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Anti-plane crack in human bone. I.
Mathematical modelling

E. M. Craciun1∗, M. Marin2, A. Rabaea3

Abstract

We consider an anti-plane crack in a bone, considered as an initially
deformed orthotropic, linear elastic composite material. Elastic incre-
mental fields in the composite material are obtained following theories
of Guz’s representation and of Riemann-Hilbert problem. Critical val-
ues of crack propagation angle are determined using Sih’s generalized
criterion.

1 Introduction

Although the plane modes of fracture (Mode I, Mode II and mixed mode
I+II) have been the most studied human bone fracture, bones are loaded in
antiplane mode, also. Many cracks formed in bone are loaded in anti-plane
Mode III of fracture due to the hierarchical and directional nature of its struc-
ture. Bone is a composite of collagen and hydroxypathite (HA) which includes
twisted peptide chains at nanoscale, HA-impregnated twisted collagen fibers
and osteon structures at the scale of several hundred micrometer in size. Many
factors affect the fracture toughness of the human bones such as ageing, dis-
eases, environmental conditions, and so on. Human bone is often considered
to be orthotropic composite material with organized microstructure; the struc-
tural axes of orthotropic symmetry being defined by the bone microstructure,
[5], [17]-[18].
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Few mathematical models were developed for fracture of bone as a pre-
stressed composite material. Consequently, in this work we study a 2D qua-
sistatic anti-plane crack propagation in a pre-stressed human bone, regarded
as an homogeneous elastic composite. We start our study with general theory
of incremental fields of initially loaded elastic composites. Many analytical and
numerical studies were done in this direction of obtaining the incremental be-
haviour of cracked elastic composites, [1], [9]-[11]. From the literature, [2]-[4],
[12]-[15], we know that in the case of cracked pre-stressed bodies, the incre-
mental stress and displacements fields are described using complex potentials
and the initial stress, and play an important role to determine crack propa-
gation. Our second aim is to generalize Sih’s fracture energy density criterion
(SED) [16] to determine crack propagation direction in initially loaded human
bones with anti-plane cracks. For doing this we performed an asymptotical
analysis, to find the complex potentials, incremental stress and displacement
fields. We consider as examples two configurations of anti-plane crack in pre-
stressed Femur and Tibia human bones. To obtain crack propagation angle
we determined the minimum of strain-energy-density versus initial stress and
polar angle. We found that anti-plane crack in pre-stressed Femur and Tibia
human bone is propagating along or perpendicular to the crack line depending
by the elastic constants of human bone and by the initial applied field.

2 Mathematical modeling of the anti-plane crack

We suppose that the bone, regarded as an initial deformed orthotropic
material, contains a crack of length 2a > 0 situated on the x1 axis and has
infinite extent in the direction of the x3 axis. As usual in continuum mechanics,
the crack is represented as a cut with two faces. We assume that the initial
deformed equilibrium configuration of the body is homogeneous and locally
stable and that at large distances from the crack the incremental stress and
displacements fields vanish.
We have the following boundary conditions on the crack faces:

ϑ23(x1, 0
+) = ϑ23(x1, 0

−) = −τ(x1) for |x1| < a, (1)

ϑ23 is the involved component of the incremental nominal stress ϑ and τ =
τ(x1) being the given value of the incremental anti-plane tangential surface
force.

Using representation formulae [6]-[8], [12] we have:

ϑ23 = −2ReΦ′3(z3),

ϑ13 = 2Reµ3Φ′3(z3), (2)
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u3 = −2ω−12332Reµ
−1
3 Φ3(z3).

The above relations, due to Guz [12], express the incremental fields corre-
sponding to the anti-plane state, by a single complex potential Φ3 = Φ3(z3)
depending on the complex variable z3 = x1 + µ3x2, µ3 being the root of the
characteristic equation of equilibrium having the value [8]

µ3 = i

√
ω1331

ω2332
. (3)

In Eq. (3) the instantaneous elasticities ω1331, ω2332 are given by shear moduli
G13, G23 and the initial stress σ as follows:

ω1331 = G13 + σ, ω2332 = G23. (4)

The initial stress σ represents a pre-stress when it modulus is negative and
a tensile stress when it modulus is positive.

We introduce the potential

Ψ(z3) = Φ′(z3). (5)

Using Eqs. (2.1) and (2.2) we get the following Riemann-Hilbert problems:(
Ψ + Ψ

)+
(x1) +

(
Ψ + Ψ

)−
(x1) = 2τ (x1) ,(

Ψ−Ψ
)+

(x1)−
(
Ψ−Ψ

)−
(x1) = 0, |x1| < a. (6)

Following Muskhelishvili’s formalism [13] we get solution of our Riemann-
Hilbert problems:

Ψ(z3) =
1

2π
√
z23 − a2

∫ a

−a

τ(t)
√
a2 − t2

t− z3
dt. (7)

From Eqs. (2), (3), (7) and taking into account that the incremental
displacement u3 vanishes at large distances from the crack, we obtain the
following important result, due to symmetry of the material and to applied
stress fields, that the incremental displacement is vanishing on the crack line.
In a small vicinity of the crack tip a we have:

x1 = a+ r cosϕ, x2 = r sinϕ, z3 ≈ a,
√
z23 − a2 =

√
2arΞ(ϕ), (8)

where Ξ(ϕ) =
√

cosϕ+ µ3 sinϕ.
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Using Eqs. (2), (7) and (8) we get the following asymptotic expressions of
the complex potentials and incremental fields:

Ψ(z3) = − K

2
√

2πr
(Ξ(ϕ))−1, Φ(z3) = −K

√
r

2π
Ξ(ϕ), (9)

ϑ23 =
K√
2πr

Re[Ξ(ϕ)]−1, ϑ13 = − K√
2πr

Re[(Ξ(ϕ))−1µ3], (10)

u3 =
2

ω2332

√
r

2π
KRe[Ξ(ϕ)µ−13 ], (11)

where K represents the stress intensity factor corresponding to Mode III of
fracture, [7]-[8],

K =
1√
πa

a∫
−a

τ(t)

√
a+ t

a− t
dt. (12)

In what follows we assume that τ(x1) = τ = const. for |x1| < a.
From (12), we get:

K = τ
√
πa (13)

and Eqs. (9)-(11) become:

ϑ23 = τ

√
a

2r
Re[Ξ(ϕ)]−1, ϑ13 = −τ

√
a

2r
Re[(Ξ(ϕ))−1µ3], (14)

u3 = τ

√
2ra

ω2332
Re[Ξ(ϕ)µ−13 ]. (15)

3 Generalized strain energy density fracture criterion

Let be W the involved strain energy density, [16]

dW

dV
=

1

2
(ϑ13u3,1 + ϑ23u3,2). (16)

Using Eqs. (14)-(16) we get the following value for W :

dW

dV
=

(|Ξ(ϕ)|)2

ω2332
. (17)

Sih’s generalized fracture energy density criterion (SED) [16] is applied
to all composite materials, loading types and structure geometries, with or
without initial defects. The strain energy density function dW

dV will be assumed
to have the form:
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dW

dV
=
S

r
. (18)

The fundamental quantity is the strain energy density factor S, the ampli-
tude of the energy field that possesses an r−1 -type of singularity. We consider
the situation of brittle crack growth when crack initiation coincides with final
instability. The factor S defined as in Eq. (18), represents the local energy
release for a segment of crack growth r.

Sih’s new fracture criterion is based on the following two hypothesis, [16]:
H1: Crack will start in a radial direction ϕc along which the intensity S(ϕ)

of the strain-energy-density field has a minimum.
H2: The critical intensity Sc governs the onset of crack propagation and

represents a material constant independent of the crack geometry and loading.
Here, Sc is a material parameter

S(ϕc) = Sc. (19)

From Eqs. (17) and (18) we get:

S(ϕ) =
K2a

4ω2332
(cos2 ϕ+ q2 sin2 ϕ)−1/2. (20)

4 Crack propagation angle in Femur and Tibia Bone

The present 2D quasistatic mathematical model provides a means to find crack
propagation angle of an anti-plane crack in a human bone regarded as an
anisotropic material with initial fields.

We consider two numerical examples:
- A. Anti-plane crack in Femur bone and
- B. Anti-plane crack in Tibia bone.

Femur bone is characterized by the following engineering constants (values
in GPa), [5]:
E1 = 12.0;E2 = 13.4;E3 = 20.0;G12 = 4.53, G13 = 5.61, G23 = 6.23, ν12 =
0.37; ν13 = 0.22; ν23 = 0.23; ν21 = 0.42; ν31 = 0.37; ν32 = 0.35.

Tibia bone is characterized by the following engineering constants (values
in GPa), [5]:
E1 = 6.91;E2 = 8.51;E3 = 18.4;G12 = 2.41, G13 = 3.56, G23 = 4.91, ν12 =
0.49; ν13 = 0.12; ν23 = 0.14; ν21 = 0.62; ν31 = 0.32; ν32 = 0.31.

We consider that the modulus of our initial stress is |σ| < 1.5 GPa.
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Let be w normalized incremental strain energy density and t23 normalized
incremental shear stress, ie.

w = S(ϕ)
4ω2332

πτ2a2
, t23 = ϑ23τ

√
2r

a
. (21)

Using Eq. (21) and Sih’s new fracture criterion we observe that crack will
start to propagate if the normalized strain-energy-density w has a minimum.
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Figure 1: Femur bone: Normalized incremental strain energy density w and
normalized incremental shear stress t23 versus ϕ and σ
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Figure 2: Femur bone: Normalized incremental strain energy density w and
normalized incremental shear stress t23 versus ϕ for σ ∈ {−1.5, 0.62, 1, 5}

In Figs. 1 and 3 (left) we plotted the normalized incremental strain energy
density w versus ϕ and σ for Femur and Tibia bones. We observe that the
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minimum of w is related versus σ and is in the vicinity of 0o and in the vicinity
of ±90o.
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Figure 3: Tibia bone: Normalized incremental strain energy density w and
normalized incremental shear stress t23 versus ϕ and σ
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Figure 4: Tibia bone: Normalized incremental strain energy density w and nor-
malized incremental shear stress t23 versus ϕ versus ϕ for σ ∈ {−1.5, 1.35, 1, 5}

In Figs. 2 and 4 (left) we plotted the normalized incremental strain energy
density w versus ϕ for three values of σ, σ ∈ {−1.5, 0.62, 1, 5} for Femur bone
and σ ∈ {−1.5, 1.35, 1, 5} for Tibia bone, respectively.

Taking into account that the derivative w′ of the normalized incremental
strain energy density function w versus ϕ is

w′ = − (q2 − 1) sin 2ϕ

2
(cos2 ϕ+ q2 sin2 ϕ)−3/2 (22)
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we conclude that minimum of the normalized incremental strain energy density
w versus q is obtained in the vicinity of 0o for σ < 0.62, (respectively σ < 1.35)
and is obtained in the vicinity of ±90o for σ > 0.62, (respectively, σ > 1.35)
for Femur, (respectively, for Tibia bone).

When σ = 0.62 and σ = 1.35 for Femur and Tibia bone, respectively we
have q = w = 1 and Sih’s new fracture criterion could not be applied.

In Figs. 1 and 3 (right) we plotted the normalized incremental shear stress
t23 versus ϕ and σ for Femur and Tibia bones.

From Figs. 2 and 4 (left), where we plotted the normalized incremental
shear stress t23 versus ϕ for three values of σ, σ ∈ {−1.5, 0.62, 1, 5} for Femur
bone and σ ∈ {−1.5, 1.35, 1, 5} respectively, for Tibia bone. We remark that
for the case of pre-stress the minimum of incremental shear stress t23 is ob-
tained in the vicinity of 0o, also. In this case we can conclude that could exist
connection between Sih’s new fracture criterion and the minimum of incre-
mental shear stress ϑ23. This represents an important observation, due to the
fact that the minimum of incremental shear stress ϑ23 could be determined by
experimental tests using testing machines.

5 Conclusions

We consider an anti-plane crack in a bone, considered as an initially
deformed orthotropic, linear elastic composite material. The anti-plane state
produced in the body is determined using the theories of Guz’ s representation
and of Riemann-Hilbert problem, using complex potentials.

The presented 2D quasistatic mathematical model provides a means to find
crack propagation angle of an anti-plane crack in a human bones regarded
as anisotropic materials with initial fields. We observed in two cases of an
anti-plane crack in Femur and Tibia bones, regarded as initially deformed
orthotropic material that the crack will propagate along or perpendicular its
line, depending by the initial applied stress field and by the elastic constants.
Also, in the case of pre-stress, we observed that a connection between Sih’s
new fracture criterion and the minimum of incremental shear stress exists,
both indicates that the minimum is in the vicinity of 0o. This fact must be
confirmed by future anti-plane fracture tests.
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