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A note on generalization of Zermelo navigation

problem on Riemannian manifolds

with strong perturbation

Piotr KOPACZ

Abstract

We generalize the Zermelo navigation on Riemannian manifolds (M,h),
admitting a space dependence of a ship's speed 0 < |u(x)|h ≤ 1 in the
presence of a perturbation W̃ determined by a strong (critical) veloci-
ty vector �eld satisfying |W̃ (x)|h = |u(x)|h, with application of Finsler
metric of Kropina type.

1 Introduction

The objective in the navigation problem of Zermelo is to �nd the minimum
time paths of a ship sailing on a sea M , with the presence of a wind deter-
mined by a vector �eld W . The problem was formalized and investigated by
E. Zermelo (1931) in the Euclidean spaces R2 and R3, cf. [24, 25], and general-
ized considerably (2004) in [5] for the case when sea is a Riemannian manifold
(M,h), however under the assumption that a wind W is a time-independent
weak wind, i.e. h(W,W ) < 1. In the absence of a perturbation the solutions
to the problem are simply h-geodesics of M . Note that the original solution
given by E. Zermelo admitted a strong wind and time dependence. Thus, in
a special case the problem may be treated as purely geometric. It has been
found out that the trajectories which minimize travel time are exactly the
geodesics of a special Finsler type F , that is Randers metric. Brie�y, the
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solutions to the problem are the �ows of Randers geodesics. The condition
on strong convexity, i.e. |W |h < 1 ensures then that F is a positive de�nite
Finsler metric. Furthermore, there is an equivalence between Randers metrics
and Zermelo's problems [5, 11].

In [23] the authors showed that Zermelo's navigation problem has another
solution in Finsler geometry in the case when the wind becomes stronger.
Also, such a problem in a complex setting, that is, on Hermitian manifolds, was
considered in [1]. This means that there is a wind acting of the same impact as
a maximal power of ship's engine. Precisely, it was assumed that h(W,W ) = 1
(critical perturbation). Note that the problem was considered in the original
formulation when a ship sails with Riemannian unit speed, i.e. h(u, u) =
1 = const. Obviously, since the ship's speed |u|h and the wind force |W |h are
equal, unlike the Randers case, the ship cannot proceed anymore against the
wind. So, following the direction u = −W implies that the resulting velocity
v vanishes. Geometrically, in each tangent space TxM the unit sphere of the
new metric F is the W -translate of the Riemannian h-unit sphere. However,
di�erently from the Randers case, the former passes through the origin of TxM
and thus F cannot be a Finlser metric in the classic sense [23].

Setting as a reference point Zermelo's formulation of the problem we may
ask whether a ship must proceed at a constant maximum speed relative to
the surrounding Riemannian sea, i.e. |u|h = 1. This assumption we have
already dropped considering the problem on Riemannian manifolds, however
being in the case of a background weak wind which guarantees a full control
of navigating ship (cf. [15]). Recently we have also investigated the analogous
problems on Hermitian manifolds in complex Finsler geometry (cf. [2, 3]).
Reviewing the bibliography in this scope one may �nd the paper in the calculus
of variations by A. de Mira Fernandes [12] who accomodated shortly after
Zermelo's contribution a varying magnitude ship's velocity. Having added the
extra degree of freedom the author allowed a time and space dependent velocity
and solved the corresponding problem with the Euclidean background, namely
in Rn. Therefore, he has generalized the results of E. Zermelo [24, 25] and
T. Levi-Civita [17] for the Euclidean spaces to the case where the air speed of
a plane is a preassigned function of position and time. Also, the subsequent
equations for the �ight path of least time obtained by K. Arrow [4], who
considered a passage with S2-background, implied earlier results achieved by
T. Levi-Civita. De Mira Fernandes showed that the change in |u|h with time
has no e�ect on the formula for the shortest time passage (time-optimal ship's
heading) while that with space has the same e�ect as the corresponding change
in wind [4].

The above contribution was also referred in the modern approach (cf. [13])
in a discussion how, when both W and |u|h are space but not time dependent,
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it can be recast in a purely geometric form as geodesics of a Randers geometry
or as null geodesics in a stationary space-time. Let us note that the Zermelo
navigation as a method plays an active and crucial role in modern physics, in
particular in quantum mechanics. In this regards, see, for instance, the expo-
sitions in [9, 22, 21, 8, 6, 7, 14]. Furthermore, the concept admitting a varying
magnitude ship's velocity gives rise to optimize our recent applied study of the
search models based on time-minimal paths in real navigational applications
(cf. [14, 16]). In the current investigation on Riemannian manifolds for the
case of a strong wind we are also going to drop the standard assumption on
a constant unit speed. We aim to present our glance at the problem with
di�erent starting point and therefore contribute to the previous �ndings (cf.
[23]) by introducing a space dependence of a ship's speed, 0 < |u(x)|h ≤ 1.

2 Glance at previous �ndings from a di�erent perspec-

tive

Let a pair (M,h) be a Riemannian manifold where h = hijdx
i ⊗ dxj is

a Riemannian metric and the corresponding norm-squared of tangent vectors
y ∈ TxM is denoted by |y|2h = hijy

iyj = h(y, y). In contrast to [23] we

begin with a Riemannian manifold (M,h) and a vector �eld W̃ = W̃ i ∂
∂x on

M which need not be of h-unit length. We admit that both ship's speed
|u(x)|h and wind W are space-dependent with 0 < |u(x)|h = |W̃ (x)|h ≤ 1.
Such stronger perturbation will be called critical. Thus, a ship makes a way
unceasingly through the water, but not necessarily over ground. We compute
the new Finsler metric F̃ similarly as treated in [23], with the re�nement of
the initial indicatrix-based equation. To reduce the clutter we also adopt the
same notations if not otherwise stipulated. We aim to obtain the metric F̃ as
the solution to the re�ned equation including the new variable. We have∣∣∣∣ y

F̃ (x, y)
− W̃

∣∣∣∣ = |u(x)|. (1)

It thus follows from the de�nition of the inner product

hij(y
i − F̃ W̃ i)(yj − F̃ W̃ j) = |u|2F̃ 2. (2)

Hence,
(|u|2 − |W̃ |2)F̃ 2 + 2h(y, W̃ )F̃ − |y|2 = 0. (3)

By assumption on the equality of the norms we are thus led to

F̃ (x, y) =
|y|2h

2h(y, W̃ (x))
. (4)
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From the above concerned assumption it is implied that W̃ 6= 0; y 6= 0. We
obtained the metric of the analogous form as F in the standard case when
h(W̃ , W̃ ) = 1. We also require that on M there must exist a vector �eld W̃
without zeros. Therefore, having in mind the topological restrictions coming
from the Poincaré-Hopf theorem one restricts the structures (M,h) which the
theory under consideration can be applied to. In particular, we exlude S2 since
it follows that for any compact regular 2-dimensional manifold with non-zero
Euler characteristic any continuous tangent vector �eld has at least one zero.

Remark 2.1. Under a strong (critical) perturbation |W̃ |h = 1 formula (4)
as a special case leads to the metric F according to [23] in the standard
formulation of the Zermelo navigation problem on Riemannian manifolds, i.e.
with h(u, u) = 1.

Let us observe that

F̃ (x, y) =
|y|2h

2h(y, |u(x)|hW (x))
=

1

|u(x)|h
F (x, y) (5)

where F (x, y) =
|y|2h

2h(y,W (x)) in the standard expression. From (5) it implies the

following

Corollary 2.1. F̃ is a Finsler metric conformal to F .

This recalls the scenario in the generalized Randers case in the absence of a
wind. Then, however, the resulting Randers metric is Riemannian and confor-
mal to the corresponding background Riemannian metric h; see Proposition
2.5 in [15]. The adequate and wider investigation on conformal and weakly
conformal Finsler geometry can be found, in particular, in [20, 19]. To proceed,
we can simply assume that

ãij(x) = hij , b̃i(x) = 2W̃i. (6)

Hence,
b̃2 = ãij b̃ib̃j = 4|u(x)|2h (7)

while in the original setting one would then get b2 = aijbibj = 4 = const.
In order to avoid a constant function here as the obtained metrics could be
a subject to such a constraint, a conformal factor e−k(x) has been applied
making use of some smooth function k(x) onM . For comparison, to be in line

with [23], if we use an analogous conformal factor e−k̃(x), where k̃(x) is also

some smooth function on M , then we get F̃ (x, y) = h(y,y)

2hijW̃ jyi
=

e−k̃(x)hijy
iyj

2e−k̃(x)W̃iyi
.

Therefore, taking

ãij(x) = e−k̃(x)hij , b̃i(x) = 2e−k̃(x)W̃i, (8)
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yields the special Finsler type metric, namely the Kropina metric

F̃ (x, y) =
ãij(x)yiyj

b̃i(x)yi
=
α̃2(x, y)

β̃(x, y)
. (9)

F̃ (x, y) is composed of the new Riemannian metric α̃ =
√
ãij(x)yiyj and

a 1-form β̃ = b̃i(x)yi where b̃2 = 4|u(x)|2he−k̃(x). Conversely, if we put

hij = ek̃(x)ãij and W̃i(x) = ek̃(x)b̃i
2 , where

k̃(x) = 2 ln

(
2|u(x)|h
b̃(x)

)
(10)

then we obtain the initial navigation data in terms h and W̃ which solution
to the problem is exactly the Kropina metric (9). To compare, recall k(x) =
ln 4

b2(x) in the original setting. Note that it is su�cient to apply (6) in order

to obtain the same form of the Kropina metric given by (9). Therefore, b̃2 6=
const. with h(u, u) 6= const. Ful�lling the de�nition of Finsler metric which
is positive de�nite, the function (9) is not de�ned on all TM , but only on a
domain {(x, y) ∈ TM : β̃ > 0}. Therefore, we exclude the case when u = −W̃ .
Following [23] we have

De�nition 2.2. Let (M,h) be an n-dimensional Riemannian space, W̃ a
vector �eld globally de�ned on M . Let ãij and b̃i be given by (8) and denote

the Kropina metric by F̃ , where F̃ = α̃2

β̃
. Then F̃ will be called Ũ -Kropina

metric.

Recall that since the Kropina metrics de�ned globally onM are considered,
the above mentioned topological restrictions to their existence occur. For
more details see Propositions 5.2 and 5.13 in [23]. One sees immediately that
in the case of h(W̃ , W̃ ) = 1 = const. Ũ -Kropina metric becomes U -Kropina
metric de�ned in the standard presentation, that is Kropina metric with unit
vector �eld. Recalling (6) and (9) it results that the generalization preserves
the original Riemannian metric α but changes the 1-form β. Comparing the
resulting Finsler metrics we observe that α̃ = α and β̃ 6= β since W̃i 6= Wi for
h(u, u) 6= 1. The di�erence is made by perturbing wind what, in other words,
is connected to the fact of admitting a ship's speed |u|h to vary in space. Let
us summarize after the re�nement of the previous investigation which became
the point of reference and the motivation for our study. We thus obtain the
following

Proposition 2.2. A metric F̃ is of Ũ -Kropina type if and only if it solves
the generalized Zermelo navigation problem on a Riemannian manifold (M,h),
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with varying in space ship's speed 0 < |u(x)|h ≤ 1 in the presence of a strong
(critical) wind W̃ (x) which satis�es |W̃ |h = |u|h.

Remark that we exclude here |W |h = 0 unlike the generalized Randers
case with a spatial function |u(x)|h in the presence of a weak perturbation,
sayWR, i.e. 0 ≤ h(WR,WR) < h(u, u), where the solutions to the problem are
then determined by the Riemannian metric conformal to h. From (5) it yields
that the resulting Kropina geodesics of F and F̃ with |u|h = const. trace the
same curves, however the corresponding speeds di�er and therefore the times
of travel between given points change. This refers to the particular situation
in the generalized Randers case, i.e. with WR = 0 and h(u, u) = const.
Then, however, Randers metric is reduced to the corrresponding background
Riemannian metric h up to scaling; for more details see the study in [15]. Such
case also corresponds to a pair of conformal homothetic Finsler metrics, that
is a special case of weakly conformally equivalent Finsler metrics considered
in [20]. Going further, a glance at the new metric (4) and (5) leads to

Corollary 2.3. With arbitrary generalized navigation data (h, |u(x)|h, W̃ (x))
a transit time of existing, nonzero (u 6= −W̃ ) solution to the generalized Zer-
melo navigation problem on Riemannian manifolds in the presence of a strong
(critical) wind satisfying |W̃ |h = |u|h 6= 1 is greater than a transit time of the
corresponding solution to the standard Zermelo navigation problem.

Proof. For any piecewise C∞ curve ` inM , the F̃ - length of ` denoted by LF̃ (`)

is equal to the time for which the object travels along it, i.e. T =
T∫
0

F̃ ( ˙̀(t))dt =

LF̃ (`). Let γ, γ̃ be F - and F̃ -geodesic, respectively, where F̃ is given by (4).

For any nonzero y ∈ TxM F (y), F̃ (y) > 0. The function |u(x)|h is variable in
space or constant with 0 < h(u, u) ≤ 1. Since u 6= −W̃ the resultant v > 0.
The equality of the lengths LF̃ and LF holds if and only if |u|h = 1 = const.,

then F̃ (y) := F (y). Otherwise, by (5) F̃ (y) > F (y) for any scenario obtained
from the triples (h, W̃ (x), |u(x)|h), thus for any spatial function |u(x)|h or,
equivalently, |W̃ (x)|h, where |W̃ |h = |u|h. Note that LF̃ (γ̃) ≥ LF (γ̃) and
LF (γ̃) ≥ LF (γ) as the geodesic minimizes the length. From transitivity we
are thus led to the inequality LF̃ (γ̃) ≥ LF (γ).

Remark that the presence of |u(x)|h in the above expression of navigation
data may actually be inessential. If perturbing vector �eld is a priori �xed
then it can be removed, since given W̃ determines |u|h by |W̃ |h. Nevertheless,
we let it to emphasise its new role in the considered approach to the problem
inasmuch as we admit |u(x)|h to be set initially, without being determined by
W̃ . Next, let us observe that unlike the Randers case, where the entire space
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(M,h) can be covered with the time-minimal paths, not all the positions x ∈M
are now available for navigating ship any more since a wind is of stronger force.
Therefore, one needs to consider the existence of solutions to posed Zermelo
problems. Also, from the above it yields the following, somewhat contrariwise
formulated, corollary.

Corollary 2.4. Let a space-dependent ship's speed |u(x)|h vary along the ex-
isting solution to the generalized Zermelo navigation problem on a Riemannian
manifold (M,h) in the presence of a strong (critical) perturbation W̃ 6= −u
with |u|h = |W̃ |h. Then the stronger perturbation acts on a ship the shorter
travel time is.

It implies that a ship reaches her destination in the absolutely shortest time
when the strongest perturbation blows, what one may �nd self-contradictory.
Indeed, if h(W̃ , W̃ ) = 1 the passage is time-minimal amidst all the possible
combinations of generalized navigation data. Namely, the original formulation
of the problem brings optimal solution in comparison to the other ones mod-
i�ed by the new variable |u(x)|h. Obviously, increasing a wind's force causes

that a ship's speed is also boosted to hold the constant ratio |W̃ |h|u|h = 1 as

assumed in the problem under consideration.
Now, let us take a look at di�erent straightforward scenario in the presence

of the same strong and varying in magnitude wind W̃ (x), with two Riemannian

seas (M,h) and (M, ĥ) which are determined by the conformal background

Riemannian metrics ĥ and h, where ĥ = 1
|u|2h

h, h = (hij), ĥ = (ĥij). Thus,

ĥ(W̃ , W̃ ) = 1 = ĥ(u, u) since, by assumption, h(W̃ , W̃ ) = h(u, u). Therefore,
this gives

F̂ (x, y) =
ĥ(y, y)

2ĥ(y, W̃ (x))
=

h(y, y)

2|u(x)|2hĥ(y, W̃ (x))
=

|y|2h
2h(y, W̃ (x))

. (11)

Hence, recalling (4) it yields the equality of the above Kropina metrics, namely
F̂ = F̃ . We are thus led to

Lemma 2.5. The time-minimal paths of the conformal background Rieman-
nian metrics ĥ and h, where ĥ = |u(x)|−2h h, perturbed by a strong (critical)
varying in space wind W̃ (x) which satis�es |W̃ |h = |u|h, are represented by
the same Kropina geodesics.

The analogous fact we also showed, in particular, in the complex setting pro-
viding deeper analysis for the complex Randers and Kropina cases on Her-
mitian manifolds (cf. [2, 3]). In the sequel, we present the �ow of Kropina
geodesics in the generalized approach to the Zermelo navigation problem, with
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the presence of a strong wind including the in�uence of a spatial function
|u(x)|h. For clarity we also compare it to the corresponding solution ob-
tained from the original expression of the problem on the same Riemannian
sea (M,h).

3 Example

With the topological restrictions in mind which refer to the existence of
globally de�ned Kropina metrics on M , admitting however S2m−1 or En, in
what follows we present the example with the Euclidean background, namely
E2. Considering dimension two we denote the position coordinates (x1, x2)
by (x, y) and expand arbitrary tangent vectors y1 ∂

∂x1 + y2 ∂
∂x2 at (x1, x2) as

(x, y;u, v) or u ∂
∂x + v ∂

∂y . We also express a ship's speed |u|h as |U | and the

resulting speed |v|h as |V |. Thus, from (4) we obtain

F̃ (x, y;u, v) =
h11u

2 + 2h12uv + h22v
2

2(h11uW̃ 1 + h12uW̃ 2 + h21vW̃ 1 + h22vW̃ 2)
. (12)

After having set M := R2 we get

F̃ (x, y;u, v) =
u2 + v2

2(uW̃ 1 + vW̃ 2)
(13)

where simply |(u, v)|h =
√
u2 + v2. Without loss of generality let us consider

the strong unit wind W represented by

W (x, y) = cos(x+ y)
∂

∂x
+ sin(x+ y)

∂

∂y
. (14)

Hence,

|W (x, y)|h =
√

(W 1(x, y))2 + (W 2(x, y))2 =
√

cos2(x+ y) + sin2(x+ y) = 1

∀ (x, y) ∈ R2. Consequently, for the applied perturbation (14) the form of the
resulting metric in the original expression yields

F (x, y;u, v) =
u2 + v2

2(uW 1 + vW 2)
=

u2 + v2

2[u cos(x+ y) + v sin(x+ y)]
. (15)

Let |u(x)|h be smooth and positive determined by a Gaussian function which

is expressed in the general form f(x) = āe−
(x−b̄)2

2c̄2 , where ā, b̄, c̄ are the real

constants. For instance, let |U(x, y)| = 2
3 exp

(
−y

2 sin2(x+y)
π

)
+ 1

3 . Thus,
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∀ (x, y) ∈ R2 |U(x, y)| ∈
(
1
3 , 1
]
⊂ (0, 1] as generally required. The new

non-unit wind W̃ blowing on the Euclidean sea yields

W̃ (x, y) =
1

3

(
2e−

1
π y

2 sin2(x+y) + 1
)

cos(x+ y)
∂

∂x

+
1

3

(
2e−

1
π y

2 sin2(x+y) + 1
)

sin(x+ y)
∂

∂y
. (16)

Let us note that |W (x, y)| = |U(x, y)|−1|W̃ (x, y)|. The contour plot and the
stream density plot, taking the scalar �eld to be the norm of the perturbation
W̃ , are presented in Figure 1.

Figure 1: The contour plot (on the left) and the stream density plot (on the
right) of the perturbation W̃ given by (16).

By assumption, |W̃ (x, y)|h = 2
3 exp

[
− 1
πy

2 sin2(x+ y)
]
+ 1

3 . For example, with
ϕ0 = 0 a ship commences the voyage starting from the origin with a wind,
i.e. U = W̃ and (ẋ, ẏ) = (2, 0) at the maximum resulting speed which equals
|V | := |U | + |W̃ | = 2 since then V := 2U , where ϕ = ϕ(t) is the angle
measured counterclockwise which the vector of the relative velocity U forms
with x-axis. Recall that the function (9) is not de�ned on all TM , but only
on a domain {(x, y;u, v) ∈ TM : β̃ > 0}. Thus, we have ϕ0 ∈ [0, 2π) \ {π}.
Clearly, with ϕ0 = π , where W̃ (0, 0) = (1, 0), one gets (ẋ, ẏ) = (0, 0). This
means that though a ship proceeds ceaselessly through the water (|U | > 0), it
is stopped over ground, i.e. the resulting speed |V | = 0. Such a scenario does
not occur in the case of Randers metric including the generalized version of
the problem in the presence of a weak wind where |WR|h < |u|h, cf. [15]. For
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the perturbation (16) we obtain the form of the resulting metric as follows

F̃ (x, y;u, v) =
3
(
u2 + v2

)
exp

(
1
πy

2 sin2(x+ y)
)

2
[
exp

(
1
πy

2 sin2(x+ y)
)

+ 2
]

[u cos(x+ y) + v sin(x+ y)]
.

(17)
After having computed the spray coe�cients according to [11], we obtain F -
geodesic equations for the Kropina metric (15) in the standard setting. We
write δ = x+ y for short and the result is

ẍ+ 1
2(ẋ2+ẏ2)

[(
4ẋ3ẏ + 4ẋ2ẏ2 − ẋ4 + ẏ4

)
sin2 δ + 1

2

(
ẋ4 + ẏ4

)
sin 2δ

+ẋẏ
(
−3ẋẏ + 2ẋ2 − 2ẏ2

)
sin 2δ + 2ẏ2

(
2ẋẏ − ẋ2 + ẏ2

)
cos2 δ

]
= 0

ÿ − 1
2(ẋ2+ẏ2)

[
ẋ
(
2ẋ
(
2ẋẏ + ẋ2 − ẏ2

)
sin2 δ + ẏ

(
−3ẋẏ − 2ẋ2 + 2ẏ2

)
sin 2δ

)
+
(
4ẋ2ẏ2 + 4ẋẏ3 + ẋ4 − ẏ4

)
cos2 δ + 1

2

(
ẋ4 + ẏ4

)
sin 2δ

]
= 0

(18)
In the presented generalization the in�uence of a spatial function |U | or, equi-
valently, |W̃ | is noticable in the system of F̃ -geodesic equations which corre-
spond to the Kropina metric (17). Abbreviating ω = exp

(
1
πy

2 sin2 δ
)

+ 2, this
gives

ẍ+ 1
2πω(ẋ2+ẏ2)

{
16yẋẏ3 sin4 δ − π

(
−4ẋ3ẏ − 4ẋ2ẏ2 + ẋ4 − ẏ4

)
ω sin2 δ

+ sin 2δ
[
π
((

2ẋ3ẏ − 3ẋ2ẏ2 − 2ẋẏ3
)
ω + ẋ4 + ẏ4

)
−y
(
−4(y + 1)ẋ3ẏ − 6yẋ2ẏ2 + 4yẋẏ3 + yẋ4 + yẏ4

)
sin 2δ

]
+8y2ẋ2

(
2ẋẏ + ẋ2 − ẏ2

)
sin δ cos3 δ + 2πẏ2

(
2ẋẏ − ẋ2 + ẏ2

)
ω cos2 δ

+ 1
2 sin 2δ

[
4y
(
2(2y + 3)ẋ2ẏ2 + 4yẋẏ3 + (y − 1)ẋ4 − (y + 1)ẏ4

)
sin2 δ

+π
(
ẋ4 + ẏ4

)
(ω − 2)

]}
= 0

ÿ − 1
2π(ẋ2+ẏ2)ω

{
−8yẏ2

(
ẏ2 − ẋ2

)
sin4 δ + 2πẋ2

(
2ẋẏ + ẋ2 − ẏ2

)
ω sin2 δ

+ sin 2δ
[
π
((
−2ẋ3ẏ − 3ẋ2ẏ2 + 2ẋẏ3

)
ω + ẋ4 + ẏ4

)
+y
(
4yẋ3ẏ − 2(3y + 2)ẋ2ẏ2 − 4yẋẏ3 + (y + 1)ẋ4 + (y − 1)ẏ4

)
sin 2δ

]
+4y2

(
−4ẋ3ẏ − 4ẋ2ẏ2 + ẋ4 − ẏ4

)
sin δ cos3 δ

+π
(
4ẋ2ẏ2 + 4ẋẏ3 + ẋ4 − ẏ4

)
ω cos2 δ + 1

2 sin 2δ
[
π
(
ẋ4 + ẏ4

)
(ω − 2)

−8yẏ
(
−yẋ2ẏ + 2(y + 1)ẋẏ2 − 2ẋ3 + yẏ3

)
sin2 δ

]}
= 0.

(19)
The form of the initial conditions including the optimal control ϕ(t) under
perturbing vector �eld reads x(0) = x0 ∈ R, y(0) = y0 ∈ R, and for the �rst
derivative (a tangent vector)

ẋ(0) = W̃ 1(x0, y0) + |U(x0, y0)| cosϕ0

= |U(x0, y0)|(cos(x0 + y0) + cosϕ0) := 1 + cosϕ0, (20)
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ẏ(0) = W̃ 2(x0, y0) + |U(x0, y0)| sinϕ0

= |U(x0, y0)|(sin(x0 + y0) + sinϕ0) := sinϕ0. (21)

The last relations can be derived by direct consideration of the planar equa-
tions of motion including the representation of the vector components of ship's
velocity and the new background wind. When the families of the time-minimal
paths coming from the same �xed point x ∈ M are considered, ϕ0 plays the
role of the parameter which rotates the tangent vector of unperturbed Rieman-
nian geodesic. To provide some numerical computations and to generate the
graphs we use Mathematica 10.4 from Wolfram Research. The time-e�cient
paths in both scenarios, that is the Kropina F - (black) and F̃ -geodesics (red)
starting from the origin, with the corresponding strong background winds are
presented in Figure 2. We set the increments ∆ϕ0 = π

8 and t = 10. The
obtained solutions are also confronted accordingly in Figure 3. The graphical

Figure 2: The Kropina F -geodesics (black) with the unit background strong
(critical) wind W (grey) and F̃ -geodesics (red) with the new non-unit back-
ground strong (critical) wind W̃ (blue), with the increments ∆ϕ0 = π

8 ; t = 10.

interpretation of Corollary 2.3 with reference to the example is presented in
Figure 4, where three pairs of F - (black) and F̃ - isochrones (red) are com-
pared. It implies that for the corresponding times t the former includes the
latter what is the consequence of the in�uence of applied space-dependent
ship's speed. The isochrone of F̃ is similar to the isochrone of F with similar-
ity ratio |u(x)|h := |U(x, y)|.
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Figure 3: The Kropina F̃ -geodesics (red) starting from the origin compared to
the Kropina F -geodesics (black) with the increments ∆ϕ0 = π

18 , t = 3 (on the
left) and the increments ∆ϕ0 = π

8 , t = 10 (on the right) in the background

strong (critical) winds W̃ (blue) and W (grey).

Lastly, let us also add that dating back to the formal genesis of the naviga-
tion problem in the Hamiltonian formalism, one could investigate the example
under consideration with the use of the original navigation formula of E. Zer-
melo [25, 24, 10] combined with the results of A. De Mira Fernandes [12] since
we chose here the Euclidean background. In particular case, i.e., R2 the prob-
lem was contemplated in [18]. Additionally, the equations of the limit curves
which determine the planar area of the available points of arrivals as outlined
on the right-hand side graph in Figure 4 one also might obtain. In this regards,
for comparison to the initial research on the navigation problem in the classic
calculus of variations and more details see � 282 - 287 in [10].

4 Discussion and concluding remarks

In our study we assumed that the norm |u(x)|h of a ship's velocity u, re-
lative to the surrounding Riemannian sea (M,h) and being a spatial function
of x is not necessarily constant, in particular unit, so unlike the standard con-
cept and can be a priori �xed. In this sense we considered the generalization
of the Zermelo navigation with the presence of a strong (critical) wind in a
purely geometric form. Therefore, we aimed to be in line with the approach
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Figure 4: On the left the isochrones of the Kropina F̃ - (red) and F -geodesics
(black) starting from the origin, with t = 1 (dot-dashed), t = 2 (solid), t = 3
(dashed). On the right the Kropina F̃ -geodesics starting from the origin, with
the increments ∆ϕ0 = π

720 , t = 500, outlining the area of available points of
arrivals in E2.

to the problem presented in other contributions cited in the introduction and
also referred to our previous study for the case of Randers metric, that is, the
generalization of the navigation problem under a weak wind |WR|h < |u|h. In
a starting point we consider varying in magnitude speed |u(x)|h as predeter-
mined control which complements standard navigation data (h, W̃ ). Having
combined and compared our investigation to the referred results presented in
[23] on Kropina metrics as well as making use of the original formulation of
the Zermelo navigation with h(u, u) = 1, we can state that the di�erence in
both approaches corresponds to the points of view at the problem and the
solutions are connected in a simple manner. In what follows, we discuss some
details and collect the �ndings.

In fact, the introduced new data is strongly limited by the main assumption
on the norms' equality, i.e., |u|h = |W̃ |h which determines the case. One may
imagine that in the scenario under consideration there are the "speed zones"
referring to the ship's speed through the water or, in other words, the "speed
limits" which cover the whole Riemannian sea (M,h). Therefore, captain's
duty is to take them into account when preparing the passage plan for a time-
e�cient voyage by continuous adjusting a ship's engine on the entire route.
From another point of view a ship's engine telegraph-based plan is executed
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and the wind force is to be adapted to the �xed ship's passage plan such that
it is time-e�cient. Though the latter scenario is far away from the real marine
or air navigation, there are applied optimal control problems when just acting
perturbation is fully controllable.

Proposition 2.2 establishes the direct relation between the Kropina geodesics
and the time-minimal paths as the solutions to the navigation problem intro-
ducing the space-dependent function |u(x)|h. We see that under the action
of a wind W̃ the time-e�cient travel path, so the solution to the generalized
Zermelo problem, is no longer a background Riemannian h-geodesic, but a
geodesic of the Ũ -Kropina metric F̃ . For comparison, let us re�ect for a mo-
ment on the generalized Randers case (cf. [13, 15]), where one might ask if
decreasing a ship's speed |u|h under �xed weak wind �eldWR causes the same
e�ect on the time-minimal path as increasing the wind force with h(u, u) = 1

and holding the same relation |u|h
|WR|h . Since 0 ≤ |WR|h < |u|h < 1, the de-

crease of a ship's relative speed introduces a relatively larger e�ective wind
W̃ i
R > W i

R. From this point of view the formula for Randers metric in the
presented generalization is then given as in the original setting [5], however
with W i

R replaced by a rescaled wind W̃ i
R = 1

|u(x)|hW
i
R. Now, in the presence

of stronger perturbation we followed our approach presented in the Randers
case what increases the variety of the scenarios and the solutions in�uenced
by the new spatial function |u(x)|h.

Remark that according to Corollary 2.3 the corresponding travel times are
greater in comparison to the standard expression of the problem. Actually,
having admitted a priori the space-dependence of |u(x)|h our presentation
makes a di�erence in the genesis in comparison to [23]. Note that changing
|u(x)|h in the generalized Randers case does not entail the modi�cation of
navigation data (h,WR). Under a critical perturbation one who sets |u(x)|h
initially may state that it a�ects the scalar correspondance as the strict condi-
tion |u(x)|h = |W̃ (x)|h is in force. Let us also remark that unlike the Randers
case, where the entire space can be covered with the time-minimal paths, now
not all the destinations are available any more due to the fact that the wind
became stronger. In further research one could obtain the general equations or
the conditions to be ful�lled for the limit curves which determine the subspace
ofM including the �ows of Kropina geodesics for given generalized navigation
data (h, |u|h, W̃ ). Therefore, the maps on M including the areas of existing
connections traveled in the presence of a strong (critical) wind could comple-
ment the �ndings.

The solutions to the Zermelo problem are represented in the original and
the generalized formulation by the same paths up to scaling if |u|h = const.,
that is F - and F̃ -geodesics trace the same curves. Such a case corresponds to
a pair of conformal homothetic Finsler metrics, that is a special case of weakly
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conformally equivalent Finsler metrics considered in [20]. The travel times
di�er then due to the in�uence of variable |u(x)|h or, equivalently, |W (x)|h.
By Corollary 2.3 together with Corollary 2.1, the consequence is the fact that
applying any |u|h 6= 1 the passage time increases in comparison to the origi-
nal expression which determines the conformal solution of absolutely minimal
time. Furthemore, the bijection is established between Kropina spaces repre-
sented by pairs (α̃, β̃) and (h,W ) or triples (h, |u|h, W̃ ), where W̃ i = |u|hW i.
Therefore, the generalization with a spatial function |u(x)|h in the presence
of a strong wind refers to the standard problem with normalized wind, i.e.

W = W̃
|W̃ |h

. This conclusion is in line with the theory on globally de�ned

U -Kropina metrics (cf. [23]), where it follows that any Riemannian manifold
(M,h) that admits a globally de�ned nowhere vanishing vector �eld W can
be endowed with a globally de�ned U -Kropina metric. In order to see this,
it is remarked that for a Riemannian metric h and a vector �eld W on M
without zeros, it is enough to normalize W̃ . Then one can construct a U -
Kropina metric using h and W . In fact, the correlated studies coming from
the slightly di�erent starting points of view at the navigation problem meet.
This is caused directly by the main assumption on the norms' equality which
determines a very special case of the Zermelo navigation problem treated in
the paper.
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