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On Remotest set and Random controls in
Kaczmarz algorithm

Constantin Popa

Abstract

In this paper we analyse the Kaczmarz projection algorithm with
Remotest set and Random control of projection indices and provide a
sufficient condition such that each projection index appears infinitely
many times during the iterations.

1 Introduction

For an m× n (real) matrix A and b ∈ IRm let

Ax = b (1)

be a consistent system of linear equations and denote by S(A; b), xLS the set of
its solutions and the minimal (Euclidean) norm one (〈·, ·〉 and ‖ · ‖ will denote
the Euclidean scalar product and norm on some space IRq, respectively). Other
notations used will be AT , Ai, A

j ,R(A),N(A), rank(A) for the transpose, i-
th row, j-th column, range, null space and rank of A. The projection onto
a nonempty closed convex set V will be denoted by PV , and for V = Hi =
{x ∈ IRn, 〈x,Ai〉 = bi} (the hyperplane determined by the i-th equation of the
system (1)) we know that

PHi
(x) = x− 〈x,Ai〉 − bi

‖Ai‖2
Ai. (2)
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The Kaczmarz’s iterative method for numerical solution of (1) has the form
from below.
Algorithm K.
Initialization: x0 ∈ IRn

Iterative step: for k = 0, 1, . . . select ik ∈ {1, 2, . . . ,m} and compute xk+1 as

xk+1 = PHik
(xk). (3)

There have been defined several classes of selection procedures for the indices
ik (see [4, 3, 5, 6] and references therein). In this paper we will consider the
Maximal Residual (remotest set) control and the Random control procedures,
and provide a sufficient condition such that in the case of Kaczmarz’s projec-
tion method K, they belong to the class of control selections from [5]. The
paper is organized as follows: in section 2 we give an equivalent formulation
of the control sequence definition from [5]. In section 3 we show that, for
x0 = 0 and under additional assumptions, the Maximal Residual (remotest
set) selection or the Random selection is a control w.r.t. section 2.

2 Control sequences

Let IN denote the set of natural numbers {0, 1, 2, . . . , }. In [5] the following
definition concerning control sequences was introduced.

Definition 1. (D1) Given a monotonically increasing sequence {τk}k≥0 ⊂
IN , a mapping i : IN → {1, 2, . . . ,m} is called a control with respect to the
sequence {τk}k≥0 if it defines a sequence {i(t)}t≥0, such that for all k ≥ 0,

{1, 2, . . . ,m} ⊆ {i(τk), i(τk + 1), . . . , i(τk+1 − 1)}. (4)

The next definiton, mentioned in [2] (see also [7]) points-out on an impor-
tant aspect of control sequences.

Definition 2. (D2) A mapping i : IN → {1, 2, . . . ,m} is called a random
mapping if any i ∈ {1, . . . ,m} appears infinitely many times in the set I =
{i(k), k ≥ 0}.

It is clear that, if the mapping i is a control with respect to some sequence
{τk}k≥0, then it is also a random mapping, according to definition (D2).
Indeed, if the sequence {τk}k≥0 is increassing then τk+1 > τk and the sets
∆k = {i(τk), i(τk + 1), . . . , i(τk+1 − 1)}, k ≥ 0 form a partition of IN as in (4).
Next proposition tell us about the reciprocal of this property, i.e. a random
mapping is a control according to the definition (D1).
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Proposition 1. Let i : IN → {1, 2, . . . ,m} be a random mapping (according
to (D2)). Then it exists a monotonically increasing sequence {τk}k≥0 ⊂ IN
such that i is a control w.r.t. (D1).

Proof. We will first write (D2) in the following equivalent formulation: for
any i ∈ {1, . . . ,m} it is true that

∀ k ≥ 1, ∃ki ≥ k s.t. ik = i. (5)

We will now recursively define an increasing sequence {τk}k≥0 ⊂ IN as follows:
for k = 0 we set τ0 = 0; for k = 1 let τ1 be the smallest natural number with
the properties

τ1 > τ0 and {1, 2, . . . ,m} ⊆ {i(τ0), . . . , i(τ1 − 1)}. (6)

Such a number τ1 exists according to the equivalent formulation (5). In gen-
eral, if we already have constructed τk, then τk+1 will be the smallest natural
number such that

τk+1 > τk and {1, 2, . . . ,m} ⊆ {i(τk), . . . , i(τk+1 − 1)}, (7)

which is exactly the property (4) of definition (D1), and the proof is complete.

Based on the above proposition we will consider in the rest of the paper as
definition for controls the equivalent formulation from (D2). In this respect,
the following two selection procedures will be analysed.

• Maximal Residual (remotest set) ([1]): Select ik ∈ {1, 2, . . . ,m}
such that

|〈Aik , x
k−1〉 − bik | = max

1≤i≤m
|〈Ai, x

k−1〉 − bi|. (8)

• Random ([9]): Let the set ∆m ⊂ IRm be defined by

∆m = {x ∈ IRm, x ≥ 0,

m∑
i=1

= 1}, (9)

define the discrete probability distribution

p ∈ ∆m, pi =
‖Ai‖2

‖A‖2F
, i = 1, . . . ,m, (10)

and select ik ∈ {1, 2, . . . ,m} such that

ik ∼ p. (11)
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The main aspect regarding the above two selection procedures is concerned
with the fact that the projection indices are generated recursively, without no
a priori information on them. And, at least related to author’s knowledge,
there are no results saying that when the algorithm K is applied with one or
the other of the above selection procedures, each projection index will appear
infinitely many times.

3 The Kaczmarz algorithm

We consider in this section Kaczmarz’s projection algorithm in which the Max-
imal Residual (remotest set) (8) or Random (10)-(11) procedure is used for
selecting the projection indices in each iteration, and with the initial approxi-
mation x0 = 0. In this case, in papers [1] and [9] it is proved that the sequence
(xk)k≥0 generated by algorithm K converges to the minimal norm solution xLS

of the system (1). We will formulate a sufficient condition such that any of
the above selection procedures satisfies (D2)). For i ∈ {1, . . . ,m} arbitrary
fixed, let A(i) : (m − 1) × n, b(i) ∈ IRm−1 be the submatrix of A without the

i-th row, respectively the subvector of b without the i-th component and x
(i)
LS

the minimal norm solution of the system A(i)x = b(i).
Assumption C. For any index i ∈ {1, . . . ,m} we have

xLS 6= x
(i)
LS . (12)

Proposition 2. If the assumption C holds, then any of the above two selection
procedures within the Kaczmarz’s iteration K satisfies (D2).

Proof. Let us suppose that the conclusion of the proposition is not true. Ac-
cording to (5) it exists an index i0 ∈ {1, . . . ,m} and an integer k0 ≥ 1 such
that, in the selection procedure of the K algorithm iterations we have

ik 6= i0, ∀k ≥ k0. (13)

Therefore, the sequence (xk)k≥k0
is generated by the K algorithm applied

(only !) to the subsystem A(i0)x = b(i0). By the theory from [1] and [9],
respectively, it results that

lim
0≥k→∞

xk = xLS = lim
k0≥k→∞

xk = x
(i)
LS , (14)

hence
xLS = x

(i0)
LS , (15)

which contradicts (12) and completes the proof.
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In order to understand what means a condition like (12) we will analyse it
in the particular case

m ≤ n and rank(A) = m, (16)

for which the system (1) is consistent for any b ∈ IRm. In this case for any
index i the matrix A(i) is also full-row rank, and the system A(i0)x = b(i0)

also consistent. We will arbitrary fix the index i ∈ {1, . . . ,m} and denote by

Ã, b̃, x̃LS the elements A(i), b(i), x
(i)
LS , respectively. Moreover, we will analyse

the opposite assumption of (12), namely

xLS = x̃LS . (17)

What does this mean in terms of the matrix A and right hand side b ? For
simplfying the presentation we will suppose that i = m (this assumption is
not too restrictive because it can be obtained by a row-permutation in A
and b, which does not affect the spectral properties of A and the solution set
S(A; b)). Because AT is overdetermined and full-column rank, there exist an
n× n orthogonal matrix Q and the QR decomposition

QTAT =

[
R
0

]
=



r11 r12 . . . r1,m−1 r1m
0 r22 . . . r2,m−1 r2m
. . . . . . . . . . . . . . .
0 0 . . . rm−1,m−1 rm−1,m
0 0 . . . 0 rmm

0 0 . . . 0 0
...

...
...

0 0 . . . 0 0


=

QT [ÃT |Am] = [QT ÃT |QTAm] =


R̃ c
0 rmm

0 . . . 0
...

...
0 . . . 0

 . (18)

Therefore

QT ÃT =

[
R̃
0

]
(19)

will be a QR decomposition for Ã, where

R̃ =


r11 r12 . . . r1,m−1
0 r22 . . . r2,m−1
. . . . . . . . . . . .
0 0 . . . rm−1,m−1

 and c = (r1m, r2m, . . . , rm−1,m)T . (20)
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Because m ≤ n and A, Ã have full-row rank, we know that (see e.g. [8])

A+ = AT (AAT )−1, Ã+ = ÃT (ÃÃT )−1,

hence

xLS = A+b = Q

[
R−T b

0

]
, x̃LS = Ã+b̃ = Q

[
R̃−T b̃

0

]
. (21)

In our hypothesis (17), and by using (18) and (20) we get from (21) the equality

R−T b =

[
R̃−T b̃

0

]
, where RT =

[
R̃T 0
cT rmm

]
: m×m. (22)

It can be easily shown that

R−T = (RT )−1 =

[
R̃−T 0

− 1
rmm

cT R̃−T 1
rmm

]
, (23)

which together with the first equality in (22) gives[
R̃−T b̃

0

]
=

[
R̃−T 0

− 1
rmm

cT R̃−T 1
rmm

] [
b̃
bm

]
=[

R̃−T b̃

− 1
rmm

cT R̃−T b̃+ bm
rmm

]
,

and therefore

0 = − 1

rmm
cT R̃−T b̃+

bm
rmm

or cT R̃−T b̃ = bm.

Eventually, we proved that if (17) holds (for i = m), then

cT R̃−T b̃ = bm, (24)

where the elements c, R̃ are from (18) and b̃ is the right hand side of the system
A(i0)x = b(i0). But, also the converse holds, namely: if (24) is true with the
above elements, then (17) holds (for i = m). This is true if we assume that
in the QR decomposition (18) the diagonal elements satisfy rii > 0,∀i, which
gives us the unicity of the factor R in the QR decomposition.

Remark 1. Although the assumption x0 = 0 in K is essential for the proof
of Proposition 2, we conjecture that this result is stil true for a larger class
of initial approximations x0. Unfortunately we do not have for the moment a
theoretical proof in this respect.
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