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Exact Formula for Computing the
Hyper-Wiener Index on Rows of Unit Cells of

the Face-Centred Cubic Lattice

Hamzeh Mujahed and Benedek Nagy

Abstract

Similarly to Wiener index, hyper-Wiener index of a connected graph
is a widely applied topological index measuring the compactness of the
structure described by the given graph. Hyper-Wiener index is the sum
of the distances plus the squares of distances between all unordered pairs
of vertices of a graph. These indices are used for predicting physicochem-
ical properties of organic compounds. In this paper, the graphs of lines
of unit cells of the face-centred cubic lattice are investigated. The graphs
of face-centred cubic lattice contain cube points and face centres. Using
mathematical induction, closed formulae are obtained to calculate the
sum of distances between pairs of cube points, between face centres and
between cube points and face centres. The sum of these formulae gives
the hyper-Wiener index of graphs representing face-centred cubic grid
with unit cells connected in a row. In connection to integer sequences,
a recurrence relation is presented based on binomial coefficients.

1 Introduction

In mathematical chemistry, Wiener, hyper-Wiener and other topological in-
dices have been introduced. By their help some physical properties, e.g., boil-
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ing point, can be predicted based on the structure of the molecules. Mathe-
matical and computational methods are successfully used to model and predict
the structure of matter in atomic level [5]. The structures of molecules, from
mathematical point of view, are graphs. Graph theory is used in almost every
field of science and it is also heavily used in practice, both for simulations and
engineering solutions. A graph in this context is made up of vertices or nodes
and lines called edges that connect them. Digital geometry deals with regular
tessellations, i.e., graphs with regular, periodic structures, and in this way, it
is closely related to crystallography. Digital geometry has also applications
in image processing and computer graphics [12]. The square and cubic grids
are assumed to be the traditional grids; theory on them is well developed and
they are frequently used in various applications. One of the main directions of
research of digital geometry deals with descriptions, coordinate systems, com-
puting distances, relations and applications of non-traditional grids [16][20][21]
[22]. Non-traditional 3D grids, for instance, body-centred cubic (bcc), face-
centred cubic (fcc) lattices and diamond cubic grid, and their appropriate
descriptions play importance in physics, crystallography and chemistry, as
well.

1.1 Topological Graph Indices

It is an interesting and important task to connect the molecular structures [17]
of various matters to their physical properties. Wiener Index (W ) is a graph
invariant that belongs to the molecular structure descriptors, called topolog-
ical indices. Initially, Wiener applied it to predict physical parameters such
as boiling points of the paraffins [23]. It is, generally, defined as the sum of
the shortest distances between every pair of vertices of a given graph G. An-
other index, the so-called Hyper-Wiener index, H was also introduced [18] for
acyclic graphs. Then, Klein, Lukovits and Gutman [11], generalized Randic’s
definition for all connected graphs, as a generalization of the Wiener index.
For molecules, in general, these indices measure how compact a molecule is
for its given weight. The molecule is more compact if its index is less, while
the Wiener index is computed as a linear function of the distances, the hyper-
Wiener index uses also the second moment of the distances. These indices are
widely used by chemists to design molecules with desired properties. Vari-
ous measurable physical quantities, e.g., heats of vaporization, molar volumes
and molar refractions can be characterized by them. There are plenty of re-
searches on Wiener indices, especially, about benzenoid hydrocarbons, graphs
with hexagonal structure [9][8]. All the three regular tessellations of the plane
were studied in [14]. Recently, the task to compute Wiener indices of various
3D structures is also of high importance [1][2]. Hyper-Wiener index is also
frequently used for various graphs.
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In this paper, we consider special graphs that are built up from fcc unit
cells in a row. The Wiener index together with hyper-Wiener index of these
graph are computed. In our graphs the vertices are representing the atoms (or
ions), and the edges connect the closest atoms (or ions), they could represent
covalent, ionic, etc. bonds, depending on the modelled material.

2 Basic Notions and Definitions

In this paper, all graphs are finite, simple, undirected and connected without
loops or multiple edges. For a graph G, we denote by V (G) and E(G) its
sets of vertices and edges, respectively. The length of a path P , denoted by
|P |, is the number of its edges [3]. Let G = (V,E) be a simple connected
graph. The distance dG(u, v) between two vertices u and v is defined as the
number of edges on a shortest path connecting u and v. Note that, in a graph,
there can be several shortest paths between two vertices. A molecular graph
is a set of vertices representing the atoms in a molecule and a set of edges
representing the covalent bonds between the atoms. Not only molecules can
be represented by graphs: there are some elements that form lattice structures
in their crystals. Carbon (in diamond) and Silicon have cubic lattice structure
known as the diamond structure, even mathematically their structure is not
a lattice. In a similar manner, other crystals can also be modelled by graphs
underlining their structure, see, e.g., [1]. The most usual arrangements of the
atoms (ions) for metals are the bcc and fcc lattices.

In [23] Wiener introduced the notion of, as he called, path number of a
graph. Actually, it was the sum of distances between any two carbon atoms
in the molecules in terms of carbon-carbon covalent bonds. Subsequently, the
index named after Wiener, is generalised to any graph G as

W (G) =
1

2

∑
dG(u, v) (1)

The sum of shortest distances for each pair of vertices of the graph G: the
sum runs over all ordered pairs of vertices, and dG(u, v) denote the length of
a shortest path in G between vertices u and v.

2.1 The Hyper-Wiener Index

In [18] hyper-Wiener index (H) for trees was proposed. In a tree graph there is
a uniquely determined path between any two distinct vertices. Let two vertices
v and u be given, then the shortest path from u to any vertex may or may not
contain v. Similarly, the shortest path from v to any vertex may or may not
contain u. Based on this, a tree graph can be partitioned to three parts based
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on any two distinct vertices: a part “between” the two vertices (including
exactly those vertices to which the shortest paths from u and v do not contain
the other vertex of them) and two subtrees including u and v, respectively. The
original definition of hyper-Wiener index is a sum (for every pair of vertices
u and v) of products of the number of vertices belonging to subtrees u and
v, respectively. This definition works only for acyclic graphs, the concept was
extended to all connected graphs by Klein, Lukovits and Gutman in [11], and
they have presented an alternative definition related also to Wiener index. H
is also used as a structure-descriptor for predicting physicochemical properties
of organic compounds. It is one of the recently conceived distance-based graph
invariants, often used for pharmacology, agriculture, environment-protection,
etc. [10][4][24]. Its formula suggests that H clearly encodes the “compactness”
and the “expansiveness” of the structure given by a graph G. The squared
term gives relatively more weight to expanded structures than Wiener index,
and therefore, H is a good predictor of effects that depend more than linearly
on the physical size of a molecule. The Hyper-Wiener index of G is defined
as:

H(G) =
1

2
W (G) +

1

2

∑
d2G(u, v), (2)

where W (G) is the Wiener index of the graph G. Actually, the hyper-Wiener
index is the average of the Wiener index and the (unnormalized) second mo-
ment distance.

2.2 Face-Centred Cubic (fcc) Lattice

Face-centred cubic (fcc) lattice consists of unit cells that are cubes with an
atom at each corner of the cube and an atom in the centre of each face of
the cube (see Figure 1, as well). In our graphs vertices (points) represent the
atoms; the terms, cube vertices (cube points) and face centres (or face centre
points) will be used, respectively. Edges connect the closest (neighbour) atoms.
In fact, fcc structure has the largest packing density in the three dimensional
space: this is one of the most efficient structures to pack same size spheres in a
volume [13][6], as it can be seen in Figure 1 (right). Therefore, this structure is
also known as cubic closest-packed crystal structure. Metals with fcc structure
include: Aluminium, Copper, Gold, Nickel and Silver.

In this paper, we are using graphs that represent rows of unit cells of the
fcc lattice (i.e., the dimension of our space is n×1×1 unit cells). We recall the
following straightforward result from [15], where Wiener-index of the graphs
of fcc unit cells is computed.

Proposition 1. Let n be the number of fcc unit cells connected in a row, the
number of all vertices |v|all (cube vertices and face centres) in this graph is
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Figure 1: A unit cell (the cube is drawn by broken lines) of face-centred cubic
(fcc) lattice (red atoms are on the visible sides of the cube, grey atoms are not
on the visible sides) showing the neighbour relation of the atoms (solid lines:
grey colour on the faces of the cube and cyan colour inside the cube) (left),
and fcc close-packing with spheres (right).

given by |v|all = (9n+ 5); the number of cube points is |Vb| = (4n+ 4) and the
number of face centers is |Vc| = (5n + 1).

The main result of [15], the formula for Wiener index of fcc graphs, is
computed as follows.

Proposition 2. Let n be the number of fcc unit cells that are connected in a
row. Then the formula to find W for this graph is:

W (n) = 27n3 + 45n2 + 62n + 16. (3)

Based on this result, the sequence W (n) can also be found in [19] un-
der code A273322. One can easily check that it is also obtained as a linear
recurrence with constant coefficients using the formula

W (n) = 4W (n− 1)− 6W (n− 2) + 4W (n− 3)−W (n− 4) for n > 4

based on its first 4 elements.

3 Computing the Hyper-Wiener Index

Based on equations (1) and (2) a small transformation is made on the formula
computing H:

H(G) =
1

4

∑
u,v∈(G)

(dG(u, v) + d2G(u, v)) (4)
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Figure 2: A lying square column of k fcc unit cells connected in a row with a
new, (k + 1)st unit cell attached to the row.

where dG(u, v) is the distance between the two vertices in the graph. In (4)
the distance and the second moment distance are summed. In the following
subsections various subsums are computed. Actually, to compute H, the value
dG(u, v) + d2G(u, v) is needed for each unordered pair of vertices u and v. For
simplifying our notions, we refer for sums of values dG(u, v)+d2G(u, v) as sums
of combined distances. In fcc graphs there are two types of vertices. Thus,
H is computed based on the sum of the following three subsums of combined
distances between

• unordered pairs of face centres,

• pairs of face centres and cube vertices, and

• unordered pairs of cube vertices.

Our proofs use mathematical induction: We compute the subsums for a unit
cell, and provide formula for graph containing exactly k unit cells in a row.
Then it will be shown that the same formula works for a graph containing k+1
unit cells in a row. In proofs we refer to Figure 2. To make our computation
more readable and more easily understandable we differentiate two subtypes
of face centres:

• the side centres (or side centre points) are located on the side (i.e., on
the bottom, top, in front or at back side, i.e., on one of the rectangular
side of the square column build by unit cells), e.g., C2 and C5 in Figure
2; and

• the shared centres (or shared centre points) are the face centres on the
squares, either on the two ends or somewhere inside the body, e.g., C1

and C3 in Figure 2.
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3.1 Sum of combined Distances between Pairs of Face Centres

Let us start by computing how much the sum of combined distances among
face centres increases when a new unit cell is attached to the end of the row
(Figure 2).

Lemma 3. Let k fcc unit cells be connected in a row, and now, a new unit
cell is connected to the end of the row to form a graph that represents k + 1
unit cells in a row. Then the sum of combined distances between pairs of new
face centres and between pairs of a new and an old face centres is

100k3 + 285k2 + 251k + 126

3
. (5)

Proof. In our proof, we will calculate the sum of combined distance as follows:

• First of all, and according to Figure 2, the sum of distances between the
pairs built up from the new five centre points equals to

1

2

5∑
i=1

5∑
j=1

dG(CNi
, CNj

) = 4 · 1 + 4 · 1 + 2 · 2 = 12

(the distance of the new shared centre CN4
is 1 from the new side centres,

e.g. CN1
; there are 4 pairs of neighbour side centres, e.g., CN1

and CN2
;

and finally, there are 2 pairs of non-neighbour side centres, e.g., CN1
and

CN3 , such that their distances are 2). Consequently, the squares of the
distances between the pairs built up from the new five side centre points
equals to 16. This is summed up as 12 + 16 = 28.

• Next, we will calculate the distance between the new shared centre (CN4
)

and old shared centres (including, e.g., C1). These distances are the even
numbers, and thus, their sum is

2 · 1 + 4 · 1 + 6 · 1 + · · ·+ 2(k + 1) · 1 = 2(1 + 2 + 3 + · · ·+ (k + 1)) =

2(k+1)(k+2)
2 = k2 + 3k + 2.

The sum of their squares is given by

22 ·1+42 ·1+62 ·1+ · · ·+(2(k + 1))
2 ·1 = 4(12+22+32+ · · ·+(k+1)2) =

4(k+1)(k+2)(2k+3)
6 = 4k3+18k2+26k+12

3 .

The sum of two previous equations:

4k3 + 18k2 + 26k + 12

3
+ k2 + 3k + 2 =

4k3 + 21k2 + 35k + 18

3
.
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• Next, we will calculate the distance between new side centres and old
shared centres. So we have 1 + 3 + 5 + · · ·+ (2k + 1) = (k + 1)2 . Then
we multiply by 4 since we have 4 new side centres to get the formula
4(k + 1)2.

4(12 + 32 + 52 + · · ·+ (2k + 1)2) = 4(k+1)(2k+1)(2k+3)
3 =

16k3+48k2+44k+12
3 .

The sum of two previous equations:

16k3 + 48k2 + 44k + 12

3
+ 4(k + 1)2 =

16k3 + 60k2 + 68k + 24

3
.

• Next, we need to calculate the distance between new side centres (i.e.,
CN1 , CN2 , CN3 and CN5) and old side centres. For any of the new side
centres we have

2 · 4 + 4 · 4 + · · ·+ (2k · 4) = 8 + 16 + 24 + 32 + · · ·+ 8k =

8 · (1 + 2 + 3 + · · ·+ k) =
8(k(k + 1))

2
= 4k2 + 4k.

Then we multiply it by 4 since we have 4 new side centres to get the
formula 16k2 + 16k. The sum of the squares of these distances can be
computed as

4(2)2 + 4(4)2 + · · ·+ 4(2k)2 = 4(4 + 16 + 36 + · · ·+ 4k2).

Then we multiply this value also by 4, and we get the formula

64k3 + 96k2 + 32k

3
.

The sum of two previous formulae:

64k3 + 96k2 + 32k

3
+ 16k2 + 16k =

64k3 + 144k2 + 80k

3
.

• Finally, we will calculate the sum of the distances between the new
shared centre, i.e., (CN4) and all old side centres:

4(3 + 5 + 7 + · · ·+ (2k + 1)) = 4((k + 1)2 − 1), and that is, 4k2 + 8k.

The sum of their squares:

4(32 + 52 + 72 + · · ·+ (2k + 1)2) =
16k3 + 48k2 + 44k

3
.

The sum of two previously computed values:

16k3 + 48k2 + 44k

3
+ 4k2 + 8k =

16k3 + 60k2 + 68k

3
.
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The final formula to calculate the sum of total distance between new central
points and between new central points and old central points, when we add a
new fcc unit cell to the k fcc unit cells connected in a row, is given by:

28 + 4k3+21k2+35k+18
3 + 16k3+60k2+68k+24

3 + 64k3+144k2+80k
3 + 16k3+60k2+68k

3 =

100k3 + 285k2 + 251k + 126

3
.

Thus the proof of lemma is finished.

Lemma 4. Let n fcc unit cells be connected in a row. Then the sum of
combined distances between centre vertices in this fcc grid graph is

25n4 + 45n3 + 8n2 + 48n

3
. (6)

Proof. The proof goes by induction on the number of unit cells. The base
of the induction is the case n = 1. In this case, there is only 6 face centres
(both side and shared centre points are counted), and the sum of combined
distances between these central points equals to 42 (there are 12 pairs of
neighbour centres and 3 pairs such that they are opposite to each other, and
thus, their distance is 2), and the formula (6) holds. Now, let us assume that
the formula is satisfied if n = k. Let us prove that it also holds for the value
n = k+1. By Lemma 3, we know the sum of the combined distances obtained
by the new central points and old centrals. Applying this, with the induction
hypothesis, we must prove that the left hand side equals to the right hand
side, so we have:

25k4 + 45k3 + 8k2 + 48k

3
+

100k3 + 285k2 + 251k + 126

3
=

25(k + 1)4 + 45(k + 1)3 + 8(k + 1)2 + 48(k + 1)

3

25k4 + 145k3 + 293k2 + 299k + 126

3
=

25k4 + 145k3 + 293k2 + 299k + 126

3
So the left hand side equals to the right hand side and the proof of the induction
is complete. By the induction, it follows that formula (6) is true for all (non-
negative integer value of) n.

3.2 Sum of combined Distances between Pairs of Face Centres and
Cube Vertices

Lemma 5. Let k fcc unit cells be connected in a row and another, new, fcc
unit cell be connected to the end of this row. Then the sum of combined dis-
tances between old face centres and new cube vertices plus the sum of combined
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distances between pairs formed by a new face centre and an old cube vertex is

160k3 + 648k2 + 824k + 552

3
. (7)

Proof. In this proof we have to calculate the sum of total distances in the
following way:

• For the sum of the distances between one of the new border points (e.g.
VN1) and all old shared centres, we have

(2 + 4 + 6 + · · ·+ 2(k + 1)) = 2(1 + 2 + 3 + · · ·+ (k + 1)) =

2(k + 1)(k + 2)

2
= k2 + 3k + 2.

We have to multiply it by 4 since we have 4 new border points and the
formula is 4k2 + 12k+ 8. Then, the sum of the squares of these distances
is

4(22 + 42 + 62 + · · ·+ (2(2k + 1))2) = 16(12 + · · ·+ (k + 1)2) =

16k3+72k2+104k+48
3 .

The sum of two previous formulae is

4k2+12k+8+
16k3 + 72k2 + 104k + 48

3
=

16k3 + 84k2 + 140k + 72

3
.

• The sum of the distances between one of the new cube points and all
side centres is: 4(3 + 5 + 7 + · · ·+ (2k+ 1)) = 4((k+ 1)2− 1) = 4k2 + 8k;
it needs to be multiplied by 4, since we have 4 new border points: the
formula for this sum will be 16k2 + 32k.

16(32 + 52 + · · ·+ (2k + 1)2) =
64k3 + 192k2 + 176k

3
.

By summing up the two formulae, we have:

16k2 + 32k +
64k3 + 192k2 + 176k

3
=

64k3 + 240k2 + 272k

3
.

• The total sum of the distances between new cube vertices and new side
centres is 24 (8 times 1, when the cube vertex is of the corner of the same
square as the face centre is lying, e.g., VN1

and CN3
; plus 8 times 2, for

other pairs, e.g., VN1
and CN5

) and the square of the distances between
new cube points and new side centres is 8 · 12 + 8 · 22 = 40. Further, the
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total sum of the distances between new cube vertices and the new shared
centre (i.e., CN4) is

∑4
i=1 dG(VNi

, CN4
) = 4. (all the 4 new cube points

are neighbours of the new shared centre). Moreover, the sum of the
squares of the distances between the new cube points and the new shared
centre is also 4. (The total sum of distances between new cube points

and new face centres is, then,
∑4

i=1

∑5
j=1 dG(VNi , CNj ) = 24 + 4 = 28,

actually, for each of the new four cube points it is 3 · 1 + 2 · 2). The total
combined distance between these vertices is 24 + 40 + 4 + 4 = 72.

• The sum of distances between old cube points and the new shared centre,
CN4 , is

4(2 + 4 + 6 + · · ·+ 2(k + 1)) = 4(k + 1)(k + 2) = 4k2 + 12k + 8.

4(22 + 42 + 62 + · · ·+ 2(k + 1)2) = 16(1 + 4 + 9 + · · ·+ (k + 1)2) =

16k3+72k2+104k+48
3 .

The sum of two previous formulae is:

4k2+12k+8+
16k3 + 72k2 + 104k + 48

3
=

16k3 + 84k2 + 140k + 72

3
.

• The sum of the distances between old cube vertices and new side centre
points is given by

4(4(3 + 5 + 7 + · · ·+ (2k + 1)) + 6) = 4(4((k + 1)2− 1) + 1 + 1 + 2 + 2) =

16k2 + 32k + 24.

4(4(32 + 52 + 72 + · · ·+ (2k + 1)2) + 12 + 12 + 22 + 22) =

64k3+192k2+176k+120
3 .

The sum of two previous formulae is:

16k2 + 32k + 24 + 64k3+192k2+176k+120
3 = 64k3+240k2+272k+192

3 .

Finally, the final formula to calculate the total sum of the combined distances
between old face centre points and new cube points, plus the sum of the
combined distances between the new face centre points and old cube points,
plus the sum of combined distances between new cube points and new face
centres, i.e., it is the sum of all previous combined distances listed by cases,
i.e.,:

16k3+84k2+140k+72
3 + 64k3+240k2+272k

3 + 72 + 16k3+84k2+140k+72
3 +
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64k3 + 240k2 + 272k + 192

3
=

160k3 + 648k2 + 824k + 552

3
.

Thus the proof of the lemma is finished.

Lemma 6. Let n fcc unit cells be connected in a row. Then the sum of
combined distances between centre vertices and border vertices in this fcc grid
graph is given by

40n4 + 136n3 + 128n2 + 248n + 24

3
. (8)

Proof. The proof goes by induction on n.
The base of the induction is the case n = 1. In this case, there are only 6 face
centres, and 8 cube points. Each face centre has 4 neighbour cube vertices,
and 4 other at distance 2. In this way, the combined distance between face
centres and cube vertices is 6(4 + 4 · 2 + 4 · 12 + 4 · 22) = 192 and also, formula
(8) gives this value.

Let us assume that the formula satisfies if n = k. Let us prove that it also
satisfies if n = k + 1. By Lemma 5, we know the sum of the new combined
distances obtained between old central points and new border points (of the
(k + 1)st unit cell), between the centres of the new, (k + 1)st unit cell and
border points (of the previous k unit cells), and between the new central and
the new border points (of the (k + 1)st unit cell). Applying this, with the
induction hypothesis, the following statement is needed to be proven:

In this proof, we have to prove that the left hand side equals to the right
hand side:

40k4 + 136k3 + 128k2 + 248k + 24

3
+

160k3 + 648k2 + 824k + 552

3
=

40(k + 1)4 + 136(k + 1)3 + 128(k + 1)2 + 248(k + 1) + 24

3

40k4+296k3+776k2+1072k+576
3 = 40k4+296k3+776k2+1072k+576

3 .

Now, we proved that the left hand side equals to the right hand side.

3.3 Sum of combined Distances between Pairs of Cube Vertices

Lemma 7. Let k fcc unit cells be connected in a row. If a new fcc unit cell is
connected to the previous k cells forming a row with k + 1 cells, then the sum
of combined distances between new and old cube vertices is

64k3 + 336k2 + 560k + 468

3
. (9)
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Proof. The proof goes by counting various subsums.

• Observe that the sum of distances between all pairs of the 4 new cube
vertices is summed up to 12. (See Figure 2, for instance, for the distance
between VN1

and VN2
: that is 2, i.e., dG(VN1

, VN2
) = 2. Moreover, there

are
(
4
2

)
= 6 such pairs of vertices). Now, we have to compute the sum of

the squares of the distances: the total sum of the square of the distances
between all pairs of new border vertices is 6·22 = 24. Thus, the combined
distance between new cube vertices is summed up to 12 + 24 = 36.

• Now, let us compute the sum of distances between one of the new cube
vertices (e.g., VN1) and all old cube points:

2 · 4 + 4 · 4 + 6 · 4 + · · ·+ 2(k + 1) · 4 + 1 = 4(k + 1)(k + 2) + 1.

This result is multiplied by 4 since we have 4 new cube vertices (VN1
, VN2

,
VN3

, VN4
). Thus, the sum of distances is

4(4(k + 1)(k + 2) + 1) = 16k2 + 48k + 32.

Next, by computing the sum of the second moment distance, we have:

4(22 · 4 + 42 · 4 + 62 · 4 + · · ·+ (2(k + 1))2 · 4 + 4 · 32 − 4 · 22 =

16 · 4(12 + 22 + 32 + · · ·+ (k + 1)2) + 20 =

16(2k + 2)(k + 2)(2k + 3)

3
+ 20 =

64k3 + 288k2 + 416k + 252

3
.

Finally, the total combined sum is:

16(k + 1)(k + 2) + 4 + 36 + 64k3+288k2+416k+252
3 = 64k3+336k2+560k+468

3 .

Thus, formula (9) is obtained.

Lemma 8. Let n fcc unit cells be connected in a row. Then the sum of
combined distances between all pairs of cube vertices is given by

16n4 + 80n3 + 128n2 + 244n + 108

3
. (10)

Proof. The proof goes by induction on n.
The base of the induction is the case n = 1. In this case, there are 8 corners
(cube points) of the unit cell. Each pair of them has a distance 2, but pairs
of opposite corners that have distance 3. The sum of distances between all
pairs of these cube vertices is: 24 · 2 + 4 · 3 = 60. The sum of squares of these
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distances is 24 · 22 + 4 · 32 = 132. Therefore, the sum of combined distances
between all pairs of border vertices is 192, and also, formula (10) gives this
value for n = 1. Now, let us assume that the formula satisfies if n = k. Let
us prove that it also satisfies if n = k + 1. By Lemma 7, we know the sum of
the combined distances obtained by the old and new border points. Applying
this with the induction hypothesis, the next statement is needed to be proven

16k4 + 80k3 + 128k2 + 244k + 108

3
+

64k3 + 336k2 + 560k + 468

3
=

16(k + 1)4 + 80(k + 1)3 + 128(k + 1)2 + 244(k + 1) + 108

3

16k4 + 144k3 + 464k2 + 804k + 576

3
=

16k4 + 144k3 + 464k2 + 804k + 576

3

So the left hand side equals to the right hand side.

4 The Hyper-Wiener Index

Based on the results proven in the previous section, we are able to state our
main result.

Theorem 9. Let n be the number of fcc unit cells that are connected in a row.
Then the formula to find Hyper-Wiener index (H) for this graph is

81n4 + 261n3 + 264n2 + 540n + 132

6
. (11)

Proof. The final formula to calculate H (see eq. 4) is the half sum of equations
(6), (8) and (10). All possible distances are considered in exactly one of the
Lemmas 3, 5 and 7, and then, by simple calculation the sum of those formula

1

2

(
25n4 + 45n3 + 8n2 + 48n

3
+

40n4 + 136n3 + 128n2 + 248n + 24

3
+

16n4 + 80n3 + 128n2 + 244n + 108

3

)
=

81n4 + 261n3 + 264n2 + 540n + 132

6
.

The general formula to find hyper-Wiener index H for graphs of fcc unit cells
that are connected in a row is proven.

Table 1 shows some of first elements of our sequences, i.e., the values
computed by equations (6), (8), (10) and (11) for some small value of n. Both
W (based on Proposition 2) and H are shown in the table.
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Number of unit cells(n) 1 2 3 4 5

Wiener Index W 150 536 1336 2712 4826
Equation (6) 42 296 1152 3200 7230
Equation (8) 192 920 2944 7336 15488
Equation (10) 192 668 1816 4116 8176

Hyper-Wiener index H 213 942 2956 7326 15477

Table 1: Some values of the subsums, W and H for few fcc cells in a row.

Theorem 10. The sequence H(n) can also be written in the form of a fifth-
order homogenous linear recurrence with constant coefficients,

H(n) = 5H(n− 1)− 10H(n− 2) + 10H(n− 3)− 5H(n− 4) +H(n− 5), (12)

when n > 5, and specified with values H(1) = 213, H(2) = 942, H(3) =
2956, H(4) = 7326 and H(5) = 15447.

Proof. This proof also goes by induction. The base cases, H(n) with 1 ≤ n ≤ 5
can be seen in Table 1.

Now, let us assume that the recurrence relation holds for each value k < m
for an m ∈ N,m > 5. Let us prove the inheritance by computing the value for
m = k:
H(m) = 5H(m−1)−10H(m−2)+10H(m−3)−5H(m−4)+H(m−5), and
by the induction hypothesis we can substitute the formula for the elements of
the sequence on the right hand side:

H(m) = 5 81(m−1)4+261(m−1)3+264(m−1)2+540(m−1)+132
6

−10 81(m−2)4+261(m−2)3+264(m−2)2+540(m−2)+132
6

+10 81(m−3)4+261(m−3)3+264(m−3)2+540(m−3)+132
6

−5 81(m−4)4+261(m−4)3+264(m−4)2+540(m−4)+132
6

+ 81(m−5)4+261(m−5)3+264(m−5)2+540(m−5)+132
6

= 5·81(m4−4m3+6m2−4m+1)−10·81(m4−8m3+24m2−32m+16)
6

+ 10·81(m4−12m3+54m2−108m+81)
6

+−5·81(m
4−16m3+96m2−256m+256)+81(m4−20m3+150m2−500m+625)

6

+ 5·261(m3−3m2+3m−1)−10·261(m3−6m2+12m−8)+2610(m3−9m2+27m−27)
6

+−5·261(m
3−12m2+48m−64)+261(m3−15m2+75m−125)

6

+ 5·264(m2−2m+1)−10·264(m2−4m+4)+10·264(m2−6m+9)
6

+−5·264(m
2−8m+16)+264(m2−10m+25)

6
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+ 5·540(m−1)−10·540(m−2)+10·540(m−3)−5·540(m−4)+540(m−5)
6 + 132

6 .
Further,

H(m) = 81m4+(81·(−5·4+10·8−10·108+5·256−20)+261)m3

6

+ (81·(5·6−10·24+10·54−5·96+150)+261·(−5·3+10·6−10·9+5·12−15)+264)m2

6

+ (81·(−5·4+10·32−10·108+5·256−500)+261·(5·3−10·12+10·27−5·48+75))m
6

+ (264·(−5·2+10·4−10·6+5·8−10)+540)m
6

+ 81·(5·1−10·16+10·81−5·256+625)+261·(−5·1+10·8−10·27+5·64−125)
6

+ 264·(5·1−10·4+10·9−5·16+25)+540·(−5·1+10·2−10·3+5·4−5)+132
6

= 81m4+261m3+264m2+540m+132
6 .

That is exactly the formula (11) for m. Since the inheritance is proven,
the statements of the theorem is proven.

5 Conclusions

Theoretical work on various lattices and grids has various connections to digital
and discrete geometry, graph and lattice theory, crystallography and various
theoretical and applied fields in physics and chemistry. After the success
of Wiener-index, several other important topological/geometrical indices are
defined for various graph structures; one of those is the hyper-Wiener index.
In this paper, the face-centred cubic lattice is analysed, especially, when a
finite number of unit cells are placed next to each other at a line. We have
presented and proved formula for the computation of hyper-Wiener index for
these graphs. There are several ways to continue the line of the research that
we have just started here:

• One can compute other topological indices, e.g., Szeged or Zagreb indices
[7] for these graphs.

• One can extend the results to two and three dimensional rectangles and
blocks of unit cells.

• Wiener index and hyper-Wiener index may be further generalised in-
cluding higher moment of the distances.

• Finally, having results on various crystal structures, the results could
be compared to various physical and chemical properties of the crystals
belonging to these classes. We believe that hyper-Wiener index is re-
lated to some of these properties and thus these indices can have direct
applications.
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