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On logarithmic residue of monogenic functions
in a three-dimensional commutative algebra

with one-dimensional radical

R. Pukhtaievych and S. Plaksa

Abstract

We consider monogenic functions taking values in a three-dimensional
commutative algebra A2 over the field of complex numbers with one-
dimensional radical. We calculate the logarithmic residues of monogenic
functions acting from a three-dimensional real subspace of A2 into A2.
It is shown that the logarithmic residue depends not only on zeros and
singular points of a function but also on points at which the function
takes values in ideals of A2, and, in general case, is a hypercomplex
number.

1 Introduction.

The logarithmic residue in a Banach algebra means a contour integral of the
logarithmic derivative of a hypercomplex function. It was considered by many
authors in many algebras, for instance, an algebra of all bounded linear opera-
tors on a complex Banach space (see, e.g., [1, 2, 3]), matrix algebras (see, e.g.,
[4]), a biharmonic algebra (see, e.g., [5]), a three-dimensional algebra with two-
dimensional radical (see, e.g., [6]). We first mention Bart [7]. He considered
the logarithmic residue for functions acting from the field of complex numbers
C to a commutative Banach algebra. One of the main issue considered in [7]
(see also [2], [3]) is whether vanishing of a logarithmic residue implies that
a function takes only invertible values inside an integration contour, where
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contours are considered on the complex plain. We note that the answer is
negative in general case.

We also mention Bart, Ehrhardt and Silbermann [8] which considered the
logarithmic residues of locally analytic and meromorphic functions f given
in bounded Cauchy domains in the complex plane and taking values in a
Banach algebra A with a unit element over C. For definitions of mentioned
functions and domains, we refer, e.g., to Taylor [9, sec. V.1.]. For instance,
if f : C → A is an analytic or meromorphic function in a bounded Cauchy
domain in C then the logarithmic residue of f is equal to a linear combination
of idempotents of A with integer coefficients (see [8, Thm. 6.1, Thm. 7.1]).
For the residues in multidimensional complex analysis and their applications
we refer to [10, 11, 12].

The logarithmic residues of monogenic functions (i.e., continuous and
Gateaux differentiable) were considered in [5] and [6]. For instance, there was
calculated the logarithmic residue of monogenic function and it was shown
that it is always an integer number. In general case, it can be a hypercomplex
number.

This paper is concerned with the logarithmic residues of monogenic func-
tions taking values in a three-dimensional commutative associative Banach
algebra A2 over C with one-dimensional radical. We calculate the logarith-
mic residues of monogenic functions which act from a three-dimensional real
subspace of A2 into A2.

Now, we briefly outline an organizing of the article. In section 2, we intro-
duce some standard notations. In section 3, we consider some properties of
Laurent series of monogenic functions in A2. Section 4 is devoted to the loga-
rithmic residues. In this section, we exploit the Laurent series to calculate the
logarithmic residue of monogenic function (see Lemma 4.5). Using this result,
we establish the validity of Theorem 4.7 and Theorem 4.8 for a curvilinear
integral of the logarithmic derivative of a monogenic function along a family
of curves. At the end of this article, we have enclosed Appendix A with some
results exploited in the paper.

We also note, the strategy applied in section 4 can be applied to compute
the logarithmic residue of monogenic functions taking values in an arbitrary
finite-dimensional commutative algebra.

2 Preliminaries and notations

Throughout this paper R and C denote the fields of real and complex numbers,
respectively.

Let A2 be a three-dimensional commutative associative Banach algebra
over C with one-dimensional radical. This algebra has a basis {I1, I2, ρ} with
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the following multiplication rules for its elements

I1
2 = I1, I2

2 = I2, I2ρ = ρ, I1I2 = ρ2 = I1ρ = 0.

The unit of A2 is represented as 1 = I1 + I2.
There are two maximal ideals in A2:

I1 := {t1I2 + t2ρ : t1, t2 ∈ C}, I2 := {t1I1 + t2ρ : t1, t2 ∈ C}.

Both ideals together include all noninvertible elements of the algebra A2 and
consist of such elements only. The radical of algebra is the set R = I1 ∩ I2.

Let c = c1I1 +c2I2 +c3ρ, where c1, c2, c3 ∈ C. The element c is invertible if
and only if c1 6= 0 and c2 6= 0, moreover, the inverse element c−1 is represented
as

c−1 =
1

c1
I1 +

1

c2
I2 −

c3
c22
ρ.

The logarithm is defined in [13, p. 422] and takes the following form in the
basis {I1, I2, ρ}

ln c := (ln c1)I1 + (ln c2)I2 +
c3
c2
ρ, (1)

where ln c1, ln c2 are principal branches of appropriate logarithmic functions.
We consider the linear continuous functionals f1, f2 : A2 → C satisfying

the equalities

f1(I1) = f2(I2) = 1, f1(I2) = f1(ρ) = f2(I1) = f2(ρ) = 0.

The maximal ideals I1, I2 are kernels of functionals f1, f2, respectively. For
an arbitrary set X in A2, we find it convenient to set

D1(X) := {ξ ∈ C : ξ = f1(a) ∀a ∈ X},

D2(X) := {ξ ∈ C : ξ = f2(a) ∀a ∈ X}.

Let e1, e2, e3 be vectors which are linear independent over R and have the
following form

e1 = 1, e2 = p 1I1 + p 2I2 + p 3ρ, e3 = q 1I1 + q 2I2 + q 3ρ,

where pk, qk ∈ C for all k ∈ {1, 2, 3}.
The norm in A2 is defined for all a := a1e1 + a2e2 + a3e3 ∈ A2, where

a1, a2, a3 ∈ C, in the following way

‖a‖ :=
√
|a1|2 + |a2|2 + |a3|2.
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Let E3 be a linear span over R, which is generated by the vectors of basis
{e1 = 1, e2, e3} and defined by

E3 := {ζ = xe1 + ye2 + ze3 : x, y, z ∈ R}

such that Dk(E3) = C for all k ∈ {1, 2}. Obviously, it holds if and only if at
least one of the numbers pk or qk belongs to C \ R for all k ∈ {1, 2}.

In what follows, x, y, z ∈ R and x0, y0, z0 ∈ R. Let ζ := xe1 + ye2 + ze3

and ζ0 := x0e1 + y0e2 + z0e3. We set

ξ1 := x+ p 1y + q 1z, ξ10 := x0 + p 1y0 + q 1z0,

ξ2 := x+ p 2y + q 2z, ξ20 := x0 + p 2y0 + q 2z0,

e∗1 := (Re p 1Im q 1 − Im p 1Re q 1)e1 − Im q 1e2 + Im p 1e3,

e∗2 := (Re p 2Im q 2 − Im p 2Re q 2)e1 − Im q 2e2 + Im p 2e3,

L1(ζ) := {ζ + te∗1 : t ∈ R}, L2(ζ) := {ζ + te∗2 : t ∈ R}.

We say that a domain Ω is convex in the direction L1 (or L2) if a set
Ω ∩ L1(ζ) (or Ω ∩ L2(ζ)) is connected for all ζ ∈ Ω.

For two arbitrary vectors a, b ∈ E3 defined as a = a1e1 + a2e2 + a3e3,
b = b1e1 + b2e2 + b3e3, we denote

a× b := (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3.

We find it convenient to set

ê1 :=

{
e∗1 × e1 if e∗1 = e∗2,
e∗1 × e∗2 if e∗1 6= e∗2,

ê2 :=

{
e∗1 × (e∗1 × e1) if e∗1 = e∗2,
e∗1
‖e∗1‖

+
e∗2
‖e∗2‖

if e∗1 6= e∗2,

Π(ζ) := {ζ + t1ê1 + t2ê2 : t1, t2 ∈ R}.

Let Ω be a domain in E3. We say that a continuous function Φ : Ω→ A2

is monogenic in Ω if Φ is differentiable in the sense of Gateaux in every point
of Ω, i.e., if for every ζ ∈ Ω there exists an element Φ′(ζ) ∈ A2 such that

lim
ε→0+0

(Φ(ζ + εh)− Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ E3.

Φ′(ζ) is the Gateaux derivative of a function Φ at the point ζ .
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We also set

Kr,R(ζ0) := {ζ ∈ E3 : 0 ≤ r < |ξ1 − ξ10| < R ≤ ∞,
0 ≤ r < |ξ2 − ξ20| < R ≤ ∞},

KR(ζ0) := {ζ ∈ E3 : |ξ1 − ξ10| < R, |ξ2 − ξ20| < R}.

If a domain Ω ⊂ E3 is convex in both directions L1 and L2, then every
monogenic function Φ : Ω→ A2 can be expressed in the form

Φ(ζ) = F1(ξ1) I1 + F2(ξ2)I2 +
(

(p 3y + q 3z)F
′
2(ξ2) + F0(ξ2)

)
ρ ∀ ζ ∈ Ω , (2)

where F1 is a holomorphic function in the domain D1(Ω) and F2, F0 are
holomorphic functions in the domain D2(Ω) (cf. [15, Thm. 5.4]). We note
that representation (2) is also proved in [14, Thm. 4] for the case where the
basis {e1, e2, e3} is harmonic.

3 Properties of Laurent series of monogenic functions in
A2

Let ζ0 be a point in a domain Ω ⊂ E3. In a neighbourhood of ζ0 contained
in Ω let us take a circle C(ζ0) with the center at the point ζ0. Let k ∈ {1, 2}.
We say that the circle C(ζ0) surrounds the set Lk(ζ0) if Dk(C(ζ0)) bounds a
domain D′k and fk(ζ0) ∈ D′k. We say that the curve γ ⊂ Ω surrounds once the
set Lk(ζ0) if there exists a circle C(ζ0) ⊂ Ω which surrounds the mentioned
set and is homotopic to γ in the domain Ω \ Lk(ζ0).

Every monogenic in K0,R(ζ0) function Φ can be represented as the sum of
convergent Laurent series (see [16, Thm. 3])

Φ(ζ) =

∞∑
n=−∞

dn(ζ − ζ0)n , (3)

where (ζ − ζ0)n := ((ζ − ζ0)−1)−n for n = −1,−2, . . . and the coefficients dn
are defined as

dn = anI1 + bnI2 +
(
(n+ 1)(p 3y0 + q 3z0)bn+1 + cn

)
ρ, (4)

where an, bn, cn are coefficients of Laurent series of the functions in decompo-
sition (2):

F1(ξ1) =
∞∑

n=−∞
an(ξ1 − ξ10)n, F2(ξ2) =

∞∑
n=−∞

bn(ξ2 − ξ20)n,

F0(ξ2) =
∞∑

n=−∞
cn(ξ2 − ξ20)n .
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Furthermore, the coefficients dn can be represented (as in [17, Thm. 4]) by the
formula

dn =
1

2πi

∫
γ

Φ(τ)
(
(ζ − ζ0)−1

)n+1
dτ, n = 0,±1,±2, . . . ,

where γ is an arbitrary closed Jordan rectifiable curve in K0,R(ζ0) surrounding
once the straight lines L1(ζ0), L2(ζ0).

Remark. It should be noted that this result is proved in [16, Thm. 3] but
the proof is actually done under the assumption of convexity of the domain
K0,R(ζ0) in directions L1 and L2. However, the statement of Theorem 3 in
[16] is true. It follows from the following considerations. By Lemma A.1
in Appendix A, the domain K0,R(ζ0) can be represented as a union of do-

mains K̃0,R(ζ0), K̂0,R(ζ0) which are convex in both directions L1 and L2, and

K̃0,R(ζ0) ∩ K̂0,R(ζ0) is an open set. Then, the monogenic function Φ has rep-

resentation (3) in both domains K̃0,R(ζ0) and K̂0,R(ζ0), and, as a conclusion
of [16, Thm. 2], has the same representation in K0,R(ζ0).

Next, we define types of singular points of a monogenic function Φ. Namely,
the point ζ0 is called:

• a removable singularity of Φ if the exists a finite limit

lim
ζ→ζ0, ζ /∈L1(ζ0)∪L2(ζ0)

Φ(ζ) = A;

• a pole of Φ if the exists an infinite limit

lim
ζ→ζ0, ζ /∈L1(ζ0)∪L2(ζ0)

Φ(ζ) =∞;

• an essential singularity of Φ if a limit of Φ(ζ) does not exist as ζ → ζ0
and ζ /∈ L1(ζ0) ∪ L2(ζ0).

It is known that the isolated singularity can be only removable. Otherwise,
if Φ has a non-removable singularity at the point ζ0 ∈ Ω, all points of the set
Ω∩L1(ζ0) or the set Ω∩L2(ζ0), or both these sets are singular for Φ (cf., [16,
sec. 3])

4 Logarithmic residue of monogenic functions in the al-
gebra A2

Let Φ : K0,R(ζ0) → A2 be a monogenic function in the domain K0,R(ζ0). If

Φ′(ζ)
(
Φ(ζ)

)−1
is monogenic in K0,R(ζ0), the logarithmic residue of the func-
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tion Φ at the point ζ0 is defined as

1

2πi

∫
Γr(ζ0)

Φ′(ζ)
(
Φ(ζ)

)−1
dζ, (5)

where 0 < r < R and

Γr(ζ0) := {ζ ∈ Π(ζ0) : |ξ10 − f1(ζ)| = r, |ξ20 − f2(ζ)| = r}.

By virtue of Theorem A.3 in Appendix A, we conclude that the value of the
logarithmic residue is independent of r for 0 < r < R.

Clearly, it is reasonable to consider the logarithmic residue not only at
zeros and singular points of the function Φ but also at points where the values
of function Φ belong to the ideals of A2.

We state a necessary and sufficient condition for the existence of integral
(5) in the following lemma.

Lemma 4.1. Let Φ : K0,R(ζ0) → A2 be a monogenic function in the
domain K0,R(ζ0). The following statements are equivalent:

(i) There exists R1 < R such that integral (5) exists for all 0 < r < R1.

(ii) There exists R2 < R such that Φ(ζ) /∈ I1 ∪ I2 for all ζ ∈ K0,R2
(ζ0).

Proof. First, we prove that (i) implies (ii). Assume, for the sake of contra-
diction, that the statement does not hold. In other words, for all arbitrarily
small R2 > 0 there exist points ζ ∈ K0,R2

(ζ0) for which Φ(ζ) ∈ Ik, k ∈ {1, 2}.
Then the inner point ξk 0 of the domain Dk(KR2

(ζ0)) is a limit point of the
set of zeros of the holomorphic function Fk appearing in equality (2). Hence,
according to the uniqueness theorem for holomorphic functions of a complex
variable [18, p. 209], Fk ≡ 0 and, in view of equality (2), we conclude that all
values of the function Φ belong to the ideal Ik. Therefore, integral (5) does
not exist and we have a contradiction.

Now, we prove that (ii) implies (i). It is enough to note that the assump-

tion Φ(ζ) /∈ I1 ∪ I2 for all ζ ∈ K0,R2(ζ0) implies that Φ′(ζ)
(
Φ(ζ)

)−1
exists for

all ζ ∈ K0,R2(ζ0) and is monogenic in K0,R2(ζ0). We set R1 = R2 and, thus,
integral (5) exists for all 0 < r < R1.

The following result holds.

Lemma 4.2. Let Φ : K0,R(ζ0) → A2 be a monogenic function in the
domain K0,R(ζ0) and dn be defined in (3). If Φ(ζ) /∈ Ik for any k ∈ {1, 2} and
all ζ ∈ K0,R(ζ0), then the set Zk := {n ∈ Z : dn /∈ Ik} is nonempty.
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Proof. Since Φ is a monogenic function in the domain K0,R(ζ0), it can be
represented in form (3). Assume, for the sake of contradiction, that Zk is
empty. Then dn(ζ − ζ0)n ∈ Ik for all n ∈ Z, which implies that Φ(ζ) ∈ Ik for
all ζ ∈ K0,R(ζ0). We have a contradiction.

By virtue of Lemma 4.2, the assumption Φ(ζ) /∈ I1∪I2 for all ζ ∈ K0,R(ζ0)
implies that both Z1 and Z2 are nonempty. Additionally, we assume that

Z1, Z2 are bounded from below (6)

and we set
n1 := min

n∈Z1

n and n2 := min
n∈Z2

n. (7)

Lemma 4.3. Let Φ be a monogenic function in K0,R(ζ0). Let assumption
(6) hold. Then there exist two monogenic functions φ1, φ2 in the domain
KR(ζ0) and a monogenic function ψ in K0,R(ζ0) such that

Φ(ζ) = (ζ − ζ0)n1φ1(ζ)I1 + (ζ − ζ0)n2φ2(ζ)I2 +ψ(ζ)ρ ∀ζ ∈ K0,R(ζ0). (8)

Proof. Using relations (3) and (4), definitions of Z1, Z2 and assumption (6),

we have

Φ(ζ) =

∞∑
n=−∞

an(ζ − ζ0)nI1 +

∞∑
n=−∞

bn(ζ − ζ0)nI2

+

∞∑
n=−∞

(
(n+ 1)(p 3y0 + q 3z0)bn+1 + cn

)
(ζ − ζ0)nρ

= (ζ − ζ0)n1

∑
n∈Z1

an(ζ − ζ0)n−n1I1 + (ζ − ζ0)n2

∑
n∈Z2

bn(ζ − ζ0)n−n2I2

+

∞∑
n=−∞

(
(n+ 1)(p 3y0 + q 3z0)bn+1 + cn

)
(ζ − ζ0)nρ,

where an, bn, cn are defined in (4). To complete the proof it is natural to set

φ1(ζ) :=
∑
n∈Z1

an(ζ − ζ0)n−n1 , φ2(ζ) :=
∑
n∈Z2

bn(ζ − ζ0)n−n2 ,

ψ(ζ) :=

∞∑
n=−∞

(
(n+ 1)(p 3y0 + q 3z0)bn+1 + cn

)
(ζ − ζ0)n.
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In the following lemma, we consider some properties of functions φ1, φ2.

Lemma 4.4. Let assumptions of Lemma 4.3 hold. Moreover, let Φ(ζ) /∈
I1 ∪ I2 for all ζ ∈ K0,R(ζ0). Then φ1(ζ), φ2(ζ) /∈ I1 ∪ I2 for all ζ ∈ K0,R(ζ0).

Proof. We first assume, for the sake of contradiction, that the statement
does not hold for φ1. Let there exist ζ1 ∈ K0,R(ζ0) such that φ1(ζ1) ∈ I1.
Then (ζ1 − ζ0)n1φ1(ζ1)I1 = 0, and, by virtue of (8), Φ(ζ1) ∈ I1. We have a
contradiction.

Now, we note that φ1 can be rewritten as

φ1(ζ) =
∑
n∈Z1

an(ξ1 − ξ10)n−n1I1 +
∑
n∈Z1

an(ξ2 − ξ20)n−n1I2

+
∑
n∈Z1

(n− n1)an(ξ2 − ξ20)n−n1−1(p3(y − y0) + q3(z − z0))ρ.

and we assume that there exists ζ2 ∈ K0,R(ζ0) such that φ1(ζ2) ∈ I2. This
assumption implies that∑

n∈Z1

anδ
n−n1 = 0, where δ := f2(ζ2)− ξ20.

Let us consider the set

K(ζ0, δ) := {ζ ∈ K0,R(ζ0) : |ξ1 − ξ10| = |δ|, |ξ2 − ξ20| = |δ|}.

It is evident that there exists ζ̃2 ∈ K(ζ0, δ) such that f1(ζ̃2)− ξ10 = δ. Thus,∑
n∈Z1

an(f1(ζ̃2)− ξ10)n−n1 = 0,

which implies that φ1(ζ̃2) ∈ I1, and, by arguing as above, we have a contra-
diction. Considering φ2 in a similar way as φ1, we deduce the validity of the
lemma.

In the following lemma we find the logarithmic residue of Φ at the point
ζ0.

Lemma 4.5. Let Φ be a monogenic function in K0,R(ζ0) and Φ(ζ) /∈ I1∪I2

for all ζ ∈ K0,R(ζ0). Moreover, let Φ have representation (8), where φ1, φ2 are
monogenic functions in the domain KR(ζ0) and ψ is monogenic in K0,R(ζ0).
Then

1

2πi

∫
Γr(ζ0)

Φ′(ζ)
(
Φ(ζ)

)−1
dζ = n1I1 + n2I2 (9)
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for an arbitrary r ∈ R such that 0 < r < R.

Proof. By Lemma 4.1, the integral on the left hand side of equality (9) exists.
Moreover, by Lemma 4.4, φ1 and φ2 do not take values in the ideals of A2 for
all ζ ∈ K0,R(ζ0), that implies the existence of (φ1(ζ))−1 and (φ2(ζ))−1 for all
ζ ∈ K0,R(ζ0).

By (8), we immediately have

Φ′(ζ) = n1(ζ − ζ0)n1−1φ1(ζ)I1 + (ζ − ζ0)n1φ′1(ζ)I1 + n2(ζ − ζ0)n2−1φ2(ζ)I2

+ (ζ − ζ0)n2φ′2(ζ)I2 + ψ′(ζ)ρ ∀ζ ∈ K0,R(ζ0), (10)

(
Φ(ζ)

)−1
= (ζ − ζ0)−n1(φ1(ζ))−1I1 + (ζ − ζ0)−n2(φ2(ζ))−1I2

− (ζ − ζ0)−2n2(φ2(ζ))−2ψ(ζ)ρ ∀ζ ∈ K0,R(ζ0), (11)

Taking into account (10) and (11), we obtain

1

2πi

∫
Γr(ζ0)

Φ′(ζ)
(
Φ(ζ)

)−1
dζ = I1

n1

2πi

∫
Γr(ζ0)

(ζ − ζ0)−1dζ

+ I1
1

2πi

∫
Γr(ζ0)

φ′1(ζ)(φ1(ζ))−1dζ + I2
n2

2πi

∫
Γr(ζ0)

(ζ − ζ0)−1dζ

+ I2
1

2πi

∫
Γr(ζ0)

φ′2(ζ)(φ2(ζ))−1dζ − ρ 1

2πi

∫
Γr(ζ0)

[
(ζ − ζ0)−3n2(φ2(ζ))−3ψ(ζ)

]′
dζ

= (n1I1 + n2I2)
1

2πi

∫
Γr(ζ0)

(ζ − ζ0)−1dζ + I1
1

2πi

∫
Γr(ζ0)

φ′1(ζ)(φ1(ζ))−1dζ

+ I2
1

2πi

∫
Γr(ζ0)

φ′2(ζ)(φ2(ζ))−1dζ − ρ 1

2πi

∫
Γr(ζ0)

[
(ζ − ζ0)−3n2(φ2(ζ))−3ψ(ζ)

]′
dζ

=: (n1I1 + n2I2)Λ1 + I1Λ2 + I2Λ3 + ρΛ4.

By virtue of Theorem A.4 in Appendix A, we have Λ1 = 1. Using The-
orem A.3 in Appendix A, we obtain the equality Λ2 = Λ3 = 0 because
the functions φ′1(ζ)(φ1(ζ))−1 and φ′2(ζ)(φ2(ζ))−1 are monogenic in the do-
main KR(ζ0). Finally, taking into account the continuity of the function
(ζ − ζ0)−3n2(φ2(ζ))−3ψ(ζ) on the curve Γr(ζ0), we obtain the equality Λ4 =
0.

The following result follows from Lemma 4.5.
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Corollary 4.6. Let assumptions of Lemma 4.5 hold. If n1 = n2 then the
logarithmic residue of a monogenic function Φ at the point ζ0 is an integer.

By virtue of the last paragraph of section 3 and Lemma A.2 in Appendix A,
we find it convenient to set

LΦ(ζ0) :=



L1(ζ0) ∪ L2(ζ0) if either Φ(ζ0) ∈ R or ξ10 is
a non-removable singularity forF1 and
ξ20 is a non-removable singularity forF2,

L1(ζ0) if either Φ(ζ0) ∈ I1 \ R or ξ10 is a non-removable
singularity forF1 and ξ20 is not a non-removable
singularity forF2,

L2(ζ0) if either Φ(ζ0) ∈ I2 \ R or ξ10 is not a non-removable
singularity forF1 and ξ20 is a non-removable
singularity forF2.

If Φ is monogenic in the domain K0,R(ζ0) and, moreover, Φ(ζ) /∈ I1 ∪ I2

for all ζ ∈ K0,R(ζ0), and either Φ(ζ0) ∈ I1 ∪ I2 or ζ0 is a non-removable
singular point of Φ, we call ζ0 by a singular point of the logarithmic derivative
of function Φ. Obviously, if ζ0 is a such point, every point of KR(ζ0)∩LΦ(ζ0) is
a singular point of the logarithmic derivative of Φ. In addition, if assumption
(6) holds, we call a hypercomplex number n1I1 +n2I2 by the singularity index
of the logarithmic derivative of function Φ at the point ζ0.

For an arbitrary set Ω ⊂ E3, we find it reasonable to set

SΦ(Ω) :={ζ ∈ Ω : ζ is a non-removable singularity of Φ},
IΦ(Ω) :={ζ ∈ Ω : Φ(ζ) ∈ I1 ∪ I2}.

Let G ⊂ Π(ζ) be a domain in Π(ζ). Then clG and ∂G denote the closure
and the boundary of G in the induced topology of Π(ζ), respectively.

Now, we can formulate the following theorem on the sum of logarithmic
residues for monogenic functions taking values in the algebra A2.

Theorem 4.7. Let Ω be a domain in E3 and Φ be a monogenic function
in Ω \ SΦ(Ω). Let ζ0 be an arbitrary point in Ω. Let G ⊂ Π(ζ0) be a domain
in Π(ζ0) such that clG ⊂ Ω and ∂G be a closed Jordan rectifiable curve. Let
∂G do not contain singular points of the logarithmic derivative of function
Φ, SΦ(G) ∪ IΦ(G) = {ζk}mk=1, where m is finite, and there exist R > 0 such
that assumption (6) holds in K0,R(ζk) for all k = 1, 2, . . . ,m. Moreover, let
n1kI1 + n2kI2 denoting the singularity index of the logarithmic derivative of
function Φ at the point ζk be finite for all k = 1, 2, . . . ,m. Then

1

2πi

∫
Γ

Φ′(ζ)
(
Φ(ζ)

)−1
dζ =

m∑
k=1

(n1kI1 + n2kI2) (12)
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where Γ is an arbitrary closed Jordan rectifiable curve in the domain
Ω \

(
SΦ(Ω) ∪ IΦ(Ω)

)
which is homotopic to ∂G in this domain.

Proof. Let positive R be such that the sets K0,R(ζk) ⊂ Ω are pairwise disjoint
for all k = 1, 2, . . . ,m. Since Γ is homotopic to ∂G in Ω \

(
SΦ(Ω)∪ IΦ(Ω)

)
, by

Theorem A.3 in Appendix A, we have

1

2πi

∫
Γ

Φ′(ζ)
(
Φ(ζ)

)−1
dζ =

1

2πi

∫
∂G

Φ′(ζ)
(
Φ(ζ)

)−1
dζ

=
1

2πi

m∑
k=1

∫
Γr(ζk)

Φ′(ζ)
(
Φ(ζ)

)−1
dζ

for any r, 0 < r < R.
Now, to complete the proof one can apply Lemma 4.5.

The following theorem is an analogue of the known result in complex
analysis.

Theorem 4.8. Let assumptions of Theorem 4.7 hold. Then

1

2πi

∫
Γ

Φ′(ζ)
(
Φ(ζ)

)−1
dζ = (NF1

− PF1
)I1 + (NF2

− PF2
)I2, (13)

where NFk
, PFk

are the numbers of zeros and poles, respectively, of the function
Fk in the domain Dk(G) for k = 1, 2.

Proof. Since Γ is homotopic to ∂G in Ω \
(
SΦ(Ω) ∪ IΦ(Ω)

)
, we conclude that

Γ does not contain singularities of the logarithmic derivative of function Φ.
Then the following equality is true:

1

2πi

∫
Γ

Φ′(ζ)
(
Φ(ζ)

)−1
dζ =

1

2πi

∫
∂G

Φ′(ζ)
(
Φ(ζ)

)−1
dζ =

1

2πi
4∂G ln Φ(ζ), (14)

where 4∂G ln Φ(ζ) denotes the increment of function ln Φ(ζ) as ζ passes the
curve ∂G. Equalities (1) and (2) yield the equality

ln Φ(ζ) = lnF1(ξ1)I1 + lnF2(ξ2)I2 +
(p 3y + q 3z)F

′
2(ξ2) + F0(ξ2)

F2(ξ2)
ρ

for all ζ ∈ Γ, where ξ1 ∈ D1(∂G), ξ2 ∈ D2(∂G).
Since Φ does not take values in the ideals on the curve ∂G, by virtue of (2),

we conclude that the function F2 is not equal to zero on the curve D2(∂G) in
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the complex plane. Therefore, the function ((p 3y+q 3z)F
′
2(ξ2)+F0(ξ2))/F2(ξ2)

is continuous on the curve D2(∂G) and, hence, its increment in passing this
curve is equal to zero.

Thus, 4∂G ln Φ(ζ) = 4D1(∂G)F1(ξ1)I1 +4D2(∂G)F2(ξ2)I2 and, in view of
the principle of argument for analytic functions of a complex variable (see,
e.g., [18, sec. 10]), equality (14) is transformed into (13).

Finally, we formulate the result which follows from Theorem 4.8.

Corollary 4.9. Let assumptions of Lemma 4.5 hold. Let functions F1,
F2 be as in (2). Then the logarithmic residue of a monogenic function Φ at
the point ζ0 is an integer if and only if the logarithmic residue of F1 at the
point ξ10 and the logarithmic residue of F2 at the point ξ20 coincide. If so, the
logarithmic residues of all these functions coincide.

A Appendix

In the Appendix, we collect some results exploited in the article.

Lemma A.1. Let ζ0 ∈ E3 and 0 ≤ r < R. Then the domain Kr,R(ζ0) can

be represented as a union of domains K̃r,R(ζ0) and K̂r,R(ζ0), each of them is

convex in both directions L1 and L2, and K̃r,R(ζ0) ∩ K̂r,R(ζ0) is an open set.

Proof. The proof is constructive. We first note that the case L1 = L2 is trivial.
It is enough to set K̃r,R(ζ0) = K̂r,R(ζ0) = Kr,R(ζ0).

Next, we suppose that L1 and L2 do not coincide. Let
Π∗(ζ0) := {ζ0 + t1e

∗
1 + t2e

∗
2 : t1, t2 ∈ R} be a plane in E3. If r 6= 0, we

take two planes Π∗(ζ0 + rê∗1) and Π∗(ζ0 − rê∗1). These planes split Kr,R(ζ0)
into six parts, four of them are located between the planes. One can uniquely
indicate two pairs of sets formed by the sets from the mentioned four parts
such that the union of two sets of a pair is convex in both directions L1 and
L2. We denote these pair by Ω1 and Ω2. Then, we set

K̃r,R(ζ0) := Kr,R(ζ0) \ Ω̄1,

K̂r,R(ζ0) := Kr,R(ζ0) \ Ω̄2,

where Ω̄k denotes the closure of Ωk in the induced topology of E3, k ∈ {1, 2}.
By the construction, it easy to see that both K̃r,R(ζ0) and K̂r,R(ζ0) are open

and convex in directions L1, L2 sets. As a conclusion, K̃r,R(ζ0) ∩ K̂r,R(ζ0) is
an open set.

If r = 0, we take one plane Π(ζ0) and split it into four parts by the straight
lines L1(ζ0) and L2(ζ0). By the same arguing as above, we deduce the validity
of the lemma.
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The following lemma is the immediate consequence of Lemma 1 in [14].

Lemma A.2. Let Ω be a convex in directions L1, L2 domain in E3. Let
Φ be a monogenic function in Ω. Let k ∈ {1, 2}. Let ζ0 be an arbitrary point
of Ω. Then Φ(ζ0) ∈ Ik implies Φ(ζ) ∈ Ik for all ζ ∈ Ω ∩ Lk(ζ0).

The following result is an analogue of the Cauchy integral theorem for
monogenic functions in A2. We note that a more general result can be found
in [19, Thm. 4.2].

Theorem A.3. Let Ω be a convex in directions L1, L2 domain in E3 and
Φ : Ω → A2 be a monogenic function in Ω. Let γ ⊂ Ω be a closed Jordan
rectifiable curve which is homotopic to a point of Ω. Then

∫
γ

Φ(ζ)dζ = 0.

The following statement is a particular case of Theorem 6.1 in [19].

Theorem A.4. Let Ω be a convex in directions L1, L2 domain in E3. Let
Φ : Ω → A2 be a monogenic function in Ω. Then for every point ζ0 ∈ Ω the
following equality is true:

Φ(ζ0) =
1

2πi

∫
γ

Φ(ζ)(ζ − ζ0)−1dζ,

where γ is a closed Jordan rectifiable curve in Ω, that surrounds once the set
L1(ζ0) ∪ L2(ζ0).
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