) is equivalent to

min ||z]]o subjectto Mu =g¢, Vu=z, u € [0,1]", (2.30)

that can be rewritten as

. . M 0 U q n
IEIZHHZHO subject to (V —I) (z) = <0> , u€[0,1]™. (2.31)

Using that ||z||oo = ||[Vu]|so < 1, in view of the definition of z and the given bounds

on u, we can recast (2.31) as

min || Dz||o subjectto Az =b,Cx > d,||z]|e <1, (2.32)
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where

and
L Idim (u) 0 L 0
C._< : 0), d._(0>.

3 DC-Programming

We have seen in Section 2.2 that one can replace {p-minimization problem over
bounded polyhedra with an concave minimization problem. A concave program is a
special instance of a DC-program. A DC-program is a problem of the form

min f(z),  f(z) = g(z) - h(2), G.D
with g, h € Fo(R™) proper, convex, Isc. We emphasize that problem (3.1) is non-
convex, since f is decomposed into a convex part g and into a concave part h and in
general non-convex. Such an f will be called DC function.

As discussed earlier, the conditions for global optimality in DC-programs do not
yield efficient general algorithms.

3.1 DC-Algorithm

There are some popular techniques for the global optimization of (3.1) - among them,
branch-and-bound and cutting planes algorithms. Here we omit discussion of global
optimization techniques for DC-programming, refer to the overview [HT99] and fo-
cus instead on an convex-based approach to local optimization. The following basic
algorithm [PDEB86, PDTH97] computes a non-increasing sequence { f(2(*))} con-
verging to a stationary point by iteratively minimizing ¢ plus an affine upper bound
of h. It is known as the simplified DC Algorithm (DCA).

Given z := z(¥) the first step of each iteration computes an upper bound of f by
determining the closest affine upper bound of the concave component /. The second



DC-PROGRAMMING VERSUS £3-SUPERIORIZATION FOR DISCRETE
TOMOGRAPHY 115

Algorithm 1: DC Algorithm (DCA)
Input: Good initialization x.
Output: Approximate local minimizer 2 of problem (3.1).
begin
repeat
y®) € oh(xk)
2+ € argmin, {g(z) — (h(z®) + (y®), 2z —2®))} =
arg min, {g(x) — <y(k), x)}
until some convergence criteria is met at (%),
L & «— (5,

step updates « by minimizing this upper bound.

h(z) +h*(y) > (z,y) & —h(@) < —(z,y) +h*(y), Vy

(3.2a)
— y € arg{nin{h* (@) — (z, )} = Oh(x) (3.2b)
]
— z € argmin{ g(Z) — (h(z) + (y,@ — ) ) } = 09" (y) (3.2¢)
T N— —
<h(%),V&
2f(%)

Hence, the second step in each iteration is equivalent to choosing z(**t1) € dg* (y(k')).

As already mentioned, the sequence of iterates is non-increasing. Denote z := ()
y:=y®, 2/ = 2+t and

5

<g,) = <gg}ﬁ%))) . (3.3)
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Then
inf f(z) < f(z') (3.4a)
= g(2') — h(z') (3.4b)
< g(@) = (Mz) + (y, 2" — z)) since y € Oh(z) (3.4¢)
=g(2") = (y,2") + (y,2) — h(x) use 2’ = argmin g(7) — (y, %)
(3.44d)
— f(z). (3.4f)

Algorithm 1 generalizes subgradient optimization of convex functions to local op-
timization of DC functions. Accordingly, basic concepts of convex optimization
like duality and KKT conditions were extended to DC functions [Tol78]. [PDTH97,
PDTHO6] guarantees convergence of the sequence {z(*)}, generated by Algorithm
1 to a critical point by starting with (%) € dom(g).

Remark 3.1. The sequences {z(*)} and {y(*)} are well defined if and only if
domdg € domdh and domdh* C dom dg*.

Theorem 3.1. [PDTHO06, Thm. 3.7] Suppose that the sequences {x®)} and {y*)}
are defined by the DCA Algorithm 1 and assume DCA is well defined. Then every
limit point of the sequence =*) (resp. y¥)) is a critical point of g — h (resp. h* — g*).

3.2 DC-Programming for /,,-Minimization

Recall £,,-minimization, p < 1 over bounded polyhedra from (2.18), that was rewrit-
ten as a concave optimization problem in (2.20).

The DC Algorithm 1 applied to (2.20), also called Successive Linearization Al-
gorithm (SLA), consists of linearizing the differentiable concave objective function
of problem (2.20) around a current point ((¥), (*)) and solving the resulting linear
program. The algorithm terminates in a finite number of steps at a stationary point
after adding the constraint y > €1 to the minimization problem (2.20) for some small
€ > 0 to ensure the differentiability of the objective function of (2.20). Hence, we
consider

Fer=F{y:y>el}, F={(z,y) ER":2€P—y<a<y -1<2<1,0<y<1}
(3.5)
and

min1' Dy subjectto  (z,y) € Fe. (3.6)
.y
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Algorithm 2: DCA for (2.20) / Successive Linearization Algorithm (SLA)

Input: Choose p € (0, 1), e small, (z(?), y(®)).
Output: Approximated stationary point of (2.20).
fork=1,...,do

. —1\ T
(2* Dy D) = argming, y)es, ((Dy(’“))p ) y

=\ k+1
Stop when ((Dy(k)) ) (y®) — y+Dy = 0
Otherwise set k <+ k + 1

With g(z,y) = 7. (z,y) and h(z,y) := 1T DyP we now obtain the iteration in
Algorithm 2 below. By [Man96, Thm. 4.2] additionally have the following finite
termination result for Algorithm 2.

Proposition 3.2. Algorithm 2 generates a finite sequence (x(k), y(k))keN with strictly
decreasing objective function values for the {,,-minimization problem (2.20) with p €
(0,1), and terminating at an iteration K € N satisfying the following minimum
principle necessary optimality condition

1/q-1\ |
((Dy““) > (-y") =0, (zy) €T, (3.7)
which states that (x5, y5)) is a stationary point of (3.6).

3.3 DC-Programming for ¢/, _-Minimization

An solution approach [YLHX15] for (1.3) is to replace the £y-minimization by mini-
mization of a non-convex yet Lipschitz continuous metric ¢; _5 and consider

min [|z|[; — [|z]|2 subjectto Az =b. (3.8)
Similarly we can consider for the minimization of (1.1) a proxy
min | Dz||y — ||Dx||2 subjectto z € P C R, 3.9)

with P from (1.2) or P = {& € R": Az = b,Cx > d,||z]| < 1}. See Fig. 3.1
for an illustration of different sparsity measures. It is immediate to recast (3.9) as a
difference of two convex functions

min ||z|1 + dp(z) — ||z||2 (3.10)
—_——————

=:g(x) =:h(x)
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Figure 3.1: Contours of four sparsity metrics: (1, £1_o, E% and ¢, — al3, o €
{0.1,0.3}. The level curves of ¢1_5 tend to the axes as the values get small and are
more similar to £y. In Sect. 2.2 we have shown that minimizing £, for p < 1 small
but finite, over bounded polyhedra is equivalent to /p-minimization. Our numerical
experiments will show however that £; —a/3-minimization seams to be (numerically)
more efficient, since it better avoids local minima.

Using that

oh(z) = 4 Tole> 1270, G.11)
B.(0), ifz =0,

we can specialize Algorithm 1 for (3.10) to the following iteration summarized in
Algorithm 3 below.

Algorithm 3: DC Algorithm (DCA) for ¢; _,-Minimization.
Input: Good initialization x.
Output: Approximate local minimizer & of problem (3.10).
begin

repeat

e ®/a®]la, it 2™ £ 0,
0, if (%) =0,
2+ € argmingey { ||zl — (v, 2)}
until some convergence criteria is met at (%),
L & — x5,

y*) =

3.4 DC-Programming for /; — (3 Minimization

We note that a DC function f has infinitely many DC decompositions. E.g. if f =
g—h, then f = (¢g+k)—(h+k) forevery k € Fo(R™). The primal DC corresponding
to the two DC decompositions of the objective function f are identical, but their
dual programs h* — g* are quite different. Hence the DCA relative to these DC
decompositions is also different. In other words, there are as many DCAs as there
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are DC decompositions of the objective function f. It is useful to find a suitable DC
decomposition of f since it may have an important influence on the efficiency of the
DCA. It is common to make the DC components of the primal objective function
f = g — h strongly convex. A straight-forward approach is to choose above k(z) =
H|zl3. If f(z) = ([|z]l1 + [1=]3) — (lz]l2 + 3|lz[|3) like in Sect. 3.3, then DC
Algorithm 1 will require to solve in each iteration a quadratic program. We prefer
however to solve linear programs instead and consider the problem

min ||Dz||; — o Dzl|3 subjectto x € P C R", (3.12)

with P from (1.2) or P = {x € R"*: Az =b,Cx > d,||x]|0o < 1}. We recast (3.12)
as a DC-program

min ||z||; + dp(x) — ofz|3. (3.13)
—_—— ——
=:g(2) =:h(x)
Using that
Oh(z) = Vh(z) = 20z (3.14)

we can specialize Algorithm 1 for (3.13) to Algorithm 4 below.

Algorithm 4: DC Algorithm (DCA) for ¢; — a/2-Minimization.
Input: Good initialization z, o € (0, 1).
Output: Approximate local minimizer Z of problem (3.13).
begin
repeat

2+ € argmingegp {||z]|1 — (2a2®), z)}
(K)

until some convergence criteria is met at x
& +— 2,

4 Superiorization

4.1 Superiorization: Basic Concepts.

Superiorization is a recently introduced methodology which gains increasing interest
and recognition, as evidenced by the dedicated special issue entitled: “Superioriza-
tion: Theory and Applications”, in the journal Inverse Problems [CHE34]. The state
of current research on superiorization can best be appreciated from the “Superior-
ization and Perturbation Resilience of Algorithms: A Bibliography compiled and
continuously updated by Yair Censor”[Cenml]. In addition, [Her14], [Cenl5] and
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[RP17, Section 4] are recent reviews of interest. Research works in this bibliogra-
phy include a variety of reports ranging from new applications to new mathematical
results of the foundation of superiorization.

This methodology is heuristic and its goal is to find certain good, or superior,
solutions to optimization problems. More precisely, suppose that we want to solve a
certain optimization problem, for example, minimization of a convex function under
constraints (for an approach which considers the superiorization methodology in a
much broader form, see [RP17, Section 4]) then, solving the full problem can be
rather demanding from the computational point of view, but solving part of it, say the
feasibility part (namely, finding a point which satisfies all the constraints) is, in many
cases, less demanding. Suppose further that our algorithmic scheme which solves the
feasibility problem is perturbation resilient, that is, it converges to a solution of the
feasibility problem despite perturbations which may appear in the algorithmic steps
due to noise, computational errors, and so on.

Under these assumptions, the superiorization methodology claims that there is
an advantage in considering perturbations in an active way during the performance
of the scheme which tries to solve the feasibility part. What is this advantage? It
may simply be a solution (or an approximation solution) to the feasibility problem
which is found faster thanks to the perturbations; it may also be a feasible solution
x' which is better than (or superior) feasible solutions z which would have been
obtained without the perturbations, where this “superiority ’is measured with respect
to some given cost/merit function ¢, namely ¢(a’) < ¢(z) is required (and hopefully
@(z’) will be much smaller than ¢(z)).

Observe that in the case of convex optimization problem, when the objective ¢
is a convex function, the perturbation can be chosen in a non-ascending direction, as
the following example: take 5™ € 9¢(y*™)) where d¢(z) is the subgradient set

of ¢ at z, and define v+ = —g(km) Hs(k’") Lif 0 ¢ 0¢(yF™), and vF™) = 0,

if 0 € d¢(y*™)); See for example [BDHK07, CDH™ 14].

Before we introduce Censor et al. superiorization “without gradients” [CHS16],
which is more general and relevant to our results, we wish to present the superior-
ization methodology in the convex settings. It is clear that in the non-convex case,
which is of our interest in this paper, the major question is how to choose a nonascent
direction for ¢ in Algorithm 5 below.

Let ¢ : R® — R be a real-valued convex continuous function and let for sim-
plicity of presentation, assume here that I' = R™. The Superiorized Version of the
Basic Algorithm %A that we consider here is based on [CZ15, Algorithm 4.1] and is
presented in Algorithm 5.
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Algorithm 5: Superiorized Version of the Basic Algorithm A

Input: N € N and y(©) € R a user-chosen vector.
Output: A solution to problem T which is superior with respect to ¢.
begin
Given a current iteration vector y*) pick an Nj, € {1,2,...,N}:
repeat
Y B0) ().
Pick a 0 < By, < 1such that 37 St g, < 0.
Pick a v(*™) that is a direction of non-ascend for ¢ at y(¥™)
Calculate the perturbed iterate (k" +1) « y(kn) g, - 4(kim),
setn < n+1
until n < Ny
Exit the loop with the vector 3%Ne).
| Calculate y 1) « A(y*-Ne)) and set k + k + 1.

4.2 Basic Algorithms for SFP

The Convex Feasibility Problem (CFP) stands at the core of the modeling of many
inverse problems in various areas of mathematics and the physical sciences; for ex-
ample in sensor networks, in radiation therapy treatment planning, in color imaging
and in adaptive filtering, see e.g., [CAP88, Byr99, CDH10] and references therein.
The CFP formulation is given next.

Problem 4.1. The Convex Feasibility Problem (CFP).
Fori=1,...,plet C; C R™ be closed and convex sets. The CFP is:

find a point 2* € C :=N_,C;. 4.1

In 1994, Censor and Elfving [CE94] introduced the Split Convex Feasibility Prob-
lem (SFP). This reformulation was employed for solving an inverse problem in intensity-
modulated radiation therapy (IMRT) treatment planning, see [CBMATO06]. The prob-
lem formulates as follows.

Problem 4.2. The Split Convex Feasibility Problem (SFP).

Let R™ and R™ be two Euclidean spaces. Let C C R™ and @ C R™ be two non-
empty, closed and convex sets, in addition given a bounded linear operator A : R" —
R™, the SFP is:

find a point 2* € C such that y* = Ax™ € Q. 4.2)

A useful tool which is used frequently for solving CFPs as well as SFPs is the
class of projection methods, (see, e.g., [Byr08, Cegl2, CZ97]). These are iterative
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algorithms that use projections onto sets, relying on the principle that when a family
of sets is present, then projections onto the given individual sets are easier to perform
than projections onto other sets (intersections, image sets under some transformation,
etc.) that are derived from the given individual sets. See illustrations in Figure 4.1
which is taken from [CEHO1]. Their main advantage, which makes them successful
in real-world applications, is computational. They commonly are able to handle huge-
size problems of dimensions beyond which more sophisticated methods cease to be
efficient or even applicable due to memory requirements.

Cimmino Kaczmarz

Figure 4.1: Different projection methods for the linear case. The figure is reproduced
from [CEHO1].

In order to discuss a more general case, we assume (standard assumption) that
the set C' (also @) for the SFP) can be represented as a sublevel set of a convex and
subdifferential function ¢ : R™ — R, that is

C={zeR": ¢(z) <0} 4.3)
Next, we define the set
C={yeR": c(z)+ (&y—a) <0}, (4.4)

where £ € Oc(x) is the subgradient of ¢ at a point z. In this case the subgradient

projection onto C, which is an outer approximation to the set C, since C' C Cis
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calculated as follows. Let £ € Oc(x)

c(x) .
P-(y) == {y Terzé &0 (4.5)

¢ otherwise.

Observe that if £ # 0 then Cisa half-space and the whole space otherwise.
So, if all the sets of the CFP, Problem 4.1, have a sublevel sets representation, that
is for all ¢
C;={z eR": ¢;(x) <0} 4.6)

the Cyclic Subgradient Projection (CSP) method [CL82] can be used successfully.
The CSP iterative step is formulated as follows.

k Ci(v k
k+1 _ o) — A |(|§)(k)||2 EW iy (™) >0

T 4.7

where £F) € Oc;(,) (z™), A, € [e1,2 — €] are called relaxation parameters for
arbitrary e, €2 > 0 and {i(v)} is a sequence of indices according to which individual
sets C; are chosen, in this case cyclic: i(v) = v modm + 1. In the linear case CFP,
this method reduces to the well known method of Kaczmarz [Kac37] or Algebraic
Reconstruction Technique (ART) and POCS in the field of image reconstruction from
projection, see [BGH70].

Observe that our interest here is the binary reconstruction problem (2.26) which
is phrased as (2.27), this means that we use projection methods to find a feasible point
within the bounded polyhedron P.

4.3 Descent and Nonascent Directions for ¢

Further we apply the superiorization methodology to the objective ¢(z) = ||zo.
Since ¢ is not differentiable in this case we need to introduce non-ascending direc-
tions for ¢. This is a special case of an idea called superiorization “without gra-
dients”, which was suggested to us based on his work in [CHS16], by Censor in a
private communication. Let € R™, set I = supp(z). Choose one j € I and define
the vector w = (w;) € R™ by

wiz{xi ifiFj (4.8)

0 else

Clearly [|[w|lo < ||z|lo- If ||z]jo = s for some 0 < s < n, then (4.8) reduces to the
projection of the vector = onto the non-convex set

Q:={yeR": [yllo <s—1} 4.9)
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see [PZCT17].

An alternative for choosing a non-ascend direction for ¢(z) = ||z||o is based
on (2.24) from Prop. 2.3. We assume that 0 < x < 1 as motivated in Section
2.3 and Section 2.4, and choose for simplicity D = I. First observe that for any
p € (0,1), the gradient of  + 172P is paP~! = (px’ffl, -, pzP~1), where
xP := (af,--- ,2P) (element-wise). Further choose @ € (0,1) and define w =
x — aprP~L. Then ||w|o < ||z]lo. Indeed, if for some i € Ln} we have z; = 0 then
clearly w; = 0. Otherwise it might happen that z; — apz?™" = 0.

Further work will include superiorization for ¢(z) = ||z||1 —||«||2. In this case we
have a DC function which is non-convex but Lipschitz continuous. For such functions
we wish to present a general technique (see [BKS08]) to compute non-ascend/descent
directions for nonsmooth but Lipschitz continuous objective functions.

Algorithm 6: Computation of descent directions for nonsmooth but Lips-
chitz continuous functions.
Input: Choose any g' € Sj ande € G. Given z € P, A > 0, a € (0, 1],
¢ € (0,1) and a tolerance 6 > 0. Compute
o' =T (2,9, e,2, N\, a) = (T4,...,T%), where

i [2(Vade;] ™ [¢ (27) = ¢ (2771)] if i # j
T Qe oo+ ag) = 0 @) = AL, The] =

and set Dy (z) = {v'}.
Output: A descent direction g of ¢ at a point x € R"™.
begin
Given a current iteration vector g* and the set Dy ()
repeat
Compute ¢ = argmax {|gF| | j =1,...,n} and
ok =T (z,gk,e,z,)\,a).

Find the vector Hwk||2 = min {||w||2 |we Ek(az)}

repeat
Compute gFt! = — Hw’fH_l wk and
izargmax{‘gf+1| |j= 1,...,n}.

Set v**t =T (2, ¢ e, 2, 2,a) and
Djt1(z) = conv { Dy (x) U {vF 1} }
until ¢ (z + Agh™) — ¢ (z) > —c ||w”||
until ||w"|| < §
Exit the loop with the vector gF*1.
Calculate g**! and set k < k + 1.
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5 Experiments, Discussion
In this section we validate the local minimization approach based on DC-programming

on the two image reconstruction models from Sect. 2.3 and Sect. 2.4 but also com-
pare DC minimization to £y-superiorization.

5.1 Experimental Set-Up

We consider the reconstruction of three test images from few tomographic projec-
tions (2.25). The first and second image are the binary test images from [Bat07] and
[HSH12] representing a vascular system containing larger and smaller vessels, see
Fig. 5.1 (left), (middle left). The third image is the Shepp-Logan MATLAB phan-
tom, as shown in Fig. 5.1 (middle right).

\\ i
e l‘l‘\\‘ ‘ \ “ ‘

\{

L u‘\\ ‘
\\l“‘ \:\-“:‘\ ‘\‘\

\\;‘;\k‘“ \

V‘“R\-‘
:1&\ \

Figure 5.1: Vessel test image from [Bat07] (left). Vessel test image from [HSH12]
(middle left). The 32 x 32 Shepp-Logan phantom (middle right). We illustrate how
such a 32 x 32 image is sampled (right) along 45 parallel and equidistant lines that
are all perpendicular to 6 := (cos(30°),sin(30°) .

The measurements are described by ¢ = Mwu, where
T T T\
= (MQ1 M92 o MQM)

and each block matrix My, corresponds to a different projecting angle, see Fig.
5.1 (right) for a parallel ray geometry that corresponds to one such angle. We use
the MATLAB routine paralleltomo.m from the AIR Tools package [HSH12] that
implements such a tomographic matrix for a given vector of angles. We set N €
{32, 64,128} the image size and use the default value of p, i.e. the number of paral-
lel rays for each angle p = round(sqrt(2)*N).

For the description of the superiorization results we define some of the used pa-
rameters. We denote by N the dimension of the image (that is [V x NV pixels image),
nA is the number of projections which are used to sample the image, OLI repre-
sent the number of iterations in the outer loop, ILI is the number of iterations of
the basic algorithm in the inner loop, SI is the total number of superiorizations per



DC-PROGRAMMING VERSUS £3-SUPERIORIZATION FOR DISCRETE
TOMOGRAPHY 126

outer iteration. In addition, SR when the stopping rule || Az — b|| < 1075 achieved,
Res stands for the residual, that is for the reconstructed solution z Res is || Az — b|,
closely related, Diff is the norm difference between the original image (IOrg) and the
reconstructed (IRec) one, that is ||IOrg-IRec||s.

5.2 DC-Programming Results
5.2.1 Sparse Binary Tomography

We aim to reconstruct exactly the two binary testimages u € {0, 1}™ via the three DC
programs from Sect. 3.2, 3.3 and 3.4 from a minimal number of equidistant projection
angles 0; within the interval [0°, 180°]. To find the minimal number of projections
we vary the number of projecting directions and certify a successful reconstruction
if the (relative) distance of the reconstruction, further denoted by ... to the original
signal u is below a numerical “zero”, i.e. w < 1076, The starting point for
each DC algorithm is the default starting point for the LP solver [ApS15].

We also determine the minimal number of projecting angles nA such that the
matrix M is overdetermined or recovery of u via least-squares

min || Mu — q|3 (5.1)

is successful. Results are summarized in the first six rows of Table 1.

dim nA (overdet) nA (LS) nA (41) nA ({,) nA (41_2) nA (41 — ozfg)
) N =32 23 29 10 10 10 10
;‘” N =64 46 56 13 13 13 13

m N =128 91 110 17 17 17 15 (o = 0.3)
eesa | N =32 23 30 ) ) ¥ K
=53 N =64 46 56 16 16 16 16

B | v =128 91 110 20 20 20 19 (@ = 0.1)

N =32 23 29 11 11 10 9@ =010

N =64 46 56 14 14 13 12 (a = 0.3)

N =128 91 110 14 13 11 11 (a = 0.1)

Table 1: Results for DC-programming. The 1st column shows the test image used and the 2nd column its dimension.
The 3rd column indicates the numbers of projecting angles that are necessary for obtaining an overderdetermined system.
Column ‘nA (LS)’ shows the minimal number of projecting angles such that each test images is recovered via (5.1).
Column ‘nA (£1)’ gives the minimal nA such that £, -regularization is exact. Column ‘nA (¢;,)* gives the minimal nA
such that £,,-regularization is exact. Several values of p € {1/2,1/5,1/10,1/15} yield similar results. Column ‘nA
(£1—2)’ gives the minimal nA such that £; _>-regularization is exact, while the last column gives the minimal nA such
that £1 — afg—regularization is exact. The used « values are also shown. We observe that £1 — a@%—regularization
always improved on the £; -results. For the gradient-sparse Shepp-Logan test image DC-programming always improves
on the convex model.
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Flgure 5.2: Non-exact recovery of binary images by DC-programming. The first row shows the Batenburg vessel
image reconstructed from nA = 15 projections via £,-minimization (left column) and via £; _»-minimization (right
column). The absolute errors are |[ureec — wl|2 & 17.4929 for £,-minimization and ||trec — ull2 =~ 18.2209
for £1 _o-minimization. The AIR Tools vessel is denser and requires more projections. We show reconstructions from
nA = 19 projections via £,-minimization (left column) and via £; _-minimization (right column). The errors are
[[urec — ull2 ~ 34.0289 and ||urec — ul|2 &~ 34.5571, respectively.

5.2.2 Gradient-Sparse Discrete Tomography

Here we approximate the model presented in 2.4 using the three proxies for ¢;-
minimization: ¢,, with p € {1/2,1/5,1/10,1/15}, ¢1_5 and ¢; — a3, with {« €
{0.1,0.3}}. The feasible set is described by both projecting and box constraints. Re-
sults for the gradient-sparse Shepp-Logan phantom are summarized in the last three
rows of Table 1. We note that DC programming always reduced the number of pro-
jecting angles nA when compared to ||Vul|;-minimization subject to projecting and
box constraints.

5.3 Superiorization Results

In this subsection we illustrate the ¢y-superiorization approach on the image recon-
struction models from Sect. 2.3. We consider only the Batenburg vesel image. We
choose two variants for the non-ascend directions as explained in Subsection 4.3.
Our experiments are devided into two parts. In the first part, in Figure 5.3, we
choose the following parameters N=128, nA=15, OLI=30 and ILI=10m, where m is
the number of rows of the matrix A. As explained above, one of natural question
when applying the superiorization methodology, is the so-called Balancing Question:
How to divide the efforts that a superiorization algorithm invests in target function
reduction steps (perturbations) versus the efforts invested in feasibility-seeking. Try-
ing to answer this question our experiments in Figure 5.3 are divided into four. In
the first, that is in (a) we dont use any superiorization, just feasibility-seeking algo-
rithm (here Kaczmarz), see Figure 4.1. In (b) one superiorization (=one perturbation)
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per outer iteration is used. In this case we noticed that the computational time/effort
of the total procedure is higher but the reconstructed image is better with respect to
step Res and Diff. In (c) we push that even further and tried to used a minimum of
10 superiorization steps for each outer iteration. In this case, the stopping criteria is
achieved only after 13 outer iterations, compared to 3 in the pervious scenarios but
again we witness that the result is slightly better with respect to Res. Finally, in (d),
similarly to (c), we used a minimum of 10 superiorization steps for each outer itera-
tion but also included the addition [0, 1]™ box constraints for the feasibility-seeking
algorithm. Again there are improvements in Res and Diff and even the stopping
criteria is reached after 11 compared to 13 in (c).

N AN AN AN

(a) (b) (c) (d)

Figure 5.3: (a) SI=0, SR=3 and Res=8.2449 % 106, Diff=54.9293. (b) SI=1, SR=3
and Res=8.0233 * 106, Diff=49.2490. (c) SI=10, SR=13 and Res=9.656 * 10~6. (d)
SI=10, SR=11 and Res=9.656 * 10~7, Diff=47.9286.

In the second part of our experiments the second non-ascend direction (2.24) is
used with different choices of the image’s size N. In the first line, (a) and (b), we
show how for a relatively small image (N=16) using the even one perturbation per
outer iteration improves significantly the reconstructed image and yield a sparser
image. In (b) we choose p = 2. In the second line, (c) and (d) we again compared the
performances with and without perturbations for an image of size 32 and see in (d)
that Diff is slightly better, but remember that only one “nonexpansive” perturbation
is used. Finally, in (e) we decided to test our scheme for a larger image of size 128
but with a fewer number of projections (nA=6) and also decrease the total number
of the outer and inner iterations. Although the reconstructed image contains many
artifacts, it is still very impressive to see that the measurements Res and Diff are
quite good which suggests that this approach can be used an alternative for the DC-
programming.

6 Conclusion

Motivated by sparse and gradient-sparse image recovery from few tomographic pro-
jections we compare two recent strategies for solving the related £y-minimization
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(a)

Figure 5.4: (a) SI=0, N = 16,nA = 15,0LI = 10,ILI = 5m, Diff=7.5427.
(b) SI=1, N=16, nA=15, OLI=10, ILI=5m, p = 2, Diff=6.3964. (c) SI=0, N=32,
nA=15, OLI=10, ILI=Sm, Diff=14.1781 (d) SI=1, N=32, nA=15, OLI=10, ILI=5m,
p = 2, threshold € = 1075, Diff=13.1946. (e) SI=1, N=128, nA=6, OLI=3, ILI=2m,
p = 0.01 threshold € = 105, Res=5.6340 x 10~?, Diff=53.4470.

problem (1.1): the DC-programming approach and the /y-superiorization.
DC-programming for non-convex fj-proxies not always improves on the convex
{;-relaxation of ¢y, but often gets trapped in local minima. On the other hand ;-
superiorization yields comparable results with significantly less computational ef-
fort. For ¢y-superiorization, we suggest two new non-ascend directions and test their
performances for different parameter. Hence, our preliminary results shows that the
{y-superiorization can be used as an alternative approach.
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