

# On Remotest set and Random controls in Kaczmarz algorithm

#### Constantin Popa

#### Abstract

In this paper we analyse the Kaczmarz projection algorithm with Remotest set and Random control of projection indices and provide a sufficient condition such that each projection index appears infinitely many times during the iterations.

#### 1 Introduction

For an  $m \times n$  (real) matrix A and  $b \in \mathbb{R}^m$  let

$$Ax = b \tag{1}$$

be a consistent system of linear equations and denote by  $S(A;b), x_{LS}$  the set of its solutions and the minimal (Euclidean) norm one  $(\langle \cdot, \cdot \rangle)$  and  $\| \cdot \|$  will denote the Euclidean scalar product and norm on some space  $\mathbb{R}^q$ , respectively). Other notations used will be  $A^T, A_i, A^j, \mathcal{R}(A), \mathcal{N}(A), rank(A)$  for the transpose, ith row, j-th column, range, null space and rank of A. The projection onto a nonempty closed convex set V will be denoted by  $P_V$ , and for  $V = H_i =$  $\{x \in \mathbb{R}^n, \langle x, A_i \rangle = b_i\}$  (the hyperplane determined by the *i*-th equation of the system (1)) we know that

$$P_{H_i}(x) = x - \frac{\langle x, A_i \rangle - b_i}{\|A_i\|^2} A_i.$$
 (2)

Key Words: Kaczmarz algorithm; control sequence; remotest set control; random control. 2010 Mathematics Subject Classification: 65F10, 65F20.

Received: 20.12.2016 Revised: 10.04.2017 Accepted: 20.04.2017 The Kaczmarz's iterative method for numerical solution of (1) has the form from below.

#### Algorithm K.

Initialization:  $x^0 \in I\!\!R^n$ 

Iterative step: for  $k = 0, 1, \ldots$  select  $i_k \in \{1, 2, \ldots, m\}$  and compute  $x^{k+1}$  as

$$x^{k+1} = P_{H_{i_k}}(x^k). (3)$$

There have been defined several classes of selection procedures for the indices  $i_k$  (see [4, 3, 5, 6] and references therein). In this paper we will consider the Maximal Residual (remotest set) control and the Random control procedures, and provide a sufficient condition such that in the case of Kaczmarz's projection method  $\mathbf{K}$ , they belong to the class of control selections from [5]. The paper is organized as follows: in section 2 we give an equivalent formulation of the control sequence definition from [5]. In section 3 we show that, for  $x^0 = 0$  and under additional assumptions, the Maximal Residual (remotest set) selection or the Random selection is a control w.r.t. section 2.

#### 2 Control sequences

Let  $I\!N$  denote the set of natural numbers  $\{0,1,2,\ldots,\}$ . In [5] the following definition concerning control sequences was introduced.

**Definition 1.** (D1) Given a monotonically increasing sequence  $\{\tau_k\}_{k\geq 0} \subset \mathbb{N}$ , a mapping  $i: \mathbb{N} \to \{1, 2, ..., m\}$  is called a control with respect to the sequence  $\{\tau_k\}_{k\geq 0}$  if it defines a sequence  $\{i(t)\}_{t\geq 0}$ , such that for all  $k\geq 0$ ,

$$\{1, 2, \dots, m\} \subseteq \{i(\tau_k), i(\tau_k + 1), \dots, i(\tau_{k+1} - 1)\}.$$
 (4)

The next definition, mentioned in [2] (see also [7]) points-out on an important aspect of control sequences.

**Definition 2.** (D2) A mapping  $i : \mathbb{N} \to \{1, 2, ..., m\}$  is called a random mapping if any  $i \in \{1, ..., m\}$  appears infinitely many times in the set  $\mathbb{I} = \{i(k), k \geq 0\}$ .

It is clear that, if the mapping i is a control with respect to some sequence  $\{\tau_k\}_{k\geq 0}$ , then it is also a random mapping, according to definition (**D2**). Indeed, if the sequence  $\{\tau_k\}_{k\geq 0}$  is increasing then  $\tau_{k+1} > \tau_k$  and the sets  $\Delta_k = \{i(\tau_k), i(\tau_k + 1), \dots, i(\tau_{k+1} - 1)\}, k \geq 0$  form a partition of  $I\!N$  as in (4). Next proposition tell us about the reciprocal of this property, i.e. a random mapping is a control according to the definition (**D1**).

**Proposition 1.** Let  $i : \mathbb{N} \to \{1, 2, ..., m\}$  be a random mapping (according to  $(\mathbf{D2})$ ). Then it exists a monotonically increasing sequence  $\{\tau_k\}_{k\geq 0} \subset \mathbb{N}$  such that i is a control w.r.t.  $(\mathbf{D1})$ .

*Proof.* We will first write **(D2)** in the following equivalent formulation: for any  $i \in \{1, ..., m\}$  it is true that

$$\forall \ k \ge 1, \ \exists k_i \ge k \text{ s.t. } i_k = i. \tag{5}$$

We will now recursively define an increasing sequence  $\{\tau_k\}_{k\geq 0}\subset I\!\!N$  as follows: for k=0 we set  $\tau_0=0$ ; for k=1 let  $\tau_1$  be the smallest natural number with the properties

$$\tau_1 > \tau_0 \text{ and } \{1, 2, \dots, m\} \subseteq \{i(\tau_0), \dots, i(\tau_1 - 1)\}.$$
 (6)

Such a number  $\tau_1$  exists according to the equivalent formulation (5). In general, if we already have constructed  $\tau_k$ , then  $\tau_{k+1}$  will be the smallest natural number such that

$$\tau_{k+1} > \tau_k \text{ and } \{1, 2, \dots, m\} \subseteq \{i(\tau_k), \dots, i(\tau_{k+1} - 1)\},$$
 (7)

which is exactly the property (4) of definition (D1), and the proof is complete.  $\Box$ 

Based on the above proposition we will consider in the rest of the paper as definition for controls the equivalent formulation from (**D2**). In this respect, the following two selection procedures will be analysed.

• Maximal Residual (remotest set) ([1]): Select  $i_k \in \{1, 2, ..., m\}$  such that

$$|\langle A_{i_k}, x^{k-1} \rangle - b_{i_k}| = \max_{1 \le i \le m} |\langle A_i, x^{k-1} \rangle - b_i|.$$
 (8)

• Random ([9]): Let the set  $\Delta_m \subset \mathbb{R}^m$  be defined by

$$\Delta_m = \{ x \in \mathbb{R}^m, x \ge 0, \sum_{i=1}^m = 1 \}, \tag{9}$$

define the discrete probability distribution

$$p \in \Delta_m, \ p_i = \frac{\|A_i\|^2}{\|A\|_F^2}, \ i = 1, \dots, m,$$
 (10)

and select  $i_k \in \{1, 2, \dots, m\}$  such that

$$i_k \sim p.$$
 (11)

The main aspect regarding the above two selection procedures is concerned with the fact that the projection indices are generated recursively, without no a priori information on them. And, at least related to author's knowledge, there are no results saying that when the algorithm  ${\bf K}$  is applied with one or the other of the above selection procedures, each projection index will appear infinitely many times.

## 3 The Kaczmarz algorithm

We consider in this section Kaczmarz's projection algorithm in which the Maximal Residual (remotest set) (8) or Random (10)-(11) procedure is used for selecting the projection indices in each iteration, and with the initial approximation  $x^0 = 0$ . In this case, in papers [1] and [9] it is proved that the sequence  $(x^k)_{k \geq 0}$  generated by algorithm **K** converges to the minimal norm solution  $x_{LS}$  of the system (1). We will formulate a sufficient condition such that any of the above selection procedures satisfies (**D2**)). For  $i \in \{1, \ldots, m\}$  arbitrary fixed, let  $A^{(i)}: (m-1) \times n$ ,  $b^{(i)} \in \mathbb{R}^{m-1}$  be the submatrix of A without the i-th row, respectively the subvector of b without the i-th component and  $x_{LS}^{(i)}$  the minimal norm solution of the system  $A^{(i)}x = b^{(i)}$ .

**Assumption C.** For any index  $i \in \{1, ..., m\}$  we have

$$x_{LS} \neq x_{LS}^{(i)}. (12)$$

**Proposition 2.** If the assumption C holds, then any of the above two selection procedures within the Kaczmarz's iteration K satisfies (D2).

*Proof.* Let us suppose that the conclusion of the proposition is not true. According to (5) it exists an index  $i_0 \in \{1, ..., m\}$  and an integer  $k_0 \ge 1$  such that, in the selection procedure of the **K** algorithm iterations we have

$$i_k \neq i_0, \ \forall k \ge k_0. \tag{13}$$

Therefore, the sequence  $(x^k)_{k \geq k_0}$  is generated by the **K** algorithm applied (only!) to the subsystem  $A^{(i_0)}x = b^{(i_0)}$ . By the theory from [1] and [9], respectively, it results that

$$\lim_{0 \ge k \to \infty} x^k = x_{LS} = \lim_{k_0 \ge k \to \infty} x^k = x_{LS}^{(i)}, \tag{14}$$

hence

$$x_{LS} = x_{LS}^{(i_0)}, (15)$$

which contradicts (12) and completes the proof.

In order to understand what means a condition like (12) we will analyse it in the particular case

$$m \le n \text{ and } rank(A) = m,$$
 (16)

for which the system (1) is consistent for any  $b \in \mathbb{R}^m$ . In this case for any index i the matrix  $A^{(i)}$  is also full-row rank, and the system  $A^{(i_0)}x = b^{(i_0)}$  also consistent. We will arbitrary fix the index  $i \in \{1, \ldots, m\}$  and denote by  $\tilde{A}, \tilde{b}, \tilde{x}_{LS}$  the elements  $A^{(i)}, b^{(i)}, x_{LS}^{(i)}$ , respectively. Moreover, we will analyse the opposite assumption of (12), namely

$$x_{LS} = \tilde{x}_{LS}. \tag{17}$$

What does this mean in terms of the matrix A and right hand side b? For simplfying the presentation we will suppose that i=m (this assumption is not too restrictive because it can be obtained by a row-permutation in A and b, which does not affect the spectral properties of A and the solution set S(A;b)). Because  $A^T$  is overdetermined and full-column rank, there exist an  $n \times n$  orthogonal matrix Q and the QR decomposition

$$Q^TA^T = \left[\begin{array}{c} R \\ 0 \end{array}\right] = \left[\begin{array}{cccccc} r_{11} & r_{12} & \dots & r_{1,m-1} & r_{1m} \\ 0 & r_{22} & \dots & r_{2,m-1} & r_{2m} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & r_{m-1,m-1} & r_{m-1,m} \\ 0 & 0 & \dots & 0 & r_{mm} \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & & & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \end{array}\right] =$$

$$Q^{T}[\tilde{A}^{T}|A_{m}] = [Q^{T}\tilde{A}^{T}|Q^{T}A_{m}] = \begin{bmatrix} \tilde{R} & c \\ 0 & r_{mm} \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix}.$$
(18)

Therefore

$$Q^T \tilde{A}^T = \begin{bmatrix} \tilde{R} \\ 0 \end{bmatrix} \tag{19}$$

will be a QR decomposition for  $\tilde{A}$ , where

$$\tilde{R} = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1,m-1} \\ 0 & r_{22} & \dots & r_{2,m-1} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & r_{m-1,m-1} \end{bmatrix} \text{ and } c = (r_{1m}, r_{2m}, \dots, r_{m-1,m})^T.$$
 (20)

Because  $m \leq n$  and  $A, \tilde{A}$  have full-row rank, we know that (see e.g. [8])

$$A^{+} = A^{T} (AA^{T})^{-1}, \quad \tilde{A}^{+} = \tilde{A}^{T} (\tilde{A}\tilde{A}^{T})^{-1},$$

hence

$$x_{LS} = A^+ b = Q \begin{bmatrix} R^{-T}b \\ 0 \end{bmatrix}, \quad \tilde{x}_{LS} = \tilde{A}^+ \tilde{b} = Q \begin{bmatrix} \tilde{R}^{-T}\tilde{b} \\ 0 \end{bmatrix}.$$
 (21)

In our hypothesis (17), and by using (18) and (20) we get from (21) the equality

$$R^{-T}b = \begin{bmatrix} \tilde{R}^{-T}\tilde{b} \\ 0 \end{bmatrix}$$
, where  $R^T = \begin{bmatrix} \tilde{R}^T & 0 \\ c^T & r_{mm} \end{bmatrix} : m \times m$ . (22)

It can be easily shown that

$$R^{-T} = (R^T)^{-1} = \begin{bmatrix} \tilde{R}^{-T} & 0\\ -\frac{1}{r_{mm}} c^T \tilde{R}^{-T} & \frac{1}{r_{mm}} \end{bmatrix},$$
 (23)

which together with the first equality in (22) gives

$$\left[ \begin{array}{c} \tilde{R}^{-T}\tilde{b} \\ 0 \end{array} \right] = \left[ \begin{array}{cc} \tilde{R}^{-T} & 0 \\ -\frac{1}{r_{mm}}c^T\tilde{R}^{-T} & \frac{1}{r_{mm}} \end{array} \right] \left[ \begin{array}{c} \tilde{b} \\ b_m \end{array} \right] =$$
 
$$\left[ \begin{array}{cc} \tilde{R}^{-T}\tilde{b} \\ -\frac{1}{r_{mm}}c^T\tilde{R}^{-T}\tilde{b} + \frac{b_m}{r_{mm}} \end{array} \right],$$

and therefore

$$0 = -\frac{1}{r_{mm}} c^T \tilde{R}^{-T} \tilde{b} + \frac{b_m}{r_{mm}} \text{ or } c^T \tilde{R}^{-T} \tilde{b} = b_m.$$

Eventually, we proved that if (17) holds (for i = m), then

$$c^T \tilde{R}^{-T} \tilde{b} = b_m, (24)$$

where the elements  $c, \tilde{R}$  are from (18) and  $\tilde{b}$  is the right hand side of the system  $A^{(i_0)}x = b^{(i_0)}$ . But, also the converse holds, namely: if (24) is true with the above elements, then (17) holds (for i = m). This is true if we assume that in the QR decomposition (18) the diagonal elements satisfy  $r_{ii} > 0, \forall i$ , which gives us the unicity of the factor R in the QR decomposition.

**Remark 1.** Although the assumption  $x^0 = 0$  in **K** is essential for the proof of Proposition 2, we conjecture that this result is stil true for a larger class of initial approximations  $x^0$ . Unfortunately we do not have for the moment a theoretical proof in this respect.

**Acknowledgements.** We would like to thanks to Prof. Yair Censor for his very helpful comments that have much improved the initial version of the paper.

### References

- [1] Ansorge R., Connections between the Cimmino-method and the Kaczmarz-method for the solution of singular and regular systems of equations, Computing, **33** (1984), 367-375.
- [2] Bauschke H.H., Borwein J.M., Legendre functions and the method of random Bregman projections, J. Convex Anal., 4(1997), 27-67.
- [3] Censor, Y., Row-action methods for huge and sparse systems and their applications, SIAM Review, 23 (1981), 444-466.
- [4] Censor, Y., Zenios, S., Parallel Optimization: Theory, Algorithms and Applications, Oxford Univ. Press (1997)
- [5] Censor, Y. Chen, W., Pajoohesh, H., Finite convergence of a subgradient projections method with expanding controls, Appl. Math. Optim., 64 (2011), 273–285.
- [6] Combettes P., Hilbertian convex feasibility problem: Convergence of projection methods, Appl. Math. Optim., **35** (1997), 311–330.
- [7] Lorenz, D.A. et al., The linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations, SIAM J. Imaging Sciences, 7(2)(2014), 1237-1262.
- [8] Popa C. Projection algorithms classical results and developments. Applications to image reconstruction, Lambert Academic Publishing AV Akademikerverlag GmbH & Co. KG, Saarbrücken, Germany, 2012
- [9] Strohmer, T., Vershynin, R., A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl. 15(2009), 262 278.
- [10] Zouzias A., Freris N., Randomized Extended Kaczmarz for Solving Least Squares, SIAM Journal on Matrix Analysis and Applications, 34(2)92013), 773-793.

Constantin POPA, Ovidius University of Constanta, Mamaia 124, 900527 Constanta, Romania.

"Gheorghe Mihoc - Caius Iacob" Institute of Statistical Mathematics and Applied Mathematics, Calea 13 Septembrie 13, 050711 Bucharest, Romania.

Academy of Romanian Scientists, Splaiul Independentei 54, 050085 Bucharest, Romania Email: cpopa@univ-ovidius.ro