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Power sums in hyperbolic Pascal triangles

László Németh and László Szalay

Abstract

In this paper, we describe a method to determine the power sum of
the elements of the rows in the hyperbolic Pascal triangles corresponding
to {4, q} with q ≥ 5. The method is based on the theory of linear recur-
rences, and the results are demonstrated by evaluating the kth power
sum in the range 2 ≤ k ≤ 11.

1 Introduction

Binomial coefficients, Pascal’s triangle and its generalizations have been widely
studied. One of the examined properties is the power sum

Sk(n) =

n∑
i=0

(
n

i

)k
, n ≥ 0, k ∈ {0, 1, 2, . . .}.

Apart from S0(n) = n+ 1, S1(n) = 2n, and S2(n) =
(
2n
n

)
, there is no general

solution for Sk(n), but recurrences are given for the cases 3 ≤ k ≤ 10. For
example, Franel [5, 6] obtained the recurrence

S3(n+ 1) =
7n2 + 7n+ 2

(n+ 1)2
S3(n) +

8n2

(n+ 1)2
S3(n− 1)
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for k = 3. The difficulty of the problem is also indicated by the result, that
there is no closed form, only asymptotic formula for Sk(n) in the cases 3 ≤
k ≤ 9. For more details and further references of power sums of binomial
coefficient see [1, 4, 11].

In this article, we investigate the analogous question, and give a general
method to determine the power sums in hyperbolic Pascal triangles, which are
a recently discovered geometrical generalizations of Pascal’s classical triangle.
The method is illustrated by evaluating the kth power sum in the range 2 ≤
k ≤ 11, and we calculate the corresponding recurrences up to k = 11. A
hyperbolic Pascal triangle contains two types of elements (say A and B) in the
rows, therefore its structure is more complicated than the Pascal’s triangle’s,
but at the same time the existence of elements having type B facilitates the
determination of power sums since they behave as separating items between
elements having type A. A short summary on hyperbolic Pascal triangles can
be found in the next subsection.

1.1 Hyperbolic Pascal triangles

In the hyperbolic plane there are infinite types of regular mosaics, they are
denoted by Schläfli’s symbol {p, q}, where the positive integers p and q has the
property (p−2)(q−2) > 4. Each regular mosaic induces a so-called hyperbolic
Pascal triangle (see [2]), following and generalizing the connection between the
classical Pascal’s triangle and the Euclidean regular square mosaic {4, 4}. For
more details see [2, 8, 9], but here we also collect some necessary information.

There are several approaches to generalize Pascal’s arithmetic triangle (see,
for instance [3]). The hyperbolic Pascal triangle based on the mosaic {p, q}
can be figured as a digraph, where the vertices and the edges are the vertices
and the edges of a well defined part of the lattice {p, q}, respectively, further
each vertex possesses the value which gives the number of different shortest
paths from the base vertex. Figure 1 illustrates the hyperbolic Pascal triangle
HPTp,q, when {p, q} = {4, 6}.

Generally, for {4, q} the base vertex has two edges, the leftmost and the
rightmost vertices have three, the others have q edges. The square shaped
cells surrounded by appropriate edges are corresponding to the squares in
the regular mosaic. Apart from the winger elements, certain vertices (called
“Type A” for convenience) have two ascendants and q − 2 descendants, the
others (“Type B”) have one ascendant and q − 1 descendants. In the figures,
we denote the vertices type A by red circles and the vertices type B by cyan
diamonds, further the wingers by white diamonds. The vertices which are
n-edge-long far from the base vertex are in row n.

The general method of drawing is the following. Going along the vertices
of the jth row, according to type of the elements (winger, A, B), we draw
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Figure 1: Hyperbolic Pascal triangle linked to {4, 6} up to row 5

appropriate number of edges downwards (2, q− 2, q− 1, respectively). Neigh-
bour edges of two neighbour vertices of the jth row meet in the (j + 1)th row,
constructing a vertex with type A. The other descendants of row j in row
j + 1 have type B. In the sequel, )nk ( denotes the kth element in row n, which
is either the sum of the values of its two ascendants or the value of its unique
ascendant. We note, that the hyperbolic Pascal triangle has the property of
vertical symmetry.

In the remaining part of the paper we consider the winger nodes (having
value 1) as elements with type B. Denote by an and bn the number of vertices
of type A and B in row n, respectively, further let

sn = an + bn,

which gives the total number of the vertices of row n ≥ 0. Then the ternary
homogeneous recurrence relation

sn = (q − 1)sn−1 − (q − 1)sn−2 + sn−3 (n ≥ 4),

holds with initial values s1 = 2, s2 = 3, s3 = q (see [2]).

Moreover, let ân, b̂n and ŝn denote the sum of type A, type B and all
elements of the nth row, respectively. It was justified in [2] that the three

sequences {ân}, {b̂n} and {ŝn} can be described by the same ternary homoge-
nous recurrence relation

xn = qxn−1 − (q + 1)xn−2 + 2xn−3 (n ≥ 4),

their initial values are

â1 = 0, â2 = 2, â3 = 6; b̂1 = 2, b̂2 = 2, b̂3 = 2q − 6; ŝ1 = 2, ŝ2 = 4, ŝ3 = 2q.
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1.2 New results

In this article, we describe a method to determine the kth-power sum

(sk)n =

sn−1∑
i=0

)n
i

(
k

.

We will illustrate the technique by the cases 2 ≤ k ≤ 11. The results are given
by different linear recursions. Note that sn = (s0)n, further ŝn = (s1)n. Hence
we interested in the problem if k ≥ 2.

Here we also introduce the notation (ak)n and (bk)n for the sum of the kth

power of elements of type A and B in row n, respectively. Clearly, (sk)n =
(ak)n + (bk)n.

2 The method

Let us start with a further technical note. Take two consecutive elements )n` (
and ) n`+1 ( of HPT4,q, and let denote X and Y the not necessarily distinct types

of them, respectively. Let the ith and jth power-product of them is denoted by

xiyj = )n` (
i · ) n`+1 (

j
, and the sum of all such products (where the first term has

typeX, the second does Y ) of row n by (xiyj)n. For example, in case of HPT4,6
we find (a2b3)3 = 32 · 23 + 32 · 13 = 81 and (bb3)3 = 2 · 23 = 16 (see Figure 1).
Clearly, by the vertical symmetry of HPT4,q, (aibj)n = (bjai)n holds. An other
easy but important observation is that (bi−1b)n = (bi−2b2)n = · · · = (bbi−1)n,
since two consecutive elements having type B are equal.

2.1 Case k = 2

Before the general description, we restrict ourselves to the sum of squares to
facilitate the justification of the method. Hence fix k = 2, and take

(s2)n =

sn−1∑
i=0

)n
i

(
2

= (a2)n + (b2)n.

According to the the structure of the triangle HPT4,q and the expansion of
(x+ y)2, we will also use the sums (ab)n, (ba)n and (bb)n.

First consider the sum (a2)n+1. Observe that an element of type A in row
n+ 1 is a sum of two elements either of a type A and B or of a type B from
row n. Since, apart from the wingers, each element of row n takes part twice
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in constructing the elements of type A in row n+ 1, then

(a2)n+1 = 2(a2)n +

(
2

1

)
(ab)n +

(
2

1

)
(ba)n +

(
2

1

)
(bb)n + 2(b2)n − 2

= 2(a2)n + 2(ab)n + 2(ba)n + 2(bb)n + 2(b2)n − 2.

Clearly, an element of type B in row n + 1 coincides an element of type
either A ((q− 4)-times) or B ((q− 3)-times, apart from the wingers) from row
n, thus we see

(b2)n+1 = (q − 4)(a2)n + (q − 3)(b2)n − 2(q − 4),

where −2(q − 4) is again the correction caused by the wingers.
To explain

(ab)n+1 = (a2)n + (ab)n + (ba)n + (bb)n + (b2)n − 1,

we put together the construction rule of elements type A and B, respectively,
and the fact we need to consider the neighbour pairs A,B (in type). Since the
left winger 1 does not appear in (ab)n+1, we have the correction −1. By the
vertical symmetry, the relation

(ab)n+1 = (ba)n+1 (1)

holds.
Finally,

(bb)n+1 = (q − 5)(a2)n + (q − 4)(b2)n − 2(q − 4)

holds since two neighbours of type B are coming from an element of type
either A or B in direct manner.

As a summary, using (1) we have the system

(a2)n+1 = 2(a2)n + 4(ab)n + 2(b2)n + 2(bb)n − 2,
(ab)n+1 = (a2)n + 2(ab)n + (b2)n + (bb)n − 1,
(b2)n+1 = (q − 4)(a2)n + (q − 3)(b2)n − 2(q − 4),
(bb)n+1 = (q − 5)(a2)n + (q − 4)(b2)n − 2(q − 4).

(2)

2.2 General case

Recall that (bk−1b)n = (bk−2b2)n = · · · = (bbk−1)n. In the sequel, we will
denote them by un. We use analoguously the considerations and the explana-
tions from the previous subsection (where the case k = 2 was handled), and
together with the binomial theorem we gain the system of recurrence equations
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(ak)n+1 =

k∑
i=0

(
k

i

)
(ak−ibi)n +

k∑
i=0

(
k

i

)
(bk−iai)n

+

(
k∑
i=0

(
k

i

)
− 2

)
un − 2,

(ak−jbj)n+1 =

k−j∑
i=0

(
k − j
i

)
(ak−j−ibj+i)n +

k−j∑
i=0

(
k − j
i

)
(bk−j−iaj+i)n

+

(
k−j∑
i=0

(
k − j
i

)
− 1

)
un − 1, (3)

(bk)n+1 = (q − 4)(ak)n + (q − 3)(bk)n − 2(q − 4),

un+1 = (q − 5)(ak)n + (q − 4)(bk)n − 2(q − 4)

with k + 2 sequences, where j = 1, . . . , k − 1. To be more cut-clear, we
equivalently have

(ak)n+1 = 2(ak)n + 2

k−1∑
i=1

(
k

i

)
(ak−ibi)n + 2(bk)n + (2k − 2)un − 2,

(ak−jbj)n+1 = (ak)n +

k−j−1∑
i=0

(
k − j
i

)
(ak−j−ibj+i)n (4)

+

k−j−1∑
i=0

(
k − j
i

)
(aj+ibk−j−i)n + (bk)n + (2k−j − 1)un − 1,

(bk)n+1 = (q − 4)(ak)n + (q − 3)(bk)n − 2(q − 4),

un+1 = (q − 5)(ak)n + (q − 4)(bk)n − 2(q − 4).

Now we claim to eliminate the sequences (ak)n and (bk)n from (4).

2.3 Background to eliminate (ak)n and (bk)n from the system (4)

Our purpose is to eliminate the sequences (ak)n and (bk)n by giving a recursive
formula to describe them. In the next part, we develope a tool for handling
such problems in general. System (4) can be interpreted as a vector recursion
of the form

ḡt+1 = Mḡt + h̄

given by a suitable matrix M and vector h̄, when we consider (ak)n, (ak−1b)n,
. . . , (bk)n, un as coordinate sequences of ḡn. First we concentrate on the
homogenous case, i.e. when h̄ is the zero vector 0̄.
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Let ν ≥ 2 be an integer, further let ḡ0, . . . , ḡν−1 ∈ Rν denote linearly
independent initial vectors. With the coefficients α0, . . . , αν−1 ∈ R we can set
up the homogenous linear vector recursion

ḡt = αν−1ḡt−1 + · · ·+ α0ḡt−ν (t ≥ ν). (5)

Lemma 2.1. There exists uniquely a matrix M ∈ Rν×ν such that

ḡt+1 = Mḡt (6)

holds for any t ∈ N.
Moreover, if (6) holds for a vector sequence ḡt with a given (not necessarily

regular) matrix M ∈ Rν×ν , then ḡt satisfies (5), where the coefficients coincide
the negative of the coefficients of the characteristic polynomial of M.

Proof. Obviously, by (5) one can obtain ḡν ∈ Rν . Put G = [ḡ0, . . . , ḡν−1] ∈
Rν×ν and G? = [ḡ1, . . . , ḡν ] ∈ Rν×ν , where the matrix G is clearly regular.

First we show that the only possibility is M = G?G−1. Assume that M
satisfies (6) if t = 0, . . . , ν − 1. The system of vector equations

ḡ1 = Mḡ0

...

ḡν = Mḡν−1

is equivalent to the matrix equation

G? = MG.

But G is regular, therefore M = G?G−1 really exists.
Now we justify that M = G?G−1 is suitable for arbitrary subscript t,

i.e. (6) holds for any t ∈ N. The definition of the matrix M proves the
statement for t = 0, 1, . . . , ν − 1. In order to show for arbitrary t, we use the
technique of induction. Hence suppose that (6) holds for t = 0, 1, . . . , τ . Then

ḡτ+1 = αν−1ḡτ + · · ·+ α0ḡτ−ν+1

= αν−1G
?G−1ḡτ−1 + · · ·+ α0G

?G−1ḡτ−ν

= G?G−1(αν−1ḡτ−1 + · · ·+ α0ḡτ−ν) = G?G−1ḡτ .

Finally, we prove that if M satisfies (6), then we arrive at (5) with the
given conditions. Let k(x) = xν−αν−1xν−1−· · ·−α0 denote the characteristic
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polynomial of M. By the Cayley–Hamilton theorem, k(M) is zero a matrix,
consequently k(M)ḡ0 = 0̄, i.e.

Mν ḡ0 − αν−1Mν−1ḡ0 − · · · − α0ḡ0 = 0̄. (7)

Since for any natural number t the equality ḡt+1 = Mḡt implies ḡt+1 =
Mt+1ḡ0, (7) can be rewritten as

ḡν = αν−1ḡν−1 + · · ·+ α0ḡ0.

Further

ḡν+1 = Mḡν = M(αν−1ḡν−1 + · · ·+ α0ḡ0) = αν−1ḡν + · · ·+ α0ḡ1,

and similarly

ḡt+1 = Mḡt = αν−1ḡt + · · ·+ α0ḡt−ν (t > ν)

holds.

Remark 1. In this lemma, we proved a bit more than we need to investigate
the power sums in hyyperbolic Pascal triangles. Indeed, we will use only the
direction which provides the coefficients αi from the characteristic polynomial
of M. A statement of [10] also proves the second part of Lemma 2.1.

2.4 Connection between the homogenous and inhomogenous vec-
tor recurrences

Since system (4) is inhomogenous, and Lemma 2.1 is able to handle only
homogenous vector recursions, therefore we must clarify the transit between
them.

Assume that the vector h̄ is fixed, and we have

ḡt+1 = Mḡt + h̄ (t ∈ N),

further suppose that the characteristic polynomial of M is k(x) = xν −
αν−1x

ν−1 − · · · − α0. Obviously,

ḡt+2 = Mḡt+1 + h̄,

and
ḡt+2 − ḡt+1 = M(ḡt+1 − ḡt).

Put d̄t = ḡt+1 − ḡt. Thus d̄t+1 = Md̄t implies

d̄t = αν−1d̄t−1 + · · ·+ α0d̄t−ν ,
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and then

ḡt+1 = (αν−1 + 1)ḡt + (αν−2 − αν−1)ḡt−1 + · · ·+ (α0 − α1)ḡt+1−ν − α0ḡt−ν .

Finally, observe that

(x−1)k(x) = xν+1−(αν−1+1)xν−(αν−2−αν−1)xν−1−· · ·−(α0−α1)x+α0,

where k(x) is the characteristic polynomial of M.

2.5 Determination of the characteristic polynomial

Consider now the matrix M = [mi,j ] ∈ N(k+2)×(k+2) generated by the system
(4). If we introduce binomial coefficients with negative lower index, or when
the lower index is greater then the upper index, and take such a value zero
(this is one of the conventional approaches), the left upper k × (k + 1) minor
matrix can simply be given. Indeed, if 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k, by (4),

mi,j =

(
k − i

k − i− j

)
+

(
k − i
i− j

)
=

(
k − i
j

)
+

(
k − i
k − j

)
.

Furtherm0,k+1 = 2k−2, and if 1 ≤ i ≤ k−1 and j = k+1, thenmi,j = 2k−i−1.
Moreover, mk,0 = q − 4, mk,k = q − 3, mk+1,0 = q − 5, mk+1,k = q − 4. The
entries have not been listed up here (mi,j with k ≤ i ≤ k+1, 1 ≤ j ≤ k+1, j 6=
k) are zero. Obviously (see (4)), in our case the vector

h̄ =
[
−2 −1 −1 · · · −1 −2(q − 4) −2(q − 4)

]>
.

By visualizing the informations we gain

M =



. . . . .
.

2k − 2
2k−1 − 1(

k−i
j

)
+
(
k−i
k−j
) ...

22 − 1

. .
. . . . 21 − 1

q − 4 0 · · · 0 q − 3 0
q − 5 0 · · · 0 q − 4 0


.

As usual, we will use the formula k(x) = det(xI−M) for determining the
characteristic polynomial of the matrix M, where I is the unit matrix. We
carry out the evaluation in two steps, finally we obtain a quite simple-looking
determinant.
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First we deal with M itself. Let Ru denote the row u of the matrix M.
The following lemma describes row equivalent transformations of M, which
keeps the value of the determinant. Before applying the lemma, first we make
a preparation step (again a row equivalent transformation) for modifying M,
namely Rnewk = Rk −Rk+1 to result the penultimate row[

1 0 · · · 0 1 0
]
.

Lemma 2.2. For u = 0, 1, . . . , k − 1 apply successively the row equivalent
operation

Rnewu =

δ∑
t=0

(−1)t
(
δ

t

)
Ru+t, (8)

where δ = k−u ≥ 1. Then the elements of the left upper (k+1)×(k+1) minor
of Mnew are zero, except the main diagonal, and the antidiagonal elements
which are 1. If the main diagonal and antidiagonal meet, the common element
is 2.

Further in the last column we have mnew
i,k+1 = 1 if 1 ≤ i ≤ k − 1, and

mnew
0,k+1 = 0.

Proof. Let j be arbitrarily fixed. Then

mnew
u,j =

δ∑
t=0

(−1)t
(
δ

t

)((
k − u− t

j

)
+

(
k − u− t
k − j

))

=

δ∑
t=0

(−1)t
(
δ

t

)(
k − u− t

j

)
+

δ∑
t=0

(−1)t
(
δ

t

)(
k − u− t
k − j

)
=

(
k − u− δ
j − δ

)
+

(
k − u− δ
k − j − δ

)
,

where the last equality is a consequence of the more general identity

δ∑
t=0

(−1)t
(
δ

t

)(
z − t
r

)
=

(
z − δ
r − δ

)
(see, for instance, page 28 in [7]). Clearly, δ = k − u implies

(
k − u− δ
j − δ

)
+

(
k − u− δ
k − j − δ

)
=

 0, if j 6= k − u and j 6= u;
1, if either j = k − u or j = u;
2, if j = k − u and j = u.

Note that the last case can be occurred only if k = 2u.
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Continuing with the last column, for 1 ≤ u < k we easily conclude

mnew
u,k+1 =

δ∑
t=0

(−1)t
(
δ

t

)(
2k−u−t − 1

)
=

δ∑
t=0

(−1)t
(
δ

t

)
2k−u−t −

δ∑
t=0

(−1)t
(
δ

t

)

= 2k−u
δ∑
t=0

(−1)t
(
δ

t

)(
1

2

)t
− 0 = 2k−u ·

(
1− 1

2

)δ
= 1.

Clearly, the same argument leads to 0 in case of the last element of the 0th
row.

Now let M̃ = M − xI, and we will carry out the same row equivalent
operations on M̃ what we did on M. Only one modification is, that after the
preparation step we insert an additional operation. Namely, Rnewk = Rk−Rk+1

is followed by Rnewk+1 = Rk+1 − (q − 5)Rk. Hence keeping tabs on the last two

rows of M̃, we see[
q − 4 0 · · · 0 (q − 3)− x 0
q − 5 0 · · · 0 q − 4 −x

]
=⇒[

1 0 · · · 0 1− x x
0 0 · · · 0 1 + (q − 5)x −(q − 4)x

]
.

Since M̃ = M−xI effects the elements only in the diagonal of M (by −x),
according to (8), for 0 ≤ u < j ≤ k we find

m̃new
u,j = (−1)j−u+1

(
δ

j − u

)
x.

Finally, the last column of M̃new is given by the vector[
(−1)kx 1 + (−1)k−1x · · · 1 + x 1− x x −(q − 4)x

]>
.

Hence, we conclude that M̃new is the sum of

−x
(
k
1

)
x −

(
k
2

)
x · · · (−1)k

(
k
k−1
)
x (−1)k+1

(
k
k

)
x (−1)kx

0 −x
(
k−1
1

)
x · · · (−1)k−1

(
k−1
k−2
)
x (−1)k

(
k−1
k−1
)
x (−1)k−1x

0 0 −x · · · (−1)k−2
(
k−2
k−3
)
x (−1)k−1

(
k−2
k−2
)
x (−1)k−2x

...
...

...
. . .

...
...

...

0 0 0 · · · −x
(
1
1

)
x −x

0 0 0 · · · 0 −x x

0 0 0 · · · 0 (q − 5)x −(q − 4)x


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and 

1 0 0 · · · 0 1 0

0 1 0 · · · 1 0 1

0 0 1 · · · 0 0 1
...

...
...

. . .
...

...
...

0 1 0 · · · 1 0 1

1 0 0 · · · 0 1 0

0 0 0 · · · 0 1 0


.

At the end, the characteristic polynomial k(x) = (−1)k det(M̃new), and by the
previous subsection we can return the inhomogenous case with the polynomial

(x− 1)k(x) = (x− 1)(−1)k det(M̃new).

In the range 1 ≤ k ≤ 11 the appendix will provide the results, since know-
ing the characteristic polynomial, one can obtain directly the corresponding
recursive formula.

2.6 Example: return to the case k = 2

System (2) provides the matrix M, and then

M̃ = M− xI =


2− x 4 2 2

1 2− x 1 1
q − 4 0 q − 3− x 0
q − 5 0 q − 4 −x

 .
The consecutive row equivalent transformations R2 = R2−R3, R3−(q−5)R2,
and then R0 = R0 −

(
2
1

)
R1 +

(
2
2

)
R2, R1 = R1 −

(
1
1

)
R2 return with

M̃new =


−x 2x −x x
0 −x x −x
0 0 −x x
0 0 (q − 5)x −(q − 4)x

+


1 0 1 0
0 2 0 1
1 0 1 0
0 0 1 0


Thus the determinant

k1(x) = det(M̃new) = x4 − (q + 1)x3 + 6x2 − 2x,
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and then we obtain

k(x) = (x− 1)(−1)2k1(x) = x5 − (q + 2)x4 + (q + 7)x3 − 8x2 + 2x,

which provide the recursive rule

(s2)n = (q + 2)(s2)n−1 − (q + 7)(s2)n−2 + 8(s2)n−3 − 2(s2)n−4.

The initial values can be given from the first 4 rows of HPT4,q: (s2)1 = 2,
(s2)2 = 6, (s2)3 = 4q + 4, (s3)4 = 4q2 + 6q − 20.

3 Appendix and conjectures

The method works for arbitrary positive integer k. In the next table we collect
the coefficients of

(sk)n =
∑
j=1

cj(q)(s
k)n−j .

k c1(q) c2(q) c3(q) c4(q) c5(q)

0 q − 1 −q + 1 1

1 q −q − 1 2

2 q + 2 −q − 7 8 −2

3 q + 4 q − 19 −2q + 18 −2

4 q + 7 6q − 41 −7q + 31 6 −2

5 q + 11 18q − 71 −9q − 17 −10q + 88 −10

6 q + 17 44q − 99 17q − 303 −62q + 404 −14

7 q + 26 99q − 68 177q − 1400 −235q + 1183 −42q + 302

8 q + 40 213q + 206 757q − 4842 −717q + 2981 −254q + 1782

9 q + 62 447q + 1288 2433q − 15116 −2431q + 10555 −450q + 3662

10 q + 97 924q + 4782 6096q − 48560 −13946q + 75623 5903q − 24351

11 q + 153 1892q + 15110 9924q − 181164 −99514q + 592503 78523q − 360899

k c6(q) c7(q) c8(q)

6 −4

7 −42

8 −162 −4

9 −450 0

10 1022q − 8408 814 4

11 9174q − 74876 9174 0
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Partially from the results we have the following

Conjecture 1. Let k be given. Then

• the linear recurrence corresponding to k has order bk/2c+ 3.

• Further the coefficients cj(q) are linear polynomials in q.

Our conjecture is based not only on the first few cases but also on the
following approach. We are able to decrease the size of (3) which entails the
reduction of the dimension of matrix M (but we loose its simplicity). The new
system of [k/2] + 3 recurrent sequences is the following.

Put ` = b(k−1)/2c and m = d(k−1)/2e. Obviously, if k is odd, then m = `,
otherwise m = ` + 1. Let (cj)n = (ak−jbj)n + (ajbk−j)n, where j = 1, . . . , `.
Moreover, if k is even, then let (c`+1)n = (a`+1b`+1)n. Now the new system
of recurrences admits

(ak)n+1 = 2(ak)n + 2

m∑
i=1

(
k

i

)
(ci)n + 2(bk)n + (2k − 2)un − 2,

(bk)n+1 = (q − 4)(ak)n + (q − 3)(bk)n − 2(q − 4),

(cj)n+1 = (ak)n +

m∑
i=j

(
k − j
i− j

)
(ci)n +

m∑
i=1

((
k − j
i

)
+

(
j

i

))
(ci)n

+(bk)n + (2k−j − 1)un − 1,

un+1 = (q − 5)(ak)n + (q − 4)(bk)n − 2(q − 4).

where j = 1, . . . , ` . When k is even, thenthere is an addition sequence

(c`+1)n+1 = (ak)n + (c`+1)n +

`+1∑
i=1

(
k − `− 1

i

)
(ci)n

+(bk)n + (2k−`−1 − 1)un − 1.
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