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A gradient-type deformation of conics and a
class of Finslerian flows

Mircea CRASMAREANU

Dedicated to Academician Radu Miron on the occasion of his 90’th birthday

Abstract

The aim of this paper is to produce new examples of Riemannian
and Finsler structures having as model a scalar deformation of conics
inspired by the scaling transformation. It continues [4] from the point
of view of relationship between quadratic polynomials (which provide
equations of conics in dimension 2) and Finsler geometries. A type of
Finslerian flow is introduced, based on the previous deformation and we
completely solve the corresponding particular case of Riemannian flow.

1 Introduction

One of the major parts of mathematical activity of Professor R. Miron is
concerning Finsler geometry. On MathSciNet there are listed 91 papers and
books authored by him and dedicated to this subject. The oldest is dated
1961 and extends to arbitrary signature of the Finsler metric the techniques
of Shiing-shen Chern from the paper On the Euclidean connections in a Finsler
space, Proc. Nat. Acad. Sci. U. S. A., 29(1943), 33-37. The last one is [12].
The well-known book [10], co-authored with Professor M. Anastasiei, is a main
reference for the Finslerian mathematicians.

Another constant attention of Academician R. Miron is dedicated to (the
so-called) elementary geometry. As above, he is author of several books dedica-
ted to both fundamentals of geometry and analytical geometry, unfortunately

Key Words: conic, invariant, Finsler fundamental function, deformation, Finslerian flow.
2010 Mathematics Subject Classification: Primary 53C60; Secondary 51MB04.
Received: June 1, 2016.
Accepted: June 27, 2016.

85



A GRADIENT-TYPE DEFORMATION OF CONICS AND A CLASS OF
FINSLERIAN FLOWS 86

most of them being in Romanian. An exception is [11] co-authored with
Professor D. Brânzei.

This paper is intended to refresh the relationships between these domains
of Geometry, especially from the point of view of examples. It is desirable
to have several examples of Riemannian/Finsler structures or techniques to
construct new Riemannian/Finsler functions from some old structures in order
to obtain classes of Riemannian/Finsler geometries with special properties.
So, our work develops a scalar deformation of Finsler metrics having as model
a similar deformation of conics. From this point of view, we continue here
the paper [4] were two-dimensional Finsler geometries are studied when their
indicatrices are conics.

The paper starts with a deformation of a conic Γ based on the components
of gradient vector field for the quadratic form defining Γ. This deformation is
inspired by the scaling (linear) transformation of Computer Graphics: (x, y) ∈
R2 → (λx ·x, λy ·y) ∈ R2, following [14, p. 136]. Using the invariants from the
Euclidean geometry of conics we give the classifications of the deformations.

In the next section we move to the Riemannian-Finslerian framework of ar-
bitrary dimension and consider a deformation inspired by the previous section.
We finish this paper with a type of Finslerian flows which can be the starting
point of future studies following the way opened by the famous Ricci flow of
Riemannian geometry, [5]. Due to the complex form of Finslerian deformation
even in the Randers case, we can solve completely only the corresponding par-
ticular case of Riemannian flows. The solution is a time-dependent diagonal
metric and the flow is expanding with a blow-up at the origin. Also, we point
out a relationship between our setting and some recent bi-metric approaches
of spacetime geometries as in [2].

Acknowledgement Special thanks are offered to Professor Vladimir Balan
for several useful remarks.

2 A gradient-type deformation of conics

In the two-dimensional Euclidean space R2 let us consider the conic Γ impli-
citly defined by f ∈ C∞

(
R2
)

as: Γ = {(x, y) ∈ R2 | f (x, y) = 0} where f is
a quadratic function of the form f(x, y) = r11x

2 + 2r12xy + r22y
2 + 2r10x +

2r20y + r00 with r2
11 + r2

12 + r2
22 6= 0.

It is well-known that the gradient vector field of f , namely ∇f =(
fx = ∂f

∂x , fy = ∂f
∂y

)
, gives important properties of Γ; for example, the centers

of Γ are exactly the critical points of ∇f . Inspired by this fact we introduce:
Definition 2.1 Fix the scalars α, β with αβ 6= 0. The (α, β)-deformation
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of Γ is the conic:

Γ̃ = Γα,β : α

[
1

2
fx

]2

+ β

[
1

2
fy

]2

= 0. (2.1)

Examples 2.2: i) Fix other non-vanishing scalars a, b. The ellipse E(a, b) :
x2

a2 + y2

b2 − 1 = 0 and the hyperbola H(a, b) : x2

a2 −
y2

b2 − 1 = 0 have the same
(α, β)-deformation:

Eα,β = Hα,β :
αx2

a4
+
βy2

b4
= 0 (2.2)

which is the origin O(0, 0) for αβ > 0 and two secant lines through O if αβ < 0.
These lines are orthogonal if and only if:

α

β
= −a

4

b4
(2.3)

and consists in the pair of canonical bisectrices: B± : y = ±x. In particular,
the (1,−1)-deformation of the unit circle S1 or more generally, the (a4,−b4)-
deformation of E(a, b), respectively H(a, b), deserves this case.

Let c 6= 0 and β = −
(
cb2

a2

)2

α. Then:

Eα,β = Hα,β :
α

a4

(
x2 − c2y2

)
= 0 (2.4)

and then, Eα,β = Hα,β is exactly the set of characteristics for the 1-dimensional
homogeneous wave equation ([3, p. 54]):

uyy − c2uxx = 0, y > 0, −∞ ≤ d < x < b ≤ +∞. (2.5)

ii) For p > 0 let the parabola P (p) : y2 − 2px = 0. Its (α, β)-deformation is:

Pα,β : αp2 + βy2 = 0 (2.6)

which is the empty set for αβ > 0 and consists in two parallel lines for αβ < 0.
iii) Consider again the ellipse E(a, b) with a > b > 0. The family of all confocal
conics with E(a, b) is given by:

Γλ :
x2

a− λ
+

y2

b− λ
− 1 = 0 (2.7)

for λ ∈ R \ {a, b}. The (a− λ, b− λ)-deformation of Γλ:

(Γλ)(a−λ,b−λ) :
x2

a− λ
+

y2

b− λ
= 0 (2.8)
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is exactly the homogeneous part of Γλ. Also, Ea2,b2 is the homogeneous part
of E(a, b). �

In order to classify the (α, β)-deformations we recall the algebraic invari-
ants associated to Γ:

∆ =

∣∣∣∣∣∣
r11 r12 r10

r12 r22 r20

r10 r20 r00

∣∣∣∣∣∣ ,
D = δ + r11r00 − r2

10 + r22r00 − r2
20, I = r11 + r22, δ = r11r22 − r2

12. (2.9)

More precisely, the main result of this Section is:
Theorem 2.3 The conic Γα,β is a degenerated one. It is given by:

1) δ 6= 0, αβ > 0: Γα,β is a point,
2) δ 6= 0, αβ < 0: Γα,β consists in two secant lines,
3) δ = 0, αβ > 0: Γα,β is the empty set,
4) δ = 0, αβ < 0: Γα,β consists in two parallel lines.

Proof A straightforward computation yields the coefficients of Γ̃ = Γα,β :{
r̃11 = αr2

11 + βr2
12, r̃12 = r12(αr11 + βr22), r̃22 = αr2

12 + βr2
22,

r̃10 = αr11r10 + βr12r20, r̃20 = αr12r10 + βr22r20, r̃00 = αr2
10 + βr2

20.
(2.10)

One have:

Ĩ = αr2
11+(α+β)r2

12+βr2
22, D̃ = αβ[δ2+(r10r12−r20r11)2+(r10r22−r20r12)2].

(2.11)
From: (

r̃11 r̃12

r̃12 r̃22

)
=

(
αr11 βr12

αr12 βr22

)(
r11 r12

r12 r22

)
(2.12)

it results:
δ̃ = αβδ2. (2.13)

Also:

(r̃ij) =

 αr11 βr12 0
αr12 βr22 0
αr10 βr20 0

 r11 r12 r10

r12 r22 r20

0 0 0

 (2.14)

yields:
∆̃ = 0 (2.15)

which gives the degeneracy of Γα,β . The hypothesis of 1) yields δ̃ > 0 while

that of 2) gives δ̃ < 0. For 3) we have D̃ > 0 while 4) gives D̃ < 0. �
Remarks 2.4 i) Returning to Examples it follows that (2.2) and (2.6) are

the ”canonical forms” of (α, β)-deformations.
ii) The association Γ → Γ̃ can be considered also from a ”convex” point of
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view since Γα,β = Γ α√
α2+β2

, β√
α2+β2

. Also, if instead of the usual Euclidean

metric of plane we consider the (semi-) Riemannian metric gα,β = diag(α, β)

then the function defining Γ̃, namely αf2
x + βf2

y , is the square norm of the
gradient field ∇f with respect to gα,β .

iii) A special attention deserves the case α = β for which f̃ = α‖∇f‖2. For
this case we provide a relationship between some of the above invariants:

Proposition 2.5 For the conic Γ with unique center (i.e. δ 6= 0) we define

T = I2

δ . Then:

T̃ = (T − 2)2. (2.16)

Proof From:

T =
r2
11 + 2r11r22 + r2

22

r11r22 − r2
12

, T−2 =
r2
11 + r2

22 + 2r2
12

δ
, T̃ =

(r2
11 + r2

22 + 2r2
12)2

δ2

(2.17)
we get the conclusion. �

Obviously, a more general deformation is obtained with a third scalar γ:

Γ̃ = Γα,β,γ : α

[
1

2
fx

]2

+ β

[
1

2
fy

]2

+ γ

[
1

4
fxfy

]
= 0. (2.18)

Now we have:
r̃11 = αr2

11 + βr2
12 + γr11r12, r̃12 = r12(αr11 + βr22) + γ(r11r22 + r2

12),
r̃22 = αr2

12 + βr2
22 + γr12r22,

r̃10 = αr11r10 + βr12r20 + γr11r20, r̃20 = αr12r10 + βr22r20 + γr22r10,
r̃00 = αr2

10 + βr2
20 + γr10r20

(2.19)
yielding:{
Ĩ = γr12I + αr2

11 + (α+ β)r2
12 + βr2

22,

δ̃ = αβδ2 − (αr11 + βr22)γr12(r11r22 + r2
12)− γ2(r2

11r
2
22 + r11r

2
12r22 + r4

12).
(2.20)

3 A deformation of Finsler structures

Let M be an open subset of Rm (for a more general case see Proposition 2.3)
considered as a smooth m-dimensional manifold with m ≥ 2 and π : TM →M
its tangent bundle. Let x = (xi) = (x1, ..., xm) be the coordinates on M and
(x, y) = (xi, yi) = (x1, ..., xm, y1, ...., ym) the induced coordinates on TM .
Denote by O the null-section of π.

Recall after [10] that a Finsler fundamental function on M is a map F :
TM → R+ with the following properties:
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F1) F is smooth on the slit tangent bundle T0M := TM \ O and continuous
on O,
F2) F is positive homogeneous of degree 1: F (x, λy) = λF (x, y) for every
λ > 0,

F3) the matrix (gij) =
(

1
2
∂2F 2

∂yi∂yj

)
is invertible and its associated quadratic

form is positive definite.
The tensor field g = {gij(x, y); 1 ≤ i, j ≤ m} is called the Finsler metric and
the homogeneity of F implies:

F 2(x, y) = gijy
iyj = yiy

i (3.1)

where yi = gijy
j . The pair (M,F ) is called Finsler manifold.

Fix now the vector ᾱ = (α1, ..., αm) with all strictly positive components
although there are cases when some of them can be null or even negative.
Inspired by the previous Section we introduce:

Definition 3.1 The ᾱ-deformation of F is F̄ = Fᾱ : TM → R given by:

F̄ =

√√√√ m∑
i=1

αi
[

1

2
(F 2)yi

]2

. (3.2)

From (3.1) due to homogeneity it results a basic equation of Finsler geom-
etry:

1

2
(F 2)yi = gijy

j (3.3)

and then the ᾱ-deformation of F is:

F̄ =

√√√√ m∑
i=1

αi (gijyj)
2

=

√√√√ m∑
i=1

αiy2
i . (3.4)

This new Fislerian fundamental function yields a new Finslerian metric ḡ = gᾱ

which we call the ᾱ-deformation of g.
Example 3.2 (Riemannian geometry) Let a = (aij(x)) be a Riemannian

metric on M . It is well-known that F =
√
aijyiyj is a Finslerian structure on

M with g = a. Then F̄ 2 =
∑
i α

i(aijy
j)2 gives:

F̄ 2
yu = 2

m∑
i=1

αi(aijy
jaiu) (3.5)

which yields the new Riemannian metric ā:

ḡuv := āuv =

m∑
i=1

αiaiuaiv. (3.6)
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In the particular case m = 2 we get:

ā11 = α1a2
11 + α2a2

12, ā12 = a12(α1a11 + α2a22), ā22 = α1a2
12 + α2a2

22 (3.7)

which is exactly (2.101) with α1 = α, α2 = β and r → a.
For the general m, if a is a diagonal Riemannian metric i.e. aij = 0 for

i 6= j then ā is also diagonal with:

āuu = αua2
uu. (3.8)

For example, it follows that the well-known Poincaré upper half-plane model
of m-dimensional hyperbolic geometry ([13, p. 74]):

Hm
+ = {x = (x1, ..., xm) ∈ Rm;xm > 0}, ā =

1

(xm)
2

(
d(x1)2 + ...+ d(xm)2

)
(3.9)

can be considered as the (1, ..., 1)-deformation of the metric:

a =
1

xm
(
d(x1)2 + ...+ d(xm)2

)
(3.10)

which we call (1, ..., 1)-source of the Poincaré metric. If we start with the
Poincaré metric and apply the (1, ..., 1)-deformation we get another metric:

ā =
1

(xm)4

(
d(x1)2 + ...+ d(xm)2

)
(3.11)

which can be called (1, ..., 1)-target of the Poincaré metric. In follows that the
Poincaré metric belongs to the discrete flow of metrics:

ap =
1

(xm)p
(
d(x1)2 + ...+ d(xm)2

)
(3.12)

with p ∈ {2n : n ∈ Z} and for m = 2 the Gaussian curvature of this metric is:

Kp(x
1, x2) =

−p
2(x2)2−p < 0. (3.13)

Let us remark that in [8] it is studied the metric (3.12) for m = 3 and p ∈
{2n : n ∈ Z∗} from the point of view of Laplace operator.

Another important example of diagonal metric is that of 2D warped metric:

a = dr2 + f2(r)dθ2. (3.14)

Then:
ā = α1dr2 + α2f4(r)dθ2 (3.15)
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and it is easy to see that ā is also a warped metric: with r̄ =
√
α1r and

f̄(r̄) =
√
α2f2( r̄√

α1
) we obtain that ā = dr̄2 + f̄2(r̄)dθ.

Returning to the general m-dimensional case (3.8) let us remark that a
diagonal metric a has only three types of non-zero Christoffel symbols: Γuuu,
Γvuu, Γuuv. A straightforward computations yields the transformation of the
Levi-Civita connections ∇ → ∇̄ corresponding to the transformation (3.8):

Γ̄uuu = 2Γuuu, Γ̄vuu =
2αu

αv
Γvuu, Γ̄uuv = 2Γuuv (3.16)

which yields:
Proposition 3.3 Let ᾱ = (1, ..., 1) and g be a diagonal Riemannian met-

ric on the general manifold M in a fixed atlas. Then the possibility of ᾱ-
deformation yields an affine structure on M i.e. the given atlas is affine.

Proof The very brief theory of affine manifolds is exposed in [1]. From
(3.16) and the expression of ᾱ we have that the change of Levi-Civita connec-
tions is ∇̄ = 2∇. But using the well-known law of change of the Christoffel
symbols at a change of charts (xi) → (x̃a) for both ∇ and ∇̄ we derive that
∂2xi

∂x̃a∂x̃b
= 0 which means the conclusion. �

Example 3.4 (Randers geometry) Let F be a Randers fundamental func-
tion of Minkowski type:

Fb(x, y) = Fb(y) =
√

(y1)2 + ...+ (ym)2 + by1 (3.17)

with 0 < b < 1. The corresponding Finsler metric is:

gb11 = 1 + b2 + b
2(y1)3 + 3y1

∑m
j≥2(yj)2

(
∑m
i=1(yi)2)

3
2

, gb1j =
byj
∑
r≥2(yr)2

(
∑m
i=1(yi)2)

3
2

,

gbjj = 1 +
by1
∑
i 6=j(x

i)2

(
∑m
i=1(yi)2)

3
2

, gbjk = −b y1yjyk

(
∑m
i=1(yi)2)

3
2

(3.18)

for 2 ≤ j, k ≤ m and j 6= k. Since the computations becomes very complicated
we restrict from now to m = 2. It follows:

F̄ 2 = α1

[
(1 + b2)y1 +

b(2(y1)2 + (y2)2)√
(y1)2 + (y2)2

]2

+
α2
(
y2
)2

(y1)2 + (y2)2
F 2. (3.19)

A more detailed formula for this Finslerian fundamental function is:

F̄ 2 = α1

[
(1 + 5b2 + b4)(y1)2 + b2(y2)2 +

b2(y1)4

(y1)2 + (y2)2
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+2b(1 + b2)y1
√

(y1)2 + (y2)2 +
2b(1 + b2)(y1)3)√

(y1)2 + (y2)2

]
+

α2
(
y2
)2

(y1)2 + (y2)2
F 2 (3.20)

which proves that this type of deformation can covers a large class of metrics.
For the expression of ḡ we give only one:

ḡ22 = α1b2{1− (y1)4[(y1)2 − (y2)2]

[(y1)2 + (y2)2]3
+

3(1 + b2)(y1)3(y2)2

b[(y1)2 + (y2)2]
3
2

}

+
α2

2

∂2

∂(y2)2

[
(y2)2

(y1)2 + (y2)2
F 2

]
(3.21)

and we remark that:

lim
b→0

ḡ22 = α1 3(y1)3(y2)2

[(y1)2 + (y2)2]
5
2

+ α2 6= 1 = g0
22. (3.22)

This proves that the new Finslerian structure F̄ defines a new Finsler geometry
on M . �

Returning to the general Finslerian case we introduce the Cartan tensor:

Cijk =
1

4

∂3F 2

∂yiyjyk
. (3.23)

The homogeneity of F implies:

Cijky
k = Cijky

i = Cijky
j = 0 (3.24)

and then:

F̄ 2
yu = 2

m∑
i=1

αi(gijy
j)giu = 2

m∑
i=1

αiyigiu. (3.25)

It follows the general formula for the ᾱ-deformation of g:

ḡuv =

m∑
i=1

αi[giugiv + 2(gijCiuv)y
j ] =

m∑
i=1

αi[giugiv + 2yiCiuv] (3.26)

and, since the Riemannian metrics are characterized by the vanishing of the
Cartan tensor, we recast (3.6) in the particular case of Riemannian manifolds.

Example 3.5 (Spherically symmetric Finsler functions) Let I ⊆ R+ be
an interval and A,B : I → R two smooth functions. Denoting by <,> the
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Euclidean inner product and by |y| the Euclidean norm of the vector y we
define the orthogonally invariant Finsler function:

F (x, y) =
√
A(|x|2)|y|2 +B(|x|2) < x, y >2. (3.27)

Its ᾱ-deformation is:

F̄ 2 = A2[
∑

αi(yi)2]+B2 < x, y >2 [
∑

αi(xi)2]+2AB < x, y > (
∑

αixiyi).

(3.28)
In particular, for ᾱ = (1, ..., 1) we obtain:

F̄ =
√
Ā|y|2 + B̄ < x, y >2, Ā(t) = A2(t), B̄(t) = t·B2(t)+2A(t)B(t). (3.29)

For example, let c ∈ {+1, 0,−1} and the Riemannian space-form (Mc, g
c) pro-

vided by the curvature equal to c. We have the Finsler fundamental function:

F c(x, y) =

√
(1 + c|x|2)|y|2 − c < x, y >2

1 + c|x|2
(3.30)

and the Riemannian metric:

gcij =
(1 + c|x|2)δij − cxixj

(1 + c|x|2)2
. (3.31)

Hence:

Ac(t) =
1

1 + ct
, Bc(t) =

−c
(1 + ct)2

(3.32)

where for c = −1 the defining interval is [0, 1), while for c ∈ {0,+1} we have
I = R+. It results:

Āc(t) =
1

(1 + ct)2
, B̄c(t) =

−2c− c2t
(1 + ct)4

. (3.33)

It can be see also from (3.8) that the Euclidean geometry is a fixed point of
the transformation F → F̄ when ᾱ = (1, ..., 1). The Riemannian metric of
(3.27) respectively (3.29) is:

gij = Aδij +Bxixj , ḡij = Āδij + B̄xixj . (3.34)

4 Finslerian flows

For the given manifold M let Finsler(M×R) be the infinite space of all possi-
ble time-dependent Finslerian metrics on M as well as T s2 (TM ×R) the space
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of all time-dependent symmetric tensor fields of (0, 2)-type on TM . Following
the theory of geometric (more precisely Riemannian) flows we introduce:

Definition 4.1 A Finslerian flow on M is a dynamical system modeled
by the partial differential equations:

∂tgt = F(gt) (4.1)

where F : Finsler(M × R)→ T s2 (TM × R) is a given map and gt is a family
of Finslerian metrics depending on the parameter t belonging to the interval
I ⊆ R.

Examples 4.2 i) (Special Riemannian flows) If we restrict the functional
F to Riemann(M × R) to be the (−2)Ricci curvature then we obtain the fa-
mous Ricci flow provided the proof of two outstanding conjectures: Poincaré
Conjecture and Thurston Geometrization Conjecture. For a relationship be-
tween Randers metrics and Ricci solitons via the Zermelo navigation problem
see [6].
Other famous Riemannian flows are: the Calabi flow and the Yamabe flow.
ii) (Poincaré flow) The discrete Poincaré flow of Example 3.2 can be considered
as part of the Riemannian flow:

g(t) =
1

(xm)t
(
d(x1)2 + ...+ d(xm)2

)
(4.2)

which satisfies: ∂tgt = (− lnxm) · gt. Thus, we have the Poincaré flow:

FPoincare : Riemann(Hm
+ × R)→ T 2

s (THm
+ × R),FPoincare(g) = (− lnxm) · g

(4.3)
which is a conformal flow.
iii) (Randers flow) In the Randers example 3.4 we re-denote b as t. Then the
Randers metric (3.18) is, for m = 2:

g(t)11 = 1 + t2 + t
2(y1)3 + 3y1(y2)2

((y1)2 + (y2)2)
3
2

, g(t)12 =
t(y2)3

((y1)2 + (y2)2)
3
2

,

g(t)22 = 1 +
t(y1)3

((y1)2 + (y2)2)
3
2

. (4.4)

equivalently:

g(t) = gt = I2+
t

[(y1)2 + (y2)2]
3
2

(
2(y1)3 + 3y1(y2)2 (y2)3

(y2)3 (y1)3

)
+t2

(
1 0
0 0

)
.

(4.5)
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It follows a Finslerian flow with g(0) = I2. From y2 = y1 3

√
g12
g22

we get:

FRanders(g) =
1

[(g12)
2
3 + (g22)

2
3 ]

3
2

(
2g22 + 3 3

√
g2

12g22 g12

g12 g22

)
+ 2t

(
1 0
0 0

)
.

(4.6)

The associated wave system is: ∂ttgt = 2

(
1 0
0 0

)
. We finish this Example

with the remark that time-dependent Randers metrics are recently used in the
study of causal relationships on space-time manifolds in [15]. �

Returning to the general Finslerian framework and vector ᾱ of previous
Section we consider:

Definition 4.3 The Finslerian ᾱ-flow is that given by:

F(g) = ḡ = gᾱ. (4.7)

Inspired by [7] we introduce the corresponding volume variation as the smooth
function V : TM × R→ TM × R given by:

∂tV (x, y, t) =

m∑
i,j=1

ḡijg
ij (4.8)

where, as usual, gij are the components of inverse g−1.
Example 4.4 (Riemannian ᾱ-flow) With the notations of Example 3.2 we

have:

∂tauv =

m∑
i=1

αiaiuaiv (4.9)

with the solution:

a(t) =
−1

t
diag(

1

α1
, ...,

1

αm
) (4.10)

on I = R− = (−∞, 0). Indeed, a careful look at (4.9) with respect to the
powers of t suggests the form:

a(t) =
1

t
(bij(x)) (4.11)

and then we obtain:

−buv =

m∑
i=1

αibiubiv. (4.12)

Since a is a Riemannian metric it follows that b is also a metric and then it is
invertible. Let us multiply (4.12) with bvk, hence:

−δku =

m∑
i=1

αibiuδ
k
i = αkbku (4.13)
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with the solution: bkk = − 1
αk

. We have also:

ā =
1

t2
diag(

1

α1
, ...,

1

αm
), a−1 = (−t) · diag(α1, ..., αm) (4.14)

and therefore:

∂tV (x, t) =

m∑
i=1

(−1

t
) = −m

t
> 0 (4.15)

which means that the Riemannian ᾱ-flow is expanding with the volume vari-
ation (not depending of point):

V (x, t) = V (t) = −m ln(−t). (4.16)

As in the spectral geometry we ask if the flow produces some informations
about the geometry of manifold. From (4.15) it results that the ᾱ-flow gives
the dimension of manifold by:

dimM = −V (−e). (4.17)

The point t0 = −1 ∈ I is the unique zero of V and for ᾱ = (1, ..., 1) the
solution a(−1) is the Euclidean metric on M = Rm. �

The general Finslerian ᾱ-flow admits the solution:

g(x, y, t) =
1

t

(
b(x, y)− diag(

1

α1
, ...,

1

αm
)

)
(4.18)

where the tensor field b = (bij(x, y)) satisfies the algebraic-differential system:

δuv
αu
− buv =

m∑
i=1

αi[(biu −
δiu
αu

)(biv −
δiv
αv

) + 2(bij −
δij
αi

)
∂buv
∂yi

yj ] (4.19)

with δ∗ the Kronecker delta symbol. If Fb(x, y) is the Finsler fundamental
function yielding the metric b through (2.1) then the time-dependent Finsler
function Fg generating g(t) is:

Fg(x, y, t) =

√
1

t
{F 2

b (x, y)− [
1

2α1
(y1)2 + ...+

1

2αm
(ym)2]}. (4.20)

Let us remark that there are two autonomous Finsler functions in the right
hand side of (4.20): Fb and the Riemannian energy yielding the diagonal con-
stant metric

(
diag( 1

α1 , ...,
1
αm )

)
; let us remark that this last metric is exactly

the 1
ᾱ := ( 1

α1 , ...,
1
αm )-deformation of the ambient Euclidean metric of M as
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subset of Rm. In the reference [16], from two Finsler functions F+, F−, it is
obtained a bi-metric:

F =
√
F+ · F−. (4.21)

The negative result of [16] concerning the physical implications of this metric
as well as the considerations of our Section 1 suggests other two deformations:

F2,α,β =
√
αF 2

+ + βF 2
−, Fm,α,β = m

√
αFm+ + βFm− , m ∈ N∗ (4.22)

which will be studied in a future work. Let us finish with the interplay between
Euclidean and Hyperbolic geometry on Hm

+ ; more precisely we consider:

F+ :=
1

2
[(y1)2 + ...+ (ym)2], F−, p :=

1

2(xm)p
[(y1)2 + ...+ (ym)2]. (4.23)

Hence the bi-metric Finsler function (3.21) is exactly F−, p/2 and we recover
the discrete (dyadic) Poincaré flow of Example 2.2.
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