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Some Extensions of Generalized Morphic Rings
and EM-rings

Manal Ghanem and Emad Abu Osba

Abstract

Let R be a commutative ring with unity. The main objective of this
article is to study the relationships between PP-rings, generalized mor-
phic rings and EM-rings. Although PP-rings are included in the later
rings, the converse is not in general true. We put necessary and suffi-
cient conditions to ensure the converse using idealization and polynomial
rings

1 Introduction

All rings are assumed to be commutative with unity 1. Let Z(R) be the set
of all zero divisors in R, and let reg(R) = R \ Z(R).

A ring R is called a morphic ring if for each a ∈ R, there exists b ∈ R
such that Ann(a) = bR and Ann(b) = aR. It is known that for reduced com-
mutative rings, morphic rings are equivalent to von Neumann regular rings.
A ring R is called generalized morphic ring if Ann(a) is principal for each
a ∈ R, for more details, see [10], [12], [13] and [14]. It is clear that the class
of generalized morphic rings includes a wide range of rings such as integral
domains, principal ideal rings, von Neumann regular rings, PP-rings, etc. If
for each polynomial f(x) ∈ Z(R[x]) there exists cf ∈ R and f1(x) ∈ reg(R[x])
such that f(x) = cff1(x), then R is called an EM-ring. Note that in this
case AnnR[x](f) = AnnR[x](cf ), which simplifies working and characterizing
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zero-divisors in R[x]. These rings were defined and characterized in [2], and it
was shown there that this class includes a wide range of rings.

It is shown in [2] that if R is a Noetherian ring, then R is generalized
morphic if and only if it is an EM-ring. In fact the Noetherian condition is
not necessary as will be shown later on.

Recall that if R is a ring, and M is an R−module, then the idealization
R(+)M is the set of all ordered pairs (r,m) ∈ R ×M , equipped with addi-
tion defined by (r,m) + (s, n) = (r + s,m + n) and multiplication defined by
(r,m)(s, n) = (rs, rn + sm). It is well-known that R(+)R ' R[x]

/
(x2) . For

the general case, we consider the ring R[x]
/

(xn+1) , where n ∈ N. In this case

we set R[x]
/

(xn+1) = {
n∑

i=0

aiX
i : ai ∈ R,X = x+ (xn+1)}.

A ring R is called a PP-ring if every principal ideal of R is a projective
R−module. It is well known that R is a PP-ring if and only if for each
a ∈ R,Ann(a) is generated by an idempotent. A ring R is called a PF-ring
if every principal ideal of R is a flat R−module. It is well known that R is a
PF-ring if and only if for each a ∈ R,Ann(a) is pure, i.e. for each b ∈ Ann(a),
there exists c ∈ Ann(a) such that b = bc.

It is clear that a PP-ring is generalized morphic ring, and it was shown in
[2] that a PP-ring is also an EM-ring, while Z4 is generalized morphic EM-ring
that is not PP-ring.

In this article we will characterize when some extensions of a generalized
morphic ring are generalized morphic. To be more precise; we will characterize
when the polynomial ring, the ring R[x]

/
(xn+1) and the idealization of a

generalized morphic ring is generalized morphic. We show that the later two
rings are generalized morphic if and only if their base ring R is a PP-ring.

We will characterize when the idealization of an EM-ring is an EM-ring.
We will also continue the investigation of the polynomial rings of EM-rings we
started in [2].

The following two lemmas will be used frequently in the following work.

Lemma 1.1. Let R be a reduced ring. If (a, x), (b, y) ∈ R(+)R such that
(a, x)(b, y) = (0, 0), then ab = ay = bx = 0.

Proof. We have (0, 0) = (ab, ay + bx), and so,

ab = 0,

ay + bx = 0,

0 = a(ay + bx) = a2y + abx = a2y = 0.
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Thus, (ay)2 = 0, and sinceR is reduced we have ay = 0, whence bx = 0.

Lemma 1.2. Let R be a ring, and let S = {(a1, b1), ..., (an, bn)} ⊆ R(+)R.
Then Ann(S) 6= {(0, 0)} if and only if Ann(a1, ..., an) 6= {0}.

Proof. Assume that (a, b) 6= (0, 0) and (a, b)(ai, bi) = (0, 0) for all i. Then
aai = 0 for all i. If a = 0, then b 6= 0 and bai = 0 for all i. Thus
Ann(a1, ..., an) 6= {0}.

Now, if a 6= 0 and aai = 0 for all i, then (0, a)(ai, bi) = (0, 0) for all i.
Thus Ann(S) 6= {(0, 0)}.

Recall that for any ring R, the set Min(R) is the set of all minimal prime
ideals of R, equipped with the hull kernel topology, and for any set I of
R, V (I) = {P ∈ Min(R) : I ⊆ P}, and Supp(I) = V (Ann(I)). An ideal I of
R is called a z0 − ideal, if whenever V (a) ⊆ V (b), with a ∈ I, we have b ∈ I.

2 Generalized Morphic Rings

In this section we will relate reduced generalized morphic rings to comple-
mented rings, and characterize when the polynomial ring of a generalized
morphic ring is generalized morphic, and characterize generalized morphic
rings using their minimal prime ideals.

A ring R is called complemented if for each a ∈ R, there exists b ∈ R such
that ab = 0 and a + b ∈ reg(R). A reduced ring R is complemented if and
only if for each a ∈ R there exists b ∈ R such that Ann(Ann(a)) = Ann(b).
For more properties of complemented reduced rings, see Theorem 2.2 and
Proposition 2.5 in [5], and Theorem 4.5 in [9].

It is clear that if R is a reduced generalized morphic ring, then for any
a ∈ R, there exists b ∈ R such that Ann(a) = bR, and so, Ann(Ann(a)) =
Ann(b). Thus R is a complemented ring.

For a complemented ring that is not generalized morphic, see Example 5.8
in [7] together with Theorem 1.3 in [8] and Theorem 2.2 below.

Recall that a ring R is said to be Armendariz if the product of two poly-
nomials in R[x] is zero if and only if the product of their coefficients is zero.

We now characterize the case at which the polynomial ring of a generalized
morphic ring is generalized morphic.

Theorem 2.1. If R[x] is a generalized morphic ring, then R is generalized
morphic. If R is Armendariz, then the converse is also true.

Proof. AssumeR[x] is generalized morphic, and let a ∈ Z∗(R). ThenAnnR[x](a) =

f(x)R[x], where f(x) =
n∑

i=0

aix
i. Let j be the least index such that aj 6= 0.
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Then aaj = 0, and so, ajR ⊆ AnnR(a). Let b ∈ AnnR(a) \ {0}. Then

b = f(x)g(x) for some g(x) =
m∑
i=0

bix
i ∈ R[x]. Then b = a0b0 ∈ a0R, and

a0 6= 0. Thus j = 0 and AnnR(a) = a0R is principal, and hence R is general-
ized morphic.

For the converse assume R is Armendariz generalized morphic and let

f(x) =
n∑

i=0

aix
i ∈ Z(R[x]). Then there exists a ∈ R such that aai = 0 for

all i. Thus {0} 6= AnnR(a0, a1, ..., an). Since R is generalized morphic, there
exists b ∈ R such that AnnR(a0, a1, ..., an) = bR, see Theorem 5 in [12]. Thus

bR[x] ⊆ AnnR[x](f). If g(x) =
m∑
i=0

cix
i ∈ Ann(f), then ciaj = 0 for all i and

j, since R is Armendariz, and so, ci ∈ bR for each i and g(x) ∈ bR[x]. Thus
AnnR[x](f) = bR[x] is principal and R[x] is generalized morphic.

Question: While there are non-commutative generalized morphic rings
that are non-Armendariz, is it necessary for a commutative generalized mor-
phic ring to be Armendariz?

Next, we will characterize generalized morphic reduced rings using mini-
mal prime ideals, and the concept of z0−ideals, borrowed from the rings of
continuous functions.

Theorem 2.2. Let R be a reduced ring. Then R is a generalized morphic ring
if and only if for each a ∈ R there exists b ∈ R such that Supp(a) = V (b) and
bR is a z0−ideal.

Proof. Assume R is a generalized morphic ring, and let a ∈ R. Then Ann(a) =
bR for some b ∈ R. So we have Supp(a) = V (Ann(a)) = V (bR) = V (b).
Moreover, if V (br) ⊆ V (c), then V (b) ⊆ V (br) ⊆ V (c), and so, for each
P ∈ Min(R), if b ∈ P , then c ∈ P and hence, ac ∈ P . If b /∈ P , then
a ∈ Ann(b) ⊆ P , and so, ac ∈ P . Thus, ac ∈

⋂
P∈Min(R)

P = {0}, since R is

reduced. Therefore, c ∈ Ann(a) = bR, and bR is a z0−ideal.
Conversely, assume a, b ∈ R such that Supp(a) = V (b) and bR is a

z0−ideal. Let P ∈Min(R). If a ∈ P , then ab ∈ P . If a /∈ P , then Ann(a) ⊆
P , and so, P ∈ Supp(a) = V (b). Hence, b ∈ P , and so, ab ∈ P . Thus,
ab ∈

⋂
P∈Min(R)

P = {0}, which implies that bR ⊆ Ann(a). If c ∈ Ann(a), then

we have V (b) = Supp(a) ⊆ V (c), and so, c ∈ bR, being a z0−ideal. Hence
Ann(a) = bR, and R is a generalized morphic ring.
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3 When is R[x] /(xn+1)Generalized Morphic ring?

In this section we characterize the case at which the idealization of a gen-
eralized morphic ring or more generally, the ring R[x]

/
(xn+1) is generalized

morphic.

Theorem 3.1. Let R be a ring, M an R−module and let S = R(+)M . If S
is generalized morphic ring, then R is generalized morphic ring.

Proof. Let a ∈ Z(R∗). Then Ann((a, 0)) = (r,m)S, and hence (0, 0) =
(a, 0)(r,m) = (ar, am). So, ar = 0, and thus, rR ⊆ Ann(a). Now, if
x ∈ Ann(a), then (x, 0)(a, 0) = (xa, 0) = (0, 0).

But in this case, we must have (x, 0) = (r,m)(t, s) = (rt, rs+tm), for some
(t, s) ∈ S. So, x ∈ rR. Therefore, Ann(a) = rR, and hence, R is generalized
morphic ring.

The converse of the above Theorem needs not be true, since Z4 is a gener-
alized morphic ring, while Z4(+)Z4 is not.

Now, the question is, for what rings R, the converse of this Theorem must
be true. In the following, we will give the answer. But first we recall the
following proposition which was proved in [12].

Proposition 3.2. Let R be a reduced ring. Then the following are equivalent:
(1) The ring R is morphic.
(2) The ring R[x]

/
(xn+1) is morphic for each n ∈ N.

(3) The ring R(+)R is morphic.
(4) The ring R is von Neumann regular ring.

In the following, we will prove an analogue result for the equivalence of
PP-rings and generalized morphic idealization.

Lemma 3.3. Let R be a reduced ring, and let f =
n∑

i=0

aiX
i ∈ Z(R[x]

/
(xn+1) )\

{0}, g =
n∑

i=0

biX
i = Ann(f). Then bi ∈ Ann(a0, a1, ..., an−i) for i =

0, 1, 2, ..., n.

Proof. Since fg = 0, we have
j∑

i=0

aibj−i = 0, for j = 0, 1, 2, ..., n. Thus,

a0b0 = 0, and if b0 ∈ Ann(a0, a1, ..., aj), j < n, then multiplying the equation
a0bj+1 + a1bj + ... + ajb1 + aj+1b0 = 0 by b0 yields aj+1b

2
0 = 0, and since

R is reduced we have aj+1b0 = 0, i.e. b0 ∈ Ann(a0, a1, ..., aj+1). Hence
b0 ∈ Ann(a0, a1, ..., an). Now, assume that bi ∈ Ann(a0, a1, ..., an−i), for
i = 0, 1, ..., j < n, then the equation a0bj+1 + a1bj + ... + ajb1 + aj+1b0 = 0
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reduces to a0bj+1 = 0. So, assume that akbj+1 = 0, for k = 0, 1, ..., l < n−j−1,
then the equation

∑
s+k=l+1+j+1

akbs = 0, reduces to al+1bj+1 = 0, and so we

have bj+1 ∈ Ann(a0, a1, ..., an−j−1).

Theorem 3.4. The following are equivalent for a ring R :
(1) The ring R is a PP-ring.
(2) The ring R[x]

/
(xn+1) is generalized morphic for each n ∈ N.

(3) The ring S = R(+)R is generalized morphic.
(4) The ring R is generalized morphic PF-ring.
(5) The ring R is complemented PF-ring.

Proof. (1)⇒ (2) Assume R is a PP-ring, and f =
n∑

i=0

aiX
i ∈ Z(R[x]

/
(xn+1) )\

{0}, g =
n∑

i=0

biX
i = Ann(f). Then it follows by Lemma 3.3 that bi ∈

Ann(a0, a1, ..., an−i) = eiR, where e2i = ei for i = 0, 1, 2, ..., n, and in this case

we would have eiej = ei, whenever i ≤ j. Let e =
n∑

i=0

eiX
i. Then it is clear

that e ∈ Ann(f). Let K0 = b0−b0X,K1 = b1(1−e0)−b1X+2b1e0X−b0e0X2.
Then it is clear that biX

i = eKi for i = 0, 1.
Now, for 1 < m ≤ n, let Tm = bm(1 − em−1) − bmX + 2bmem−1X −

bmem−1X
2. Then routine computations yields that eTm = bmX

m+
m−2∑
j=0

bmejX
j+1−

m−2∑
j=0

bmejX
j+2. LetGm,i = −bmem−1−iXi+2bmem−1−iX

i+1−bmem−1−iXi+2,

for all 1 ≤ i ≤ m − 1. Then eGm,i = −bmem−1−iXm−1 + bmem−1−iX
m −

m−2−i∑
j=0

bmejX
j+i+2

m−2−i∑
j=0

bmejX
j+i+1−

m−2−i∑
j=0

bmejX
j+i+2, for 1 ≤ i ≤ m−2,

and eGm,m−1 = −bme0Xm−1 + bme0X
m. Let km,r = Tm +

r∑
i=1

Gm,i. Using

finite induction, one can show that ekm,r = bmX
m +

m−2−r∑
j=0

bmejX
j+r+1 −

m−2−r∑
j=0

bmejX
j+r+2, for 1 ≤ r ≤ m−2, and eKm,m−2 = bmX

m +bme0X
m−1−

bme0X
m. Now, let Km = (Tm +

m−2∑
i=1

Gm,i + Gm,m−1), for 1 < m ≤ n. Then

eKm = bmX
m, and so, g = e

n∑
m=0

Km. Thus, Ann(f) = (e), and R[x]
/

(xn+1)

is generalized morphic.
(2)⇒ (3) Clear, since R(+)R is isomorphic to R[x]

/
(x2) .
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(3)⇒ (1) Assume that S is generalized morphic, and let a ∈ Z(R) \ {0}.
Then (0, a) ∈ Z(S) \ {(0, 0)}, and so, Ann(0, a) = (x, y)S. It is clear that
xR ⊆ Ann(a), and if b ∈ Ann(a), then (b, 0)(0, a) = (0, 0), and hence, (b, 0) =
(x, y)(z, w). Thus b = xz ∈ xR, and therefore Ann(a) = xR. But (0, 1)(0, a) =
(0, 0), and so, (0, 1) = (x, y)(α, β). Thus we have:

0 = xα,

1 = xβ + yα,

which yields that

x = x2β,

and hence, xβ = (xβ)2, and Ann(a) = (xβ)R. Thus R is a PP-ring.
(1)⇔ (4) See Corollary 3.12 in [14].
(1)⇔ (5) See Proposition 2.7 in [11].

Example 3.5. Let F be a field. Then R = F [x, y] /(xy) is a reduced comple-
mented ring that is not a PP-ring, see Remark 2 in [3], and Theorem 4.5 in [9].
One can see easily that R is a generalized morphic ring, while R[x]

/
(xn+1)

is not for any n ∈ N.

It is immediate that if R is a PF-ring that is not a PP-ring, then R and
R(+)M are not generalized morphic for any R−module M .

Since PP-rings are always reduced, we conclude the following easily.

Corollary 3.6. If R[x]
/

(xn+1) is generalized morphic, then R is reduced.

4 Polynomial rings of EM-rings

In [1], the concept of the annihilating content of a polynomial f(x) was in-
troduced to be a constant cf such that f(x) = cff1(x) with f1(x) is not a
zero-divisor, and in [2], we called a ring R to be an EM-ring if every zero-
divisor polynomial in R[x] has an annihilating content. Many properties of
this ring were investigated, and many open problems were posed. We now
study the polynomial ring of an EM-ring.

Theorem 4.1. If R is an EM-ring, then R[x] is an EM-ring. If R is a reduced,
then the converse is also true.
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Proof. Assume R is an EM-ring. To show that R[x] is an EM-ring, we will
follow the proof of the result in the unpublished article [2]. Let f(x, y) =
n∑

i=0

fi(x)yi be zero-divisor in R[x, y] = (R[x])[y]. Then there exists nonzero

h(x) such that hfi = 0 for all i. Define

g(x) = f0 + f1x
deg(f0)+1 + f2x

deg(f0)+deg(f1)+2 + ...+ fnx

n−1∑
i=1

deg(fi)+n

Since hg = 0, there exists cg ∈ Z(R) and nonzero-divisor g1 =
m∑
i=1

bix
i such

that g = cgg1. So, ∩Ann(bi) = {0}, and f0 = cg
deg(f0)∑
i=0

bix
i = cgh0(x), f1 =

cg
deg(f1)∑
i=0

bi+deg(f0)+1x
i = cgh1, and so on. Hence, f(x, y) = cg

n∑
i=0

hi(x)yi. If

n∑
i=0

hi(x)yi is a zero-divisor, then there exists nonzero k(x) such that k(x)hi(x) =

0 for each i. Define

l(x) =

n∑
i=0

hi(x) x

∑
j<i

deg(fj) +1

and so, k(x)l(x) = 0, and therefore there exists a nonzero c ∈ R such
that chi(x) = 0, and so, cbi = 0 for all i, a contradiction, since ∩Ann(bi) =

{0}.Thus
n∑

i=0

hi(x)yi is nonzero-divisor, and R[x] is an EM-ring.

Assume now that R is a reduced ring, and R[x] is an EM-ring. Let f(x) =
l∑

i=0

aix
i ∈ Z(R[x]) \ {0}. Then g(y) =

l∑
i=0

aiy
i ∈ Z((R[x])[y]) \ {0}, and so,

there exists h(x) =
m∑
i=0

hix
i ∈ R[x] such that g(y) = h(x)

l∑
i=0

ki(x)yi, with⋂
Ann(ki(x)) = {0}. Assume that ki(x) =

ni∑
j=0

ki,jx
j , which implies that⋂

Ann(ki,j) = {0}. Note that ai = h(x)ki(x) = h0k0. But h(x)ki(x) =
m+ni∑
k=0

ckx
k, with ck =

k∑
j=0

hjki,k−j . Now we have:

0 = cm+ni
= hmki,ni

0 = cm+ni−1 = hmki,ni−1 + hm−1ki,ni
,

which implies that 0 = h2mki,ni−1, and so, 0 = hmki,ni−1, since R is re-
duced.

0 = cm+ni−2 = hmki,ni−2 + hm−1ki,ni−1 + hm−1ki,ni ,
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which implies that 0 = h2mki,ni−2, and so, 0 = hmki,ni−2
Now, assume we have hmki,s = 0, for s = ni, ni−1, ..., j+1. Thus we have

0 = cm+j = hmki,j + hm−1ki,j+1 + ...hjki,m,

which implies that 0 = h2mki,j , and so, 0 = hmki,j , this shows that hmki,s =
0, for s = 0, 1, 2, ..., ni.

Thus, h(x)ki(x) = (h(x)− hmxm)ki(x).
Continue to get h(x) = h0ki(x), which implies that h0ki,j = 0 for all

j ∈ {1, 2, ..., nj}, and i ∈ {1, 2, ..., l}

Now define w(x) =
n∑

i=0

ki,0x
i +xn0+1

n0∑
j=1

k0,jx
j +xn0+n1+2

n1∑
j=1

k1,jx
j + ...+

xn0+n1+...+nl−1+l
nl∑
j=1

kl,jx
j . Then Ann(w) = {0}, and f(x) = h0w(x). Hence,

R is an EM-ring.

Question: Is the above result true for nonreduced rings?

5 Idealization of EM-rings

It was shown in [2] that if R is a Noetherian ring, then R is an EM-ring if
and only if it is a generalized morphic ring, and an example was given for an
EM-ring that is not generalized morphic, but the precise relation between the
two concepts was not accomplished. In the following, we will give a partial
answer.

We now investigate the idealization of EM-rings, and relate it to generalized
morphic rings.

Theorem 5.1. Assume R is a ring such that S = R(+)R is an EM-ring, then
R is an EM-ring.

Proof. Let f(x) =
n∑

i=0

aix
i ∈ Z(R[x])\{0}. Then there exists a ∈ R\{0} such

that aai = 0 for each i. Let g(x) =
n∑

i=0

(ai, 0)xi ∈ S[x]. Then (a, 0)(ai, 0) =

(0, 0) for each i, and so, g(x) ∈ Z(S[x])\{(0, 0)}. Thus there exists (r,m) ∈ S

such that g(x) = (r,m)
k∑

i=0

(ri,mi)x
i, with

k⋂
i=0

Ann(ri,mi) = {(0, 0)}, n ≤ k.

Hence, we have
k⋂

i=0

Ann(ri) = {0}, and f(x) = r
k∑

i=0

rix
i. Thus, R is an

EM-ring.
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The converse of the above Theorem needs not be true, since Z4 is an EM-
ring, while Z4(+)Z4 is not.

In [2], we showed that if R is a PP-ring, then it is an EM-ring. We now
give a more precise result.

Theorem 5.2. A ring R is a PP-ring if and only if S = R(+)R is an EM-
ring.

Proof. Assume that R is a PP-ring, and f(x) =
n∑

i=0

(ai, bi)x
i ∈ Z(S[x]) \

{(0, 0)}. Since R is a PP-ring, we can write ai = uiri, and bi = visi, where
ui and vi are idempotents, ri and si are regular elements for each i, see [4,
Lemma 2]. Define the idempotents u, v and e as follows:

1− u =

n∏
i=0

(1− ui),

1− v =

n∏
i=0

(1− vi),

1− e = (1− u)(1− v).

Note that (ai, 0) = (u, e− u)(ai, 0) and (0, bi) = (u, e− u)((1− u)(bi + 1−
e), bi), and so,

n∑
i=0

(ai, bi)x
i = (u, e− u)

n∑
i=0

(ai + (1− u)(bi + 1− e), bi)xi. Now,

let I be the ideal in R generated by the elements ai + (1−u)(bi + 1− e). Then
ai = ui(ai + (1 − u)(bi + 1 − e)) ∈ I for each i. Also, (1 − u)(bi + 1 − e) =
ai + (1 − u)(bi + 1 − e) − ai ∈ I for each i, which implies that (1 − u)bi =
e(1− u)(bi + 1− e) ∈ I, since ebi = bi for each i. Therefore, we have 1− e =
(1− e)(1−u) ∈ I. Now, if α ∈ Ann(I), then 0 = αai = αuiri, and so, αui = 0
for each i, which implies that αu = 0, and so, 0 = α(1− u)bi = αbi for each i.
Thus, αvi = 0 for each i. Hence we have αu = 0 = αv, and so, αe = 0. But
we have also α(1 − e) = 0, which implies that α = 0, i.e. Ann(I) = {0}, and

so it follows by Lemma 1.2 that
n∑

i=0

(ai + (1− u)(bi + 1− e), bi)xi ∈ reg(S[x]).

Thus S is an EM-ring.
Now assume that S is an EM-ring, b ∈ Z(R)\{0} and let a ∈ Ann(b)\{0}.

Then f(x) = (0, 1)+(b, 0)x ∈ Z(S[x])\{(0, 0)}, since it is annihilated by (0, a).

Thus f(x) = (α, β)
n∑

i=0

(ni,mi)x
i, with

⋂
i

Ann(ni) = {0}. Thus, we have:

0 = αn0,
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1 = αm0 + βn0,

b = αn1,

0 = αni for all i > 1.

But b = b(αm0 + βn0) = bαm0 + αn1βn0 = b(αm0). Also note that
αm0 = (αm0)2 + αm0βn0 = (αm0)2. Thus, Ann(αm0) ⊆ Ann(b). Now let
d ∈ Ann(b). Then we have:

0 = (dm0)0 = (dm0)αn0 = (dαm0)n0,

0 = (dm0)b = (dm0)αn1 = (dαm0)n1,

0 = (dm0)0 = (dm0)αni = (dαm0)ni for all i > 1,

which implies that dαm0 ∈
⋂
i

Ann(ni) = {0}. Hence, Ann(b) = Ann(αm0) =

(1− αm0)R is generated by an idempotent, and so, R is a PP-ring.

Using Theorems 3.4 and 5.2, one can deduce the following:

Corollary 5.3. For any ring R, we have R(+)R is an EM-ring if and only
if it is generalized morphic.

Example 5.4. The space X = βN \ N is an F-space that is not a basically
disconnected space nor complemented, see [6, 6W and 14.27], and so, C(X)
is a reduced Bézout ring that is not a PP-ring. Thus C(X)(+)C(X) is not an
EM-ring. Also we have C(X) is an EM-ring which is not generalized morphic.

Questions: It is still an open problem to characterize the relation between
EM-rings and generalized morphic rings. Although they are not equivalent,
we saw that R(+)R is an EM-ring if and only if it is generalized morphic, even
if R was not Noetherian. We also don’t know yet what sufficient conditions
must be add to an EM-ring to become a PP-ring. It is not difficult to show
that if R[x]

/
(xn+1) is an EM-ring, then R is a PP-ring. We are still working

for the other direction.
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