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Independent [1,2]-number versus independent
domination number

Sahar A. Aleid, Mercè Mora and Maŕıa Luz Puertas

Abstract

A [1, 2]-set S in a graph G is a vertex subset such that every vertex
not in S has at least one and at most two neighbors in it. If the additional
requirement that the set be independent is added, the existence of such
sets is not guaranteed in every graph. In this paper we provide local
conditions, depending on the degree of vertices, for the existence of
independent [1, 2]-sets in caterpillars. We also study the relationship
between independent [1, 2]-sets and independent dominating sets in this
graph class, that allows us to obtain an upper bound for the associated
parameter, the independent [1, 2]-number, in terms of the independent
domination number.

1 Introduction

All the graphs considered here are finite, undirected, simple and connected.
Undefined basic concepts can be found in introductory graph theory literature
as in [2, 5]. Let G = (V,E) be a graph, a vertex subset S is independent if
no two vertices in S are adjacent and it is dominating if every vertex not in
S has at least one neighbor in it. The minimum cardinality of a dominating
set of a graph G is the domination number of G, denoted by γ(G). The min-
imum cardinality of an independent dominating set is ı̇(G), the independent
dominating number.

An efficient dominating set [1], also called perfect code, is an independent
dominating set such that every vertex not in the set has a unique neighbor in
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it. It is well known that all efficient dominating sets in a graph G have the
same cardinality, that always agrees with γ(G) [1], so in this case γ(G) = ı̇(G).
This means that perfect codes are minimum dominating sets and, in addition,
they are independent, but unfortunately the existence of this type of sets is
not guaranteed in every graph [6]. Less demanding properties would allow the
existence of similar sets in a wider range of graphs.

In [3], Chellali et al. define a subset S ⊆ V in a graph G to be a [1,2]-set
if every vertex which is not in S is adjacent to at least one but not more
than two vertices in S, in this case we will say that S [1,2]-dominates G and
the cardinality of a minimum [1, 2]-set of G is the [1,2]-dominating number
γ[1,2](G). In [4] a similar definition was introduced with the additional condi-
tion of independence, and the minimum cardinality of an independent [1, 2]-set
is denoted by ı̇[1,2](G). Note that the existence of an independent [1, 2]-set is
not guaranteed in every graph and ı̇(G) ≤ ı̇[1,2](G), if G has an independent
[1, 2]-set.

In [3] different graph families satisfying the domination number agrees
with the [1, 2]-dominating number, are shown. For instance, a caterpillar C
is a tree such that the removal of its leaves gives a path and they obtain
that γ(C) = γ[1,2](C), for every caterpillar C. In this paper we focus on
the relationship between the independent [1, 2]-number and the independent
domination number. It is not difficult to find examples of caterpillars satisfying
ı̇(C) < ı̇[1,2](C) and this means that the addition of independence provides a
different behaviour of the related parameters.

We study how big the difference can be between the independent domina-
tion number and the independent [1, 2]-number in the graph class of caterpil-
lars. The problem of characterizing graphs that admit independent [1, 2]-sets
is open and a characterization of trees having such sets is obtained in [4].
On the other hand in [7] authors show an algorithm to determine whether
a caterpillar has an independent [1, 2]-set. None of them provide an explicit
formula for the independent [1, 2]-number. In the family of caterpillars, using
the information about the neighborhood of each vertex, we will characterize
the existence of independent [1, 2]-sets and we will compute both ı̇ and ı̇[1,2].

The spine EC of a caterpillar C is the path resulting from the removing of
its leaves. A vertex v in the spine is a support vertex if there is a vertex ` with
degree one, such that v and ` are neighbors, so v is the unique neighbor of ` and
we will say that v has ` as a leaf. In Section 2 we provide a characterization
of certain caterpillars that admit an independent [1, 2]-set, in terms of the
number of leaves of the vertices in the spine. This characterization will allow
us to obtain an upper bound for the independent [1, 2]-number in terms of
the independent number, in this graph family. To this end in Section 3 we
present some technical results that will allow us to prove the upper bound in
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Section 4. We also present a realization theorem that provides examples of
all possible values that ı̇ and ı̇[1,2] can take, in our caterpillar family. With
that theorem we finally show that the difference ı̇[1,2] − ı̇ can reach any non
negative integer.

2 Caterpillars having independent [1, 2]-sets

We begin this section showing a necessary condition for a caterpillar C to have
an independent [1, 2]-set, in terms of the degree of its vertices. This condition
is also sufficient in a particular class of caterpillars. We first define a labeling
of vertices in EC and hereafter we will identify these vertices with their labels.

Definition 1. Let C be caterpillar and let v be a vertex of the spine of C.
Then:

• v = 0 if it is not a support vertex,

• v = 1 if it has exactly one leaf, denoted by `v,

• v = 2 if it has exactly two leaves, denoted by `1v and `2v,

• v = 3 if it has at least three leaves.

The following proposition shows that a caterpillar having an independent
[1, 2]-set has some restrictions in its spine.

Proposition 1. Let C be a caterpillar having an independent [1, 2]-set. Then
EC does not contain any of the sequences 33, 23, 32, 313.

Proof. Let S be any independent [1, 2]-set of C. Clearly every vertex labeled as
3 belongs to S, so the sequence 33 is not possible in order to keep independence.
On the other hand, if a vertex labeled as 1 or 2 does not belong to S, then its
leaves must be in S. Hence sequences 32, 23, 313 are not possible because in
every case a vertex would have three neighbors in S.

Our next target is to show that these necessary conditions are also suffi-
cient, not in every caterpillar, but in a wide range of them. To this end we
first need the following lemma.

Lemma 1. Let Pm = a1a2 . . . am be a path with m vertices and m 6= 1, 2, 4.
Then Pm has an independent [1, 2]-set S such that a1, am /∈ S and both vertices
have just one neighbor in S.

Proof. Assume that m is an odd number then define S = {ai : i is even}.
On the contrary if m is an even number, then m ≥ 6 and define S =
{ai : i is odd and i ≥ 5} ∪ {a2}. In both cases S is an independent [1, 2]-set of
Pm, a1, am /∈ S and both vertices have just one neighbor in S.
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Now we can characterize a family of caterpillars having an independent
[1, 2]-set, in a local way.

Proposition 2. Let C be a caterpillar such that EC does not contain any
sequence with exactly one, two or four consecutive vertices labeled as zero.
Then C has an independent [1, 2]-set if and only if EC does not contain any
of the sequences 33, 32, 23, 313.

Proof. By Proposition 1, we just need to prove sufficiency. Assume that the
spine EC = v1 . . . vn does not contain any of the sequences 33, 32, 23, 313.

Firstly suppose that every vertex in EC is a support vertex and define the
set S = {v ∈ V (EC) : v = 3} ∪ {`v : v ∈ V (EC) and v = 1} ∪ {`1v, `2v : v ∈
V (EC) and v = 2}. Note that leaves adjacent to a vertex labeled with 3 are
dominated by its support vertex, each vertex with label 2 is just dominated by
its leaves and each vertex with label 1 is dominated by its leaf and, at most,
one neighbor in the spine with label 3. So S is an independent [1, 2]-set of C.

Now suppose that EC contains some vertex labeled as zero and consider
the decomposition EC = E1Z1E2Z2 . . . Zr−1Er in consecutive sequences, such
that each Ei is a maximal sequence of consecutive vertices with non-zero labels
and each Zi is a maximal sequence of consecutive vertices labeled as zero. By
hypothesis each Zi has length different from one, two and four.

Using Lemma 1, each Zj has an independent [1, 2]-set Rj not containing
the first vertex and the last vertex of Zj and both vertices are dominated just
once by vertices in Rj . On the other hand, using that Ei contains no vertex
labeled as zero, we obtain that it has an independent [1, 2]-set Si. Finally the

set S =
(⋃r

i=1 Si

)⋃(⋃r−1
j=1 Rj

)
is an independent [1, 2]-set of C.

We close this section showing that caterpillars with spines consisting of
just support vertices, have an special behaviour related to both independent
dominating sets and independent [1, 2]-sets. So these caterpillars will provide
a favorable environment to compute the associated parameters ı̇ and ı̇[1,2].

Proposition 3. 1. Let C be a caterpillar such that every vertex in EC

is a support vertex. Then C has an independent dominating set with
minimum size, containing no vertex of EC with label 1.

2. Let C be a caterpillar having an independent [1, 2]-set and such that every
vertex in EC is a support vertex. Then every independent dominating
set of C with minimum size contains all vertices in EC labeled as 3.
Moreover, C has an independent [1, 2]-set with minimum size, containing
no vertex of EC with label 1.

Proof. 1. Let R be an independent dominating set of C with minimum size,
containing a vertex v ∈ EC , labeled as 1. Then the neighbors of v in EC
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are not in R and using that they are support vertices, their leaves are
in R. Thus the set R′ = (R \ {v}) ∪ {`v} is an independent dominating
set with the same cardinality as R. Repeating this process with every
vertex in R labeled as 1 we get the desired set.

2. Let R be an independent dominating set of C with minimum size and
suppose on the contrary that there exists v ∈ EC , labeled as 3 and such
that v /∈ R. Using the same reasoning as in the previous item, we may
assume that R contains no vertex labeled as 1. By Proposition 1, the
neighbors of v in EC are labeled as 1. Therefore the set R′′ = (R \
{` : ` is a leaf and a neighbor of v})∪{v} is an independent dominating
set with smaller cardinality, which is not possible.

Finally if S is an independent [1, 2]-set with minimum size, containing
vertices of EC with label 1, the set obtained by removing such vertices
and adding their leaves, is an independent [1, 2]-set with the same size
and it contains no vertex with label 1.

3 Upper bound for ı̇[1,2]: partial results

The independent domination number is a natural lower bound of the indepen-
dent [1, 2]-number, that is ı̇(G) ≤ ı̇[1,2](G), if G has an independent [1, 2]-set.
In this section and the following one we focus on caterpillars whose spines have
just support vertices, and for this graph class we provide the following general
upper bound

ı̇[1,2](C) ≤ 7

5
ı̇(C) +

2

5
(1)

We devote this section to prove some previous results, showing that inequality
is true in some particular caterpillars. They will allow us to approach the
general case. We begin with three lemmas that consider caterpillars having
vertices labeled as 2 in the spine, in different positions.

Notation 1. Given a caterpillar C with EC = v1 . . . vn, we will describe a
vertex subset S ⊆ V (C) in the following way. For each vi ∈ EC we put a

circle or a hat, where vi means that vi ∈ S and its leaves are not in S, and

v̂i means vi /∈ S but all its leaves belong to S.

Lemma 2. Let C be a caterpillar let EC = v1 . . . vn be its spine.

1. Suppose that n ≥ 2 and vi = 2 for every i ∈ {1, . . . n}.

(a) If n is even then ı̇(C) = 3n
2 .
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(b) If n is odd then ı̇(C) = 3n−1
2 .

(c) In any case C has a unique independent [1, 2]-set S, that satisfies
v1, vn /∈ S and |S| = 2n. Moreover |S| ≤ 7

5 ı̇(C) + 2
5 .

2. Suppose that n ≥ 3, vi = 2 for every i ∈ {1, . . . n− 1} and vn = 1.

(a) If n is even then ı̇(C) = 3n−2
2 .

(b) If n is odd then ı̇(C) = 3n−1
2 .

(c) In any case C has a unique independent [1, 2]-set S, that satisfies
v1, vn /∈ S, the unique neighbor of vn in S is `vn and |S| = 2n− 1.
Moreover |S| ≤ 7

5 ı̇(C).

Proof. 1. (a) Assume that n = 2m. Note that two consecutive vertices
in the spine do not both belong to an independent set. It is
also clear that, if a vertex in the spine is not in a dominating
set, then its leaves must be in it. We construct the following set
R = 2 2̂ . . . 2 2̂, (using notation 1). It is clear that R is an inde-

pendent dominating set with minimum size. Each 2 means one

vertex in R and each 2̂ means two vertices in R, so ı̇(C) = |R| =
m+ 2m = 3m = 3n

2 .

(b) If n = 2m + 1, then the set R = 2 2̂ . . . 2 2̂ 2 is a minimum
independent dominating set and ı̇(C) = |R| = (m + 1) + 2m =
3m+ 1 = 3n−1

2 .

(c) By Proposition 2, C has an independent [1, 2]-set S. If vi ∈ S for
some i ∈ {1 . . . n− 1}, then vi+1 /∈ S, `1vi+1

, `2vi+1
∈ S and vi+1 has

three neighbors in S, that is not possible. If vn ∈ S, repeat the
same argument with vn−1. Thus the unique independent [1, 2]-set
of C is S = 2̂ 2̂ . . . 2̂, that satisfies v1, vn /∈ S and |S| = 2n. Finally,
in case n is even,

7

5
ı̇(C) +

2

5
=

7

5

3n

2
+

2

5
= 2n+

n+ 4

10
≥ 2n = |S|.

If n is odd then n ≥ 3 and

7

5
ı̇(C) +

2

5
=

7

5

3n− 1

2
+

2

5
= 2n+

n− 3

10
≥ 2n = |S|.

2. (a) If n = 2m then R = 2 2̂ . . . 2̂ 2 1̂ is a minimum independent dom-
inating set. Therefore ı̇(C) = |R| = m+ 2(m− 1) + 1 = 3m− 1 =
3n−2

2 .
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(b) If n = 2m + 1, then R = 2 2̂ . . . 2 2̂ 1̂ is a minimum independent

dominating set and ı̇(C) = |R| = m+ 2m+ 1 = 3m+ 1 = 3n−1
2 .

(c) By Proposition 2, C has an independent [1, 2]-set. Same considera-
tions as above provide the unique independent [1, 2]-set of C is the
set S = 2̂ 2̂ . . . 2̂ 1̂. It has 2n−1 elements, v1, vn /∈ S and the unique
neighbor of vn in S is `vn . If n is even then n ≥ 4 and

7

5
ı̇(C) =

7

5

3n− 2

2
= 2n− 1 +

n− 4

10
≥ 2n− 1 = |S|.

If n is odd then

7

5
ı̇(C) =

7

5

3n− 1

2
= 2n− 1 +

n+ 3

10
≥ 2n− 1 = |S|.

Lemma 3. Let C be a caterpillar with EC = v1 . . . vn, such that n = 2m ≥ 4,
v1 = 3, v2 = 1, v2k−1 = 2, v2k = 1, 2 ≤ k ≤ m. Then ı̇(C) = n and C has an
independent [1, 2]-set S such that vn /∈ S and its unique neighbor in S is `vn .
Moreover

1. if n ≡ 0 (mod 4) then |S| = 5n
4 ,

2. if n ≡ 2 (mod 4) then |S| = 5n+2
4 .

In both cases |S| ≤ 7
5 ı̇(C).

Proof. At the least n vertices are needed to dominate C and the set R =
3 1̂ 2 1̂ . . . 2 1̂ is an independent dominating set with n vertices, so ı̇(C) =
|R| = n.

1. If n ≡ 0 (mod 4) then n = 4s (s ≥ 1), and EC consists of an initial
pair 31 and 2s − 1 consecutive copies of the pair 21. The set S =
3 1̂ 2̂ 1̂ 2 1̂ . . . 2 1̂ 2̂ 1̂ is an independent [1, 2]-set such that vn /∈ S

and its unique neighbor in S is `vn . This set contains one copy of 3 1̂, s

copies of 2̂ 1̂ and s− 1 copies of 2 1̂, therefore |S| = 2 + 3s+ 2(s− 1) =

5s = 5n
4 . Clearly |S| = 5n

4 ≤
7n
5 = 7

5 ı̇(C).

2. If n ≡ 2 (mod 4) then n = 4s + 2 (s ≥ 1), and EC consists of an
initial pair 31 and 2s consecutive copies of the pair 21. The desired
independent [1, 2]-set in this case is S = 3 1̂ 2̂ 1̂ 2 1̂ . . . 2 1̂ 2̂ 1̂ 2̂ 1̂, that
satisfies vn /∈ S and its unique neighbor in S is `vn . The set contains
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one copy of 3 1̂, s + 1 copies of 2̂ 1̂ and s − 1 copies of 2 1̂, so |S| =

2 + 3(s+ 1) + 2(s− 1) = 5s+ 3 = 5n+2
4 . Finally

|S| ≤ 7

5
ı̇(C) ⇐⇒ 5n+ 2

4
≤ 7n

5
⇐⇒ 25n+ 10 ≤ 28n ⇐⇒ 10 ≤ 3n

and the last inequality is true because, in this case, n ≥ 6.

Lemma 4. Let C be a caterpillar let EC = v1 . . . vn be its spine.

1. Suppose that n = 2m ≥ 2, v2k−1 = 2, v2k = 1, 1 ≤ k ≤ m. Then
ı̇(C) = n and C has an independent [1, 2]-set S such that vn /∈ S and

(a) if n ≡ 0 (mod 4) then |S| = 5
4n,

(b) if n ≡ 2 (mod 4) then |S| = 5n−2
4 .

In both cases |S| ≤ 7
5 ı̇(C).

2. Suppose that n = 2m + 1 ≥ 3, v2k−1 = 2, v2k = 1, 1 ≤ k ≤ m and
v2m+1 ∈ {2, 3}. Then ı̇(C) = n and C has an independent [1, 2]-set S
such that v1 /∈ S and

(a) if n ≡ 1 (mod 4) then |S| = 5n+3
4 ,

(b) if n ≡ 3 (mod 4) then |S| = 5n+1
4 .

In both cases |S| ≤ 7
5 ı̇(C).

Proof. 1. At the least n vertices are needed to dominate C and the set
R = 2 1̂ . . . 2 1̂ is an independent dominating set with n elements, so
ı̇(C) = |R| = n.

(a) If n ≡ 0 (mod 4) then n = 4s (s ≥ 1), and EC consists of 2s
consecutive copies of the pair 21. The set S = 2 1̂ 2̂ 1̂ . . . 2 1̂ 2̂ 1̂

is an independent [1, 2]-set of C satisfying vn /∈ S. Each pair 2 1̂

has 2 vertices in S and each pair 2̂ 1̂ has 3 vertices in S, so |S| =
2s+ 3s = 5s = 5

4n. Moreover |S| = 5
4n ≤

7
5n = 7

5 ı̇(C).

(b) If n ≡ 2 (mod 4) then n = 4s + 2 (s ≥ 0), and in this case EC

consists of 2s + 1 consecutive copies of the pair 21. We construct
the independent [1, 2]-set S = 2 1̂ 2̂ 1̂ . . . 2̂ 1̂ 2 1̂, that satisfies
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vn /∈ S. Note that S has s+ 1 copies of 2 1̂ and s copies of 2̂ 1̂, so

|S| = 2(s+ 1) + 3s = 5s+ 2 = 5n−2
4 . In this case

|S| ≤ 7

5
ı̇(C) ⇐⇒ 5n− 2

4
≤ 7n

5
⇐⇒ 25n− 10 ≤ 28n

and the last inequality is true for any n ≥ 1.

2. Again, a dominating set of C must have at least n vertices and R =

2 1̂ . . . 2 1̂ vn is an independent dominating set with size n, so ı̇(C) =

|R| = n.

(a) If n ≡ 1 (mod 4) then n = 4s + 1 (s ≥ 1), and EC consists of
2s consecutive copies of pair 21 followed by vertex vn. The set

S = 2̂ 1̂ 2 1̂ . . . 2 1̂ 2̂ 1̂ 2̂ 1̂ vn is an independent [1, 2]-set such

that v1 /∈ S. Note that S contains s + 1 copies of 2̂ 1̂, s − 1 copies

of 2 1̂, and vn , so |S| = 3(s+ 1) + 2(s− 1) + 1 = 5s+ 2 = 5n+3
4 .

Moreover

|S| ≤ 7

5
ı̇(C)⇐⇒ 5n+ 3

4
≤ 7n

5
⇐⇒ 25n+ 15 ≤ 28n⇐⇒ 15 ≤ 3n

and the last inequality is true because, in this case, n ≥ 5.

(b) If n ≡ 3 (mod 4) then n = 4s + 3 (s ≥ 0), and EC consists of
2s + 1 consecutive copies of pair 21 followed by vertex vn. Then

S = 2̂ 1̂ 2 1̂ . . . 2 1̂ 2̂ 1̂ vn is an independent [1, 2]-set that satisfies

v1 /∈ S. Note that S contains s + 1 copies of 2̂ 1̂, s copies of 2 1̂,

and vn , so |S| = 3(s+ 1) + 2s+ 1 = 5s+ 4 = 5n+1
4 . Finally

|S| ≤ 7

5
ı̇(C) ⇐⇒ 5n+ 1

4
≤ 7n

5
⇐⇒ 25n+ 5 ≤ 28n ⇐⇒ 5 ≤ 3n

and the last inequality is true because in this case n ≥ 3.

In the following theorem we characterize caterpillars attaining the natural
lower bound, ı̇(C) = ı̇[1,2](C). They will also be useful to prove the upper
bound given in Equation 1.

Theorem 1. Let C be a caterpillar having an independent [1, 2]-set and such
that every vertex in EC is a support vertex. Then ı̇(C) = ı̇[1,2](C) if and only
if EC does not contain any of sequences 22, 212, 213, 312.
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Proof. Let C be a caterpillar and let EC = v1 . . . vn be its spine. Suppose
that ı̇(C) < ı̇[1,2](C), and let R be an independent dominating set of C with
minimum size. By Proposition 3, we may assume that every vertex in EC

with label 3 belongs to R and that R does not contain vertices labeled as 1.
By hypothesis R is not an independent [1, 2]-set, so there exists one vertex
u ∈ V (C)\R having at least three neighbors in R. Note that leaves belonging
to V (C) \ R have exactly one neighbor in R, so u = vi ∈ EC . Using that
vi /∈ R we know that vi 6= 3. If vi = 1 then it has exactly three neighbors
in C, vi−1, vi+1, `vi , so all of them belong to R, therefore vi−1, vi+1 ∈ {2, 3}.
Thus vi−1vivi+1 = 212 or vi−1vivi+1 = 213 or vi−1vivi+1 = 312 (note that 313
is not allowed).

If vi = 2 then vi ∈ V (C) \R implies `1vi , `
2
vi ∈ R. Using that vi has at least

three neighbors in R, we may assume without loss of generality that vi−1 ∈ R.
This means that vi−1 = 2, because 32 is not allowed, so vi−1vi = 22.

Conversely, assume that EC = v1 . . . vn (n ≥ 2) contains at least one of
the sequences 22, 212, 213, 312. We consider the following cases.

1. vi = 2, for every i ∈ {1, . . . , n}. Then, by Lemma 2, ı̇(C) ≤ 3n
2 and C has

a unique independent [1, 2]-set, that has 2n elements, so ı̇[1,2](C) = 2n.

Therefore ı̇(C) ≤ 3n
2 < 2n = ı̇[1,2](C).

2. EC contains the pair 22, but not every vertex in EC is labeled as 2. Then
EC must contain the sequence 221 or the sequence 122. Assume without
loss of generality that vivi+1vi+2 = 221. Let S be an independent [1, 2]-
set of C, with minimum size such that vi+2 /∈ S. Clearly leaves of both
vi, vi+1 must be in S and we define the set R =

(
S \ {`1vi+1

, `2vi+1
}
)
∪

{vi+1}, that is an independent dominating set of C such that |R| =
|S| − 1. Therefore ı̇(C) ≤ |R| < |S| = ı̇[1,2](C).

3. EC contains no sequence 22. Then, by hypothesis vivi+1vi+2 = 212 or
vivi+1vi+2 = 213 or vivi+1vi+2 = 312 are sequences of EC . Let S be an
independent [1, 2]-set C, with minimum size containing no vertices with
label 1 (and containing every vertex with label 3). Clearly at most one
vertex among vi, vi+2 belongs to S, so assume, without loss of generality
that vi = 2, vi /∈ S and `1vi , `

2
vi ∈ S. We define R =

(
S \{`1vi , `

2
vi}
)
∪{vi}.

If vi is not the first vertex of EC , then vi−1 = 1, because EC contains no
sequence 22, so vi−1 /∈ S. Therefore in that case, and also if i = 1, R is
an independent dominating set of C such that |R| = |S| − 1. Therefore
ı̇(C) ≤ |R| < |S| = ı̇[1,2](C).

This corollary is an immediate consequence of the above theorem.
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Corollary 1. Let C be a caterpillar having an independent [1, 2]-set and let
EG = v1 . . . vn be its spine. If vi ∈ {1, 3}, for every i ∈ {1, . . . , n}, then
ı̇(C) = ı̇[1,2](C).

Hereinafter we will use the following notation for caterpillars generated by
sequences of consecutive vertices of the spine of C.

Notation 2. Let C be a caterpillar and let F be a sequence of consecutive
vertices in EC . The caterpillar CF associated to F is the subgraph generated by
all vertices in F and all their leaves. Note that F is the spine of its associated
caterpillar.

This lemma shows that an appropriate partition of the spine of a caterpillar
is a key tool to compute its independent domination number.

Lemma 5. Let C be a caterpillar such that every vertex in EC is a support
vertex. Let F1 = v1 . . . vt1 , F2 = vt1+1 . . . vt2 , . . . , Fk = vtk−1+1 . . . vn a parti-
tion of EC into sequences of consecutive vertices such that vti = 1 or vti+1 = 1,
for each i ∈ {1, . . . , k − 1}. Then ı̇(C) = ı̇(CF1

) + ı̇(CF2
) + · · ·+ ı̇(CFk

).

Proof. Let S1, S2, . . . , Sk be minimum independent dominating sets of cater-
pillars CF1 ,CF2 , . . . , CFk

respectively. Clearly
⋃k

i=1 Si is a dominating set of
C. Consider an index i ∈ {1, . . . , k − 1}, if vti = 1 then, by Proposition 3,
we may assume that vti /∈ Si. If on the contrary vti 6= 1 then, by hypothe-

sis, vti+1 = 1 and vti+1 /∈ Si+1. Therefore
⋃k

i=1 Si is also independent and

ı̇(C) ≤ |
⋃k

i=1 Si| = |S1|+ |S2|+ · · ·+ |Sk| = ı̇(CF1
) + ı̇(CF2

) + · · ·+ ı̇(CFk
).

Conversely, let S be a minimum independent dominating set of C. By
hypothesis, every vertex in EC is a support vertex, so it is in S or its leaves
are in S. This means that Si = S ∩ V (CFi) is a dominating set of CFi and
clearly it is also independent. Therefore ı̇(CF1

) + ı̇(CF2
) + · · · + ı̇(CFk

) ≤
|S1|+ |S2|+ · · ·+ |Sk| = |S| = ı̇(C).

Let C be a caterpillar having an independent [1, 2]-set, such that every
vertex in the spine EC = v1 . . . vn is a support vertex and vn 6= 2. We define
the canonical partition of EC in the following way. First of all select all the
sequences, with length at least three, of consecutive vertices vi . . . vi+r such
that vj = 2 for every j ∈ {i, . . . , i + r − 1}, vi+r = 1 and the length is
maximal. We call them Type I sequences and, using that vn 6= 2, every pair
of consecutive vertices in EC labeled as 2, belongs to some Type I sequence.
Therefore, among the remaining vertices of the spine, every vertex with label
2 must be preceded and followed by vertices with label 1.

Among remaining vertices of the spine, now select the sequences of consec-
utive vertices, that we will call Type II, of even length at least four, consisting
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of an initial copy of 31 followed by consecutive copies of 21 and having maxi-
mal length. Type III sequences consist of consecutive copies of 21 followed by
a final 3, selected among vertices that do not belong to any Type I or Type II
sequence, and having maximal length.

Among remaining vertices, select the sequences of even length at least two,
consisting of consecutive copies of 21 and having maximal length. They are
Type IV and by construction a sequence of this type is not preceded by the
pair 31 nor followed by 3. Note that every vertex with label 2 belongs to some
sequence of types I, II, III or IV. Finally, select all the remaining maximal
sequences of consecutive vertices that will be Type V. Each Type V sequence
consists of vertices with labels 1 or 3.

We now provide an upper bound, slightly smaller than the one shown in
Equation 1, for the independent [1, 2]-number of caterpillars with last vertex
in the spine non labeled as 2. The general case will be deduced from this one.

Proposition 4. Let C be a caterpillar having an independent [1, 2]-set and
such that every vertex in EC = v1 . . . vn is a support vertex. If vn ∈ {1, 3},
then C has an independent [1, 2]-set S, not necessarily minimum, such that
|S| ≤ 7

5 ı̇(C). Moreover, if vn = 1 then vn /∈ S.

Proof. The result is trivially true if n = 1, that is, the spine consists of a
single vertex, so assume that n ≥ 2. Consider the canonical partition of EC

into k sequences of consecutive vertices F1 = v1 . . . vt1 , F2 = vt1+1 . . . vt2 , . . . ,
Fk = vtk−1+1 . . . vn. Let vti the final vertex of Fi for i ∈ {1, . . . , k − 1}. If
Fi is Type I, II or IV, then vti = 1 by construction. If Fi is Type III then
vti = 3 so vti+1 = 1. Finally if Fi is Type V then vti ∈ {1, 3} and Fi+1

must be type I, II, III or IV, by maximality of Fi. In any case vti+1 ∈ {2, 3}
so vti 6= 3 and therefore vti = 1. Using Lemma 5, we obtain that ı̇(C) =
ı̇(CF1) + ı̇(CF2) + · · ·+ ı̇(CFk

).
By hypothesis, C has an independent [1, 2]-set, so Proposition 2 provides

EC does not contain the sequences 33, 32, 23, 313. Clearly subsequences of
consecutive vertices of EC inherit this property and each CFi

has an indepen-
dent [1, 2]-set Si. For Type I sequences select Si according to Lemma 2. For
Type II sequences, take Si given by Lemma 3. For Type III and IV sequences,
Si is given by Lemma 4. Finally for Type V sequences, Corollary 1 gives the
appropriate Si. In all cases |Si| ≤ 7

5 ı̇(CFi
).

We now define S =
⋃n

i=1 Si. It is clear that S dominates C, so let us see
that it is also an independent set that dominates at most twice every vertex not
in it. To this end, for any pair of consecutive sequences Fi = vt . . . vt+r, Fi+1 =
vt+r+1 . . . vt+s, we need to ensure that edge vt+rvt+r+1 keeps independence
and [1, 2]-domination. We consider the following cases:
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1. Fi is Type I or Type II, then vt+r /∈ Si and it has just one neighbor in
Si.

2. Fi is Type III, then vt+r = 3 and vt+r+1 = 1. Therefore Fi+1 must be
Type V (the first vertex in the rest of types is not labeled as 1) and, if
Si+1 has at least two vertices, then vt+r+2 = 1, because sequence 313 is
not allowed. Therefore vt+r+1 /∈ Si+1 and it has a unique neighbor in
Si+1.

If Si+1 consists of the single vertex vt+r+1 then vt+r+1 /∈ Si+1 and it
has a unique neighbor in Si+1. In case i+ 1 < n, consider the sequence
Fi+2. It can not be of Type II because sequence 313 is not allowed. It
can not be of Type IV because, by construction, a Type IV sequence is
not preceded by the pair 31 and it is not of Type V by the maximality
of Fi. So Fi+1 is of Type I or III and its first vertex vt+r+2 does not
belong to Si+2. This means that vt+r+1 has no neighbors in Si+2 and
edge vt+rvt+r+1 keeps independence and [1, 2]-domination.

3. Fi is Type IV, then vt+r = 1 and vt+r /∈ Si. Note that vt+r+1 6= 3,
because a Type IV sequence can not be followed by 3. If vt+r+1 = 1 then
Ft+1 must be Type V, vt+r+1 /∈ Si+1. If on the contrary vt+r+1 = 2 then,
Fi+1 must be Type I by the maximality of Fi. Therefore vt+r+1 /∈ Si+1.

In all cases the edge vt+rvt+r+1 keeps independence and [1, 2]-domination. We
now analyze what happens if Fi is Type V. In this case vt+r ∈ {1, 3}, but if
vt+r = 3 then vt+r+1 = 1 and Ft+1 must be Type V, that contradicts the
maximality of Fi. Thus vt+r = 1 and vt+r /∈ Si.

1. Suppose that r ≥ 1, that is, Fi has at least two vertices. If vt+r−1 = 1
then vt+r−1 /∈ Si and vt+r has a unique neighbor in Si.

If on the contrary vt+r−1 = 3, then Fi+1 can not be of Type II because
sequence 313 is not allowed. Note also that Fi+1 can not be of Type IV
because it is preceded by the sequence 31. Therefore Fi+1 must be of
Type I or III and in both cases vt+r+1 /∈ Si+1.

2. Assume now that r = 0, that is, Fi consists of the single vertex vt = 1,
that does not belong to Si and that has a unique neighbor in Si.

If i ≥ 2 consider the previous sequence Fi−1 and its last vertex vt−1,
that has label different from 2, because no sequence of our types ends
with 2. If vt−1 = 1 then vt−1 /∈ Si−1 and edge vt−1vt does not increase
the number of neighbors of vt in S.

If vt−1 = 3 then Fi−1 is Type III. This means that Fi+1 is not of Type
II, because sequence 313 is not allowed. Note also that Fi+1 is not of
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Type IV, because it is preceded by 31. Therefore, if vt−1 = 3 then Fi+1

is of Type I or III and in both cases vt+1 /∈ Si+1.

In all cases the edge vi+rvi+r+1 keeps independence and [1, 2]-domination.
This means that S =

⋃n
j=1 Sj is an independent [1, 2]-set of C and

|S| = |S1|+ · · ·+ |Sk| ≤
7

5
ı̇(C1) + · · ·+ 7

5
ı̇(Ck) =

7

5
ı̇(C).

Finally, if the last vertex of the spine vn has label 1 then, vn is a vertex in
Fk that is of Type I, II, IV or V. In all cases vn /∈ Sk, so vn /∈ S.

4 Main results

Our main result, that proves inequality given in Equation 1, is shown now.
The proof uses all previous results and it consists of dividing the spine into
two sequences, such that the first one satisfies ı̇[1,2] ≤ 7

5 ı̇ and the second one

satisfies ı̇[1,2] ≤ 7
5 ı̇ + 2

5 . The proof also shows the cases where the addend 2
5

can not be avoided.

Theorem 2. Let C be a caterpillar having an independent [1, 2]-set and such
that every vertex in the spine EC = v1 . . . vn is a support vertex. Then
ı̇[1,2](C) ≤ 7

5 ı̇(C) + 2
5 .

Proof. By Proposition 4, we just need to consider the case vn = 2. First
suppose that vi = 2 for each i ∈ {1, . . . , n}, then by Lemma 2, ı̇[1,2](C) ≤
7
5 ı̇(C) + 2

5 .
Now assume that there exists a vertex in the spine labeled as 1 and denote

by t the greatest index such that vt = 1. If n = 2 then EC = 12, ı̇[1,2](C) =
ı̇(C) = 2, so we may assume that n ≥ 3. We consider the following cases:

1. t ≤ n − 2: define F1 = v1 . . . vt and F2 = vt+1 . . . vn. By Proposition 4,
CF1

has an independent [1, 2]-set S1 satisfying |S1| ≤ 7
5 ı̇(CF1

) and such
that vt /∈ S1. On the other hand, by Lemma 2, CF2

has a unique
independent [1, 2]-set S2, that satisfies |S2| ≤ 7

5 ı̇(CF2)+ 2
5 and vt+1 /∈ S2.

Thus S = S1 ∪ S2 is an independent [1, 2]-set of C, not necessarily
minimum and, using Lemma 5

ı̇[1,2](C) ≤ |S| = |S1|+ |S2| ≤
7

5
ı̇(CF1

) +
7

5
ı̇(CF2

) +
2

5
=

7

5
ı̇(C) +

2

5
.

2. t = n − 1 and vn−2 = 1: define F1 = v1 . . . vn−1 and F2 = vn. Again
by Proposition 4, CF1 has an independent [1, 2]-set S1 satisfying |S1| ≤
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7
5 ı̇(CF1), vn−2, vn−1 /∈ S1 and vn−1 has a unique neighbor in S1. Then
S = S1∪{vn} is an independent [1, 2]-set of C, not necessarily minimum.
Note that ı̇(CF2

) = 1 and

ı̇[1,2](C) ≤ |S| = |S1|+ 1 ≤ 7

5
ı̇(CF1) + 1 ≤ 7

5
ı̇(CF1) +

7

5
ı̇(CF2) =

7

5
ı̇(C).

3. t = n − 1 and vn−2 = 2: if n = 3 then EC = 212, ı̇[1,2](C) = 4, with

S = 2̂ 1̂ 2 a minimum independent [1, 2]-set, and ı̇(C) = 3, satisfying

ı̇[1,2](C) ≤ 7
5 ı̇(C).

If n ≥ 4 and vi = 2 for 1 ≤ i ≤ n − 2 then define F1 = v1 . . . vn−1
and F2 = vn. Lemma 2 ensures that CF1 has an independent [1, 2]-set
S1 such that |S| ≤ 7

5 ı̇(C1), v1 /∈ S1, vn−1 /∈ S1 and vn−1 has a unique
neighbor in S1. Then S = S1 ∪ {vn} is an independent [1, 2]-set of C,
not necessarily minimum and

ı̇[1,2](C) ≤ |S| = |S1|+ 1 ≤ 7

5
ı̇(CF1

) + 1 ≤ 7

5
ı̇(CF1

) +
7

5
ı̇(CF2

) =
7

5
ı̇(C).

If on the contrary there exists a vertex vr 6= vn−1 with label 1, de-
fine F1 = v1 . . . vs and F2 = vs+1 . . . vn−2vn−1vn such that vs = 1 and
vs+1, . . . , vn−2 = 2. Then by Proposition 4, CF1

has an independent
[1, 2]-set S1 satisfying |S1| ≤ 7

5 ı̇(CF1
) and by the case described in the

preceding paragraph, CF2
has an independent [1, 2]-set S2 satisfying

|S2| ≤ 7
5 ı̇(CF2) and vs+1 /∈ S2. Then S = S1 ∪ S2 is an independent

[1, 2]-set of C, not necessarily minimum that satisfies

ı̇[1,2](C) ≤ |S| = |S1|+ |S2| ≤
7

5
ı̇(CF1) +

7

5
ı̇(CF2) =

7

5
ı̇(C).

4. t = n − 1 and vn−2 = 3: if n = 3 then EC = 312, ı̇[1,2](C) = 4 and

ı̇(C) = 3, satisfying ı̇[1,2](C) ≤ 7
5 ı̇(C).

If n ≥ 4, using that C has an independent [1, 2]-set, we obtain that
vn−3 = 1.
If n = 4 then EC = 1312, ı̇[1,2](C) = 5 and ı̇(C) = 4, satisfying

ı̇[1,2](C) ≤ 7
5 ı̇(C).

If n ≥ 5, again using Proposition 2, vn−3vn−2 = 13 implies vn−4 6= 3.
In case that vn−4 = 1, let F1 = v1 . . . vn−3 and F2 = vn−2vn−1vn = 312
and, as in the preceding cases, Proposition 4 ensures that CF1

has an
independent [1, 2]-set S1 satisfying |S1| ≤ 7

5 ı̇(CF1
), vn−3, vn−4 /∈ S1 and

vn−3 has a unique neighbor in S1. Then S = S1 ∪ {vn−2, `vn−1 , `
1
vn
, `2vn}

is an independent [1, 2]-set of C, not necessarily minimum. Clearly
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ı̇(CF2) = 3 and using Lemma 5

ı̇[1,2](C) ≤ |S| = |S1|+ 4 ≤ 7

5
ı̇(CF1) + 4 =

7

5
ı̇(CF1) +

4

3
ı̇(CF2) ≤ 7

5
ı̇(C).

If on the contrary vn−4 = 2, assume firstly that n = 5, then EC = 21312,
ı̇[1,2](C) = 7 and ı̇(C) = 5, satisfying ı̇[1,2](C) ≤ 7

5 ı̇(C).
If n ≥ 6 and vn−5 = 2, let F1 = v1 . . . vn−3 and F2 = vn−2vn−1vn = 312.
Then CF1

has an independent [1, 2]-set S1 satisfying |S1| ≤ 7
5 ı̇(CF1

),
vn−3 /∈ S1 and it has a unique neighbor in S1, (note that vn−5vn−4 = 22,
so vn−4 /∈ S1). Then S = S1 ∪ {vn−2, `vn−1

, `1vn , `
2
vn} is an independent

[1, 2]-set of C, not necessarily minimum. Using that ı̇(CF2) = 3, we
obtain

ı̇[1,2](C) ≤ |S| = |S1|+ 4 ≤ 7

5
ı̇(CF1

) + 4 =
7

5
ı̇(CF1

) +
4

3
ı̇(CF2

) ≤ 7

5
ı̇(C).

If vn−5 = 1, let F1 = v1 . . . vn−5 and F2 = vn−4vn−3vn−2vn−1vn =
21312. Then CF1

has an independent [1, 2]-set S1 with |S1| ≤ 7
5 ı̇(CF1

),
vn−5 /∈ S1. Then S = S1 ∪ {`1vn−4

, `2vn−4
, `vn−3

, vn−2, `vn−1
, `1vn , `

2
vn} is

an independent [1, 2]-set of C, not necessarily minimum. Using that
ı̇(CF2) = 5, we obtain

ı̇[1,2](C) ≤ |S| = |S1|+ 7 ≤ 7

5
ı̇(CF1) + 7 =

7

5
ı̇(CF1) +

7

5
ı̇(CF2) ≤ 7

5
ı̇(C).

Our final result is a realization-type theorem showing that every pair of
suitable values for both parameters, according to lower and upper bounds,
is realizable, except one particular case. In addition we will obtain that the
difference ı̇[1,2] − ı̇ can attain any nonnegative integer value.

Theorem 3. Given two integers a, b such that 1 ≤ a ≤ b ≤ 7
5a + 2

5 , there
exists a caterpillar C such that ı̇(C) = a and ı̇[1,2](C) = b, except for the case
a = 2, b = 3.

Proof. If a = 1 then b = 1 and C = P2, the path with two vertices, satisfies
ı̇(C) = ı̇[1,2](C) = 1. If a = 2, then the caterpillar D with spine ED = 11
satisfies ı̇(D) = ı̇[1,2](D) = 2. Moreover, let C be any caterpillar with ı̇(C) = 2,
then an independent dominating set with size two is trivially a [1, 2]-set, so
ı̇(C) = ı̇[1,2](C) = 2 and the case a = 2, b = 3 is not realizable. For the rest of
the proof we may assume that a ≥ 3.

Denote by Ci, 1 ≤ i ≤ 7, the caterpillars with spines EC1 = 2221,
EC2 = 2211, EC3 = 11111, EC4 = 22, EC5 = 222, EC6 = 22222, EC7 = 221
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respectively. It is clear that ı̇(Ci) = 5 for 1 ≤ i ≤ 3 and examples of minimum
independent dominating sets for each of then are R1 = 2 2̂ 2 1̂, R2 = 2 2̂ 1̂ 1̂,

R3 = 1̂ 1̂ 1̂ 1̂ 1̂. Note also that ı̇(C4) = 3 with R4 = 2̂ 2 a minimum indepen-

dent dominating set, ı̇(C5) = 4 with R5 = 2 2̂ 2 a minimum independent

dominating set, ı̇(C6) = 7 with R6 = 2 2̂ 2 2̂ 2 a independent dominating

set and ı̇(C7) = 4 with R7 = 2 2̂ 1̂ a minimum independent dominating set.
Regarding the independent [1, 2]-number, if i ∈ {1, 2, 4, 5, 6, 7} then leaves

of vertices with label 2 belong to every independent [1, 2]-set and ı̇[1,2](C1) = 7,
ı̇[1,2](C2) = ı̇[1,2](C5) = 6, ı̇[1,2](C4) = 4, ı̇[1,2](C6) = 10 and ı̇[1,2](C7) = 5.

Minimum independent [1, 2]-sets for each of them are S1 = 2̂ 2̂ 2̂ 1̂, S2 = 2̂ 2̂ 1̂ 1̂,
S4 = 2̂ 2̂, S5 = 2̂ 2̂ 2̂, S6 = 2̂ 2̂ 2̂ 2̂ 2̂ and S7 = 2̂ 2̂ 1̂. Clearly ı̇[1,2](C3) = 5 and

S3 = 1̂ 1̂ 1̂ 1̂ 1̂ is a minimum independent [1, 2]-set.
Let C be a caterpillar with EC = H1H2 . . . Hk and Hi equal to some of

the sequences 2221, 2211 or 11111 for i ∈ {1, . . . , k− 1} and Hk equal to 2221,
2211, 11111, 22, 222, 22222, 221 or r vertices with label 1 (r ≥ 1). Then
Lemma 5 gives

ı̇(C) = ı̇(CH1
) + ı̇(CH2

) + · · ·+ ı̇(CHk
).

On the other hand, note that vertices with label 2 in EC always have a neighbor
in EC also labeled as 2, so every independent [1, 2]-set contains all the leaves
of vertices with label 2. This means that

ı̇[1,2](C) =2× (number of vertices with label 2)+

+ (number of vertices with label 1) =

=ı̇[1,2](CH1) + ı̇[1,2](CH2) + · · ·+ ı̇[1,2](CHk
)

All the caterpillars that we show as examples follow this construction and
we will use the formulas above to compute both ı̇ and ı̇[1,2].

Let a, b be integers such that 3 ≤ a ≤ b ≤ 7
5a+ 2

5 . Let k be an integer such
that a = 5k+ r with r = 0, 1, 2, 3, 4. Then the relationship between a and b is

a = 5k + r ≤ b ≤ b 7(5k+r)
5 + 2

5c = 7k + r + b 2r+2
5 c.

For cases a = 5k + r ≤ b ≤ 6k + r, let d = b − (5k + r), that satisfies
0 ≤ d ≤ k. The caterpillar C, such that EC consists of k − d consecutive
copies of EC3

= 11111 followed by d consecutive copies of EC2
= 2211 and r

vertices with label 1, satisfies

ı̇(C) = 5(k − d) + 5d+ r = 5k + r = a

ı̇[1,2](C) = 5(k − d) + 6d+ r = 5k + d+ r = b.

We now show models for cases 6k + r + 1 ≤ b ≤ 7k + r + b 2r+2
5 c.
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1. If r = 0 or r = 1 then k ≥ 1 and b 2r+2
5 c = 0, so suppose 6k+r+1 ≤ b ≤

7k + r. Let d = 7k + r − b, that satisfies 0 ≤ d ≤ k − 1. The caterpillar
C, such that EC consists of k − d consecutive copies of EC1

= 2221
followed by d consecutive copies of EC2

= 2211 and r vertices with label
1, satisfies

ı̇(C) = 5(k − d) + 5d+ r = 5k + r = a

ı̇[1,2](C) = 7(k − d) + 6d+ r = 7k − d+ r = b.

2. If r = 2 then k ≥ 1 and b 2r+2
5 c = 1. If b = 6k+ 3 then the caterpillar C,

such that EC consists of k − 1 copies of EC2 = 2211 followed by a copy
of EC1

= 2221 and two vertices with label 1, satisfies

ı̇(C) = 5(k − 1) + 5 + 2 = 5k + 2 = a

ı̇[1,2](C) = 6(k − 1) + 7 + 2 = 6k + 3 = b.

Assume now that 6k+4 ≤ b ≤ 7k+3 and let d = 7k+3−b, that satisfies
0 ≤ d ≤ k − 1. The caterpillar C, such that EC consists of k − 1 − d
consecutive copies of EC1 = 2221 followed by d consecutive copies of
EC2

= 2211 and one copy of EC6
= 22222, satisfies

ı̇(C) = 5(k − 1− d) + 5d+ 7 = 5k + 2 = a

ı̇[1,2](C) = 7(k − 1− d) + 6d+ 10 = 7k − d+ 3 = b.

3. If r = 3, then b 2r+2
5 c = 1, so assume that 6k + 4 ≤ b ≤ 7k + 4 let

d = 7k + 4 − b, that satisfies 0 ≤ d ≤ k. The caterpillar C, such that
EC consists of k − d consecutive copies of EC1

= 2221 followed by d
consecutive copies of EC2

= 2211 and one copy of EC4
= 22, satisfies

ı̇(C) = 5(k − d) + 5d+ 3 = 5k + 3 = a

ı̇[1,2](C) = 7(k − d) + 6d+ 4 = 7k − d+ 4 = b.

4. If r = 4, then b 2r+2
5 c = 2. If b = 6k + 5 then the caterpillar C, such

that EC consists of k copies of EC2
= 2211 followed by one copy of

EC7
= 221, satisfies

ı̇(C) = 5k + 4 = a

ı̇[1,2](C) = 6k + 5 = b.
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Assume now that 6k+6 ≤ b ≤ 7k+6 and let d = 7k+6−b, that satisfies
0 ≤ d ≤ k. The caterpillar C such that EC consists on k−d consecutive
copies of EC1

= 2221 followed by d consecutive copies of EC2
= 2211

and one copy of EC5
= 222 satisfies

ı̇(C) = 5(k − d) + 5d+ 4 = 5k + 4 = a

ı̇[1,2](C) = 7(k − d) + 6d+ 6 = 7k − d+ 6 = b.

Remark 1. Note that 7
5 ı̇(C) + 2

5 is an integer if and only if ı̇(C) ≡ 4(mod 5),
so the upper bound provided by Equation 1 is just reached in this case. The
caterpillar C with spine consisting of k consecutive copies of sequence 2221
(k ≥ 0) followed by one copy of sequence 222 satisfies ı̇(C) = 5k + 4 and
ı̇[1,2](C) = 7k + 6, so ı̇[1,2](C) = 7

5 ı̇(C) + 2
5 .

Corollary 2. For any integer m ≥ 0 there exists a caterpillar C such that
ı̇[1,2](C)− ı̇(C) = m.

Proof. Take an integer a ≥ 3 such that m ≤ 2
5 (a + 1), then a ≤ a + m ≤

a + 2
5 (a + 1) = 7

5a + 2
5 and by Theorem 3, there exists a caterpillar C such

that ı̇(C) = a and ı̇[1,2](C) = a+m, therefore ı̇[1,2](C)− ı̇(C) = m.

Acknowledgement

Authors are partially supported by Phoenix Project (Erasmus Mundus Pro-
gramme), MTM2015-63791-R, MTM2014-60127-P (Ministerio de Economı́a y
Competitividad), DGR2014SGR46 (Generalitat de Catalunya) and FQM305
(Junta de Andalućıa).
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