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On some special Legendre sums of the form
p−1∑
x=1

(
f(x)

p

)
g(x)

Dorin Andrica and Vlad Crişan

Abstract

We prove that sums of the form S =

p−1∑
x=0

(
g(x)

p

)
f(x) with f(X),

g(X) ∈ Z[X] can be explicitly computed whenever f and g are subject
to some certain conditions which are defined in the paper.

1 Introduction

Problem 11728 published in The American Mathematical Monthly, October
2013 asks to prove the identity

p∑
k=1

bk
2 + k

p
c =

2p2 + 3p + 7

6
.

where bxc is the floor of x and p is a prime of the form 8n−1. In The American
Mathematical Monthly, October 2015, O.P.Lossers gives a direct proof to this
identity. It has been noted on several forums and also in [3] that the problem
is equivalent to proving the identity

Key Words: Legendre sums, Elementary Number Theory, computable.
2010 Mathematics Subject Classification: Primary 11A07, 11A15; Secondary 11C08,

11C20.
Received: 11.01.2017
Accepted: 31.01.2017

37



ON SOME SPECIAL LEGENDRE SUMS OF THE FORM

p−1∑
x=1

(
f(x)

p

)
g(x) 38

p−1∑
j=1

(
4j + 1

p

)
j = 0,

where (a
p ) is the Legendre symbol (see [1] for definition and basic properties).

The work is then further generalized in [3], showing how one can explicitly
compute sums of the form

S =

p−1∑
x=1

(
ax + b

p

)
x.

In this article we generalise this to showing that sums of the form S =
p−1∑
x=0

(
g(x)

p

)
f(x) with f(X), g(X) ∈ Z[X] can be explicitly computed when-

ever f and g are subject to some certain conditions, which are explicitly stated
in Definition 1, Definition 2 and Definition 3 in the next section. The main
result of this paper is Theorem 1.

2 Main results

Definition 1. Let p be a prime number, n ≥ 0 a non-negative integer and
let fn(X) = a2n+1X

2n+1 + a2nX
2n + . . . + a1X + a0 ∈ Z[X] be a polynomial

of degree 2n + 1. We say that fn is good for p if there exists a sequence
of integers 0 = n0 < n1 < . . . < nk = 2n + 1 (here k ≥ 1) and polynomials
fn0

, fn1
, . . . , fnk

∈ Z[X] with deg(fk) = nk such that fnj
(p −X) + fnj

(X) =
fnj−1

(X) for all 1 ≤ j ≤ k.

Notice that in particular all linear polynomials are good for p. We will
prove that for each n ≥ 0, there exist infinitely many polynomials of degree
2n + 1 which are good for p. Before we do this, we prove the following result,
which shows that if a polynomial good for p of degree 2n+ 1 exists, it satisfies
a very rigid property.

Lemma 1. If fn(X) is a good polynomial for p of degree 2n+1, then fn(X)+
fn(p − X) is a constant polynomial. In particular, k is always equal to 1 in
the above definition.

Proof. We shall prove the result by induction on n ≥ 0. When n = 0, things
are clear, since f0(X) is then a linear polynomial, hence f0(X) + f0(p − X)
must be a a constant polynomial.

Assume now that the result holds for all polynomials of degree at most 2n−
1 (n ≥ 1) and consider a polynomial fn(X) of degree 2n+1 which is good for p.
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Since fn(X) is good for p, by definition it must be that h(X) = fn(X)+fn(p−
X) is either a constant polynomial, or h(X) is a polynomial which is also good
for p. If the former holds, we are done. Otherwise, we deduce that h(X) must
be a polynomial of odd degree, as otherwise deg(h(X)+h(p−X)) = deg(h(X))
whenever h(X) is a polynomial of even degree, contradicting the fact that h(X)
is good for p. As deg(h) < deg(f), it follows that deg(h(X)) ≤ 2n − 1. But
now by the induction hypothesis one has that h(X) + h(p−X) is a constant
polynomial. As h(X) + h(p− x) = 2(f(X) + f(p−X)), we obtain the desired
result.

We now prove that for each n ≥ 0, there exist infinitely many polynomials
of degree 2n + 1 which are good for p, and also give an explicit description of
the degrees of freedom we have in choosing such polynomials.

Lemma 2. For each n ≥ 0, there exist infinitely many polynomials of degree
2n + 1 which are good for p. Moreover, certain n + 2 out of the 2n + 2
coefficients a0, a1, . . ., a2n+1 can be chosen up to some divisibility conditions
as free variables.

Proof. By Lemma 1, it suffices to prove the result when fn(X) = a0 + a1X +
. . . + a2n+1X

2n+1 ∈ Z[X] satisfies fn(X) + fn(p−X) = c, for some c ∈ Z. It
can be easily seen by identifying the coefficients of Xk for k = 1, 2, . . . , 2n+ 1,
that the problem reduces to studying the linear system

A


a0
a1
a2
...

a2n+1

 =


c
0
0
...
0

 ,

where the matrix A ∈M2n+2(Z) has its rows and columns indexed from 0 to
2n + 1 (to ease the other notations) and is given by

Ajk =


(−1)j

(
k

j

)
pk−j if k > j;

1 + (−1)j if j = k;

0 if j > k,

(*)

for all 0 ≤ j, k ≤ 2n + 1.

We first note that the system is compatible, since none of the operations
which are required for bringing A in row-reduced form involves the first row,
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hence the extended matrix obtained by adjoining


c
0
0
...
0

 to A leaves the rank

of A unchanged. Therefore, the system is compatible and a good polynomial
exists for every n ≥ 0.

We now claim that the rank of A is equal to n + 1. It is easy to see that
this is a lower bound for the rank, since A is upper triangular and it has n+ 1
non-zero entries on the main diagonal. To prove that equality is attained, we
will use induction on n:

The result is clear for n = 0. Assume now that the result holds for n − 1
(n ≥ 1) and let B denote the matrix which is obtained in this case by the above
procedure. To prove the induction step, we consider the (2n + 2) × (2n + 2)
matrix A as above. Notice that by deleting the last two rows and the last
two columns of A, we obtain the matrix B. Moreover, we have

A2n−1,2n

A2n,2n
=

A2n−1,2n+1

A2n,2n+1
= −np (recall that the rows and columns are labeled from 0 to

2n+1), so by performing the operation R2n → R2n ·np+R2n−1, we obtain the
last two rows in the matrix A equal to 0. Hence rank(A) ≤ rank(B)+1 = n+1
and since rank(A) ≥ n+1 by the above observation, we obtain rank(A) = n+1,
as we wanted. Since up to some divisibility conditions, the integer c from (*)
can be chosen itself to be a free variable, we obtain a total of n+ 2 degrees of
freedom in choosing the coefficients a0, a1, . . ., a2n+1, as we claimed.

Remark 1. In view of the above result, we have the following examples for
good polynomials of degree n for n = 0, 1, 2: f0 = v1X+v2, f1(X) = −2v1X

3+
3pv1X

2 + v2X + v3 and f2(X) = −2v1X
5 + 5pv1X

4 + 2pv2X
3 − (5p3v1 +

3pv2)X2 + v3X + v4, where v1, v2, . . . are arbitrary integers. The general form
can be explicitly determined for every n from the above result, but it is not the
purpose of this article to do that.

We shall now consider sums of the form S =

p−1∑
x=1

(
g(x)

p

)
f(x) when f(X) ∈

Z[X] is a polynomial good for p and g(X) ∈ Z[X] satisfies some required
properties. This will generalize the results discussed in [3] to higher order
sums. We introduce the following definitions:

Definition 2. We call a polynomial g(X) ∈ Z[X] nice for p if the sum
p−1∑
x=0

(
g(x)

p

)
can be explicitly computed.
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Notice that every constant polynomial is nice and every linear polynomial
is also nice, since for p - a (p | a reduces the problem to a constant poly-
nomial) one has that {ax + b : x ∈ (Z/pZ)∗} is a complete set of residues

modulo p, hence

p−1∑
x=0

(
ax + b

p

)
= 0. Moreover, using Euler’s criterion and

other elementary manipulations one can easily show that

p−1∑
j=0

(
aj2 + bj + c

p

)
=

−
(

a
p

)
if p - b2 − 4ac

(p− 1)
(

a
p

)
if p | b2 − 4ac.

In particular, this shows that every polynomial of degree at most 2 is
nice for p. Furthermore, using the multiplicativity of the Legendre symbol,
we deduce immediately that we can generate another family of polynomials
which are nice for p, namely those of the form g(X) = h(X)2 · s(X), where
h(X), s(X) ∈ Z[X] and deg(s(X)) ≤ 2.

Things become significantly more involved when one has general sums of
the form

S =

p−1∑
x=0

(
g(x)

p

)
,

for g(X) ∈ Z[X] a polynomial of degree at least 3. Explicit computation of
such sums seems out of reach and one is content to find bounds for this kind of
expressions. First good bounds were obtained by Weil in [6] and more recent
improvements can be found in [2] and [5].

Definition 3. A sum S =

p−1∑
x=1

(
g(x)

p

)
f(x) is called friendly if f(X) ∈ Z[X]

is a polynomial which is good for p and g(X) ∈ Z[X] is a polynomial which is
nice for p and one of the following situations holds:

a) g(X) is linear and then also f(X) is linear;

b) deg(g(X)) is even and g(X) − g(p − X) is the zero polynomial when
reduced modulo p;

c) deg(g(X)) is odd and then p ≡ 1 (mod 4) and g(X) + g(p − X) is the
zero polynomial when reduced modulo p.

Notice that friendly sums include in particular all sums of the form S =
p−1∑
x=1

(
g(x)

p

)
f(x) where both f and g are linear polynomials.
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The main result of this paper, which generalizes the work covered in [3], is
the following:

Theorem 1. If the sum S =

p−1∑
x=1

(
g(x)

p

)
f(x) is friendly, then S can be

computed explicitly.

Proof. The situation when S is of the form

S =

p−1∑
x=1

(
ax + b

p

)
x

for p - a and gcd(a, b) = 1 was treated in [3], Theorem 1. This easily extends
to the cases gcd(a, b) > 1 by the multiplicativity of the Legendre symbol and

also to any expression of the form S =

p−1∑
x=1

(
ax + b

p

)
(cx + d) by writing

S = c

p−1∑
x=1

(
ax + b

p

)
x + d

p−1∑
x=1

(
ax + b

p

)

and using the property that

p−1∑
x=0

(
ax + b

p

)
= 0, which we mentioned above.

When deg(g(X)) is even and g(X) ≡ g(p − X) (mod p), we proceed as
follows:

S =

p−1∑
x=1

(
g(x)

p

)
f(x)

=

p−1∑
x=1

(
g(p− x)

p

)
f(x− p)

=

p−1∑
x=1

(
g(x)

p

)
(c− f(x)),

where the last equality follows from the fact that f(x) is good for p, hence by
Lemma 1 there must be some constant c ∈ Z[X] such that f(X)+f(p−X) = c.

It follows that

2S = c

p−1∑
x=1

(
g(x)

p

)
,
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and since g(X) is a nice polynomial, the term in the right-hand side can be
explicitly computed.

Finally, if deg(g(X)) is odd, p ≡ 1 (mod 4) and g(X) ≡ −g(p − X)
(mod p), we have

S =

p−1∑
x=1

(
g(x)

p

)
f(x)

=

p−1∑
x=1

(
g(p− x)

p

)
f(x− p)

=

p−1∑
x=1

(
−g(x)

p

)
(c− f(x))

=

p−1∑
x=1

(
g(x)

p

)
(c− f(x)),

where for the last equality we have used the fact that
(

−1
p

)
= 1, for p ≡ 1

(mod 4). Hence, as above, we obtain that

2S = c

p−1∑
x=1

(
g(x)

p

)
,

which can be explicitly computed.
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