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Infinitely many solutions for a class of
hemivariational inequalities involving

p(x)-Laplacian

Fariba Fattahi, Mohsen Alimohammady

Abstract

In this paper hemivariational inequality with nonhomogeneous Neu-
mann boundary condition is investigated. The existence of infinitely
many small solutions involving a class of p(x)−Laplacian equation in a
smooth bounded domain is established. Our main tool is based on a
version of the symmetric mountain pass lemma due to Kajikiya and the
principle of symmetric criticality for a locally Lipschitz functional.

1 Introduction

We are concerned with the study of the nonlinear elliptic differential inclu-
sion involving the p(x)−Laplacian equation{

−∆p(x)u+ |u|p(x)−2u = λ|u|q(x)−2u in Ω

−|∇u|p(x)−2 ∂u
∂ν ∈ −∂F (x, u) on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded smooth domain, ∂u
∂ν is the outer unit
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normal derivative on ∂Ω.
p, q : Ω̄→ R are continuous functions satisfying

1 < p− = min
x∈Ω̄

p(x) ≤ p(x) ≤ p+ = max
x∈Ω̄

p(x) < +∞,

such that infx∈Ω̄(q(x)−p(x)) > 0, λ is a real parameter, λ < q−λ∗
p+ . F : Ω×R→

R is locally Lipschitz function given by F (x, ω) =
∫ ω

0
f(x, t)dt, ω ∈ R such

that f : ∂Ω× R→ R is locally essentially bounded function. ∂F (x, u) denote
the generalized Clarke gradient of F (x, u).

u ∈ X := W
1,p(·)
0 (Ω) is said to be a weak solution of problem (1.1), if∫

Ω

|∇u(x)|p(x)−2∇u(x)∇v(x)dx+

∫
Ω

|u|p(x)−2uvdx

= λ

∫
Ω

|u(x)|q(x)−2u(x)v(x)dx+

∫
∂Ω

g∗v(x)dσ, ∀v ∈ X,

with g∗ ∈ Lr
′(x)(Ω) (for some r ∈ (p, p∗), 1

r(x) + 1
r′(x) = 1 and g∗(x) ∈

∂F (x, u(x)).

We point out λ∗ is the Rayleigh quotient associated with our problem, that
is

λ∗ := inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω

1
p(x) |∇u|

p(x)dx+
∫

Ω
1

p(x) |u|
p(x)dx∫

Ω
1

q(x) |u|q(x)dx
.

The operator ∆p(x)u = div(|∇u|p(x)−2∇u) is the so-called p(x)−Laplacian
which becomes p−Laplacian when p(x) ≡ p is a constant. In particular, we
refer on the applications to p(x)−Laplacian problems in (cf. [21], [2], [7]).
However, these papers are considered the application of the main results in
order to achieve the existence of infinitely many solutions, but did not give
more information on the sequence of solutions. This difficulty was overcome
by Kajikiya who, in (cf. [14]) presented the definitive version of the infinitely
many points related to the symmetric mountain pass lemma and applied to a
sublinear elliptic equation.
In recent years, differential equations and variational problems have been stud-
ied in many papers, we refer to some interesting works (cf. [24], [25]).
Indeed, the investigation of existence and multiplicity of solutions for problems
with p(x)−Laplacian operators via Kajikiya lemma has drawn the attentions
of many authors; In (cf. [15]) authors studied the existence of at least one
solution and infinitely many solutions of p(x)−biharmonic problem by using
mountain pass theorem, fountain theorem, symmetric mountain pass lemma
due to Kajikiya; In (cf. [16]) authors studied the existence and multiplicity
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of solutions to the fractional Kirchhoff-type problem by using critical point
theorems and the truncation technique; In (cf. [17]) authors studied the ex-
istence and multiplicity of solutions for the problem Kirchhoff-type problem
by variational methods; In (cf. [18]) authors studied the existence of infinitely
many solutions in a bounded domain via variational tools.
In the past decades, the existence and uniqueness of solutions to several classes
of nonlinear inclusions for variational and hemivariational inequalities were
considered. These types of inequalities have established a new subject in non-
smooth analysis, due to these fields are based on the subdifferential in the
sense of Clarke of locally Lipschitz functionals. The theory of hemivariational
inequalities has given significant consequence both in pure and applied math-
ematics and it is valuable to comprehend many problems of mechanics and
engineering for non-convex, non-smooth functionals.
The applications to non-smooth variational problems have been seen in many
papers, in (cf. [4]) authors studied the existence of infinitely many solutions
for variational-hemivariational inequalities with nonhomogeneous Neumann
boundary conditions; in (cf. [12]) authors studied the existence of infinitely
many anti-periodic solutions for a second-order impulsive differential inclusion
problem for non-smooth functionals; in (cf. [13]), author studied the existence
of infinitely many radial respective non-radial solutions for a class of hemivari-
ational inequalities; in (cf. [23]), authors studied variational-hemivariational
inequalities for the existence of a whole sequence of solutions with non-smooth
potential and non-zero Neumann boundary condition; in (cf. [5]), authors
studied variational-hemivariational inequalities involving the p-Laplace oper-
ator and a nonlinear Neumann boundary condition; in (cf. [1]), authors studied
variational-hemivariational inequality by using the mountain pass theorem for
the existence of at least one solution to a boundary value problem involving
the p(x)−biharmonic operator.
In the present paper, we extend the existence of infinitely many arbitrarily
small solutions converging to zero by new version of the symmetric mountain
pass lemma due to Kajikiya (cf. [14]) to a class of locally Lipschitz function-
als. Motivated by reasons above, we prove the existence of infinitely many
solutions for a hemivariational inequality depending on one parameter for a
differential inclusion p(x)−Laplacian problem. The main tool used in our pa-
per is applying the non-smooth version of the symmetric mountain pass lemma
is the principle of criticality for a locally Lipschitz functional.
We start the paper by giving in section 2 the properties of the generalized
Sobolev space. Also we present some definitions and properties for the gener-
alized gradient of the locally Lipschitz functionals. The main part is concerned
with the existence of infinitely many solutions for a class of nonlinear hemi-
variational inequalities on bounded domain by using non-smooth symmetric
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mountain pass lemma for locally Lipschitz functionals.

2 Preliminaries

In order to deal with the problem (1.1), we need some theory of variable
exponent Sobolev space. We prepare the basic definitions and properties in
the framework of the generalized Lebesgue and Sobolev spaces (cf. [9], [10],
[11]). For convenience, we only recall some basic facts which will be used later.
Let Ω ⊂ RN a bounded domain. Denote

C+(Ω) = {p(x); p(x) ∈ C(Ω), p(x) > 1, for all x ∈ Ω}.

For any Lipschitz continuous function p : Ω → (1,∞) denote by 1 < p− =
minx∈Ω̄ p(x) ≤ p+ = maxx∈Ω̄ p(x) < +∞.

The variable exponent Lebesgue space Lp(·)(Ω) is defined by

{u : Ω −→ R :

∫
Ω

|u(x)|p(x)dx <∞}.

Lp(·)(Ω) is endowed by the Luxemburg norm

|u|p(·) = inf { µ > 0 :

∫
Ω

|u(x)

µ
|p(x)dx} ≤ 1}.

The generalized Lebesgue-Sobolev space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)}.

The space W
1,p(·)
0 (Ω) denotes the closure in W 1,p(·)(Ω) of the set of all

W 1,p(·)(Ω)−functions with compact support.

Proposition 2.1. (cf. [11])

(1) The spaces Lp(·)(Ω),W
1,p(·)
0 (Ω) are separable, reflexive, Banach spaces.

(2) The function space
(
Lp(·)(Ω), ‖u‖p(·)

)
is a separable and reflexive Ba-

nach space, where

‖u‖p(·) = inf { µ > 0 :

∫
Ω

|u(x)

µ
|p(x)dx} ≤ 1}.

(3) Let p′1 be the function obtained by conjugating the exponent p1 point-
wise, that is 1

p1(x) + 1
p′1(x) = 1 for all x ∈ Ω̄, then p′1 belongs to C+(Ω). For any

u ∈ Lp1(·)(Ω) and v ∈ Lp′1(·)(Ω), the following Hölder type inequality valid,∫
Ω

|u(x)v(x)|dx ≤ (
1

p−1
+

1

p′−1
)‖u‖p1(·)‖v‖p′1(·),
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where Lṕ1(·)(Ω) is the conjugate space of Lp1(·)(Ω).
(4) Let p∗ denote the critical variable exponent related to p, on Ω̄ and k ≥ 1,

p∗(x) =


Np(x)
N−p(x) p(x) < N,

+∞ p(x) ≥ N,
(2.1)

p∗k(x) =


Np(x)

N−kp(x) kp(x) < N,

+∞ kp(x) ≥ N.
(2.2)

(5) For p, q ∈ C+(Ω) in which q(x) ≤ p∗(x) for each x ∈ Ω, there is a contin-
uous embedding

W 1,p(·)(Ω) ↪→ Lq(·)(Ω),

the embedding is compact if q(x) < p∗(x) for each x ∈ Ω̄.

(6) For every u ∈W 1,p(·)
0 (Ω) the Poincaré inequality holds, i.e., there exists a

positive constant Cp in which

‖u‖Lp(·)(Ω) ≤ Cp‖∇u‖Lp(·)(Ω).

(7) If p1, p2 ∈ C(Ω̄) and 1 ≤ p1 ≤ p2 in Ω, then the embedding Lp2(·) ↪→ Lp1(·)

is continuous.
(8) Since p2(x) < p1(x) for any x ∈ Ω it follows that W

1,p1(·)
0 (Ω) is continu-

ously embedded in W
1,p2(·)
0 (Ω).

(9) (W
1,p(·)
0 (Ω), ‖ · ‖) is a separable and reflexive Banach space. Define

‖u‖ = inf{λ > 0 :

∫
Ω

[|∇u
λ
|p(x) + |u

λ
|p(x)]dx ≤ 1},

for all u ∈W 1,p(·)
0 (Ω).

Proposition 2.2. (cf. [11]) Let p ∈ C+(Ω). Set ϕp(·)(u) =
∫

Ω
|u(x)|p(x)dx. If

u, {un}n are in Lp(·)(Ω), when 1 ≤ p− ≤ p+ ≤ ∞, then the following relations
hold:

(i) ‖u‖p(·) ≥ 1⇒ ‖u‖p−p(·) ≤ ϕp(·) ≤ ‖u‖
p+
p(·),

(ii) ‖u‖p(·) ≤ 1⇒ ‖u‖p+p(·) ≤ ϕp(·) ≤ ‖u‖
p−
p(·).
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Proposition 2.3. (cf. [11]) Define Φ(u) =
∫

Ω
[|∇u|p(x) + |u(x)|p(x)]dx. For

u, {un}n ∈ X,

(i) ‖u‖ < (=;>)1⇔ Φ(u) < (=;>)1,

(ii) ‖u‖ ≤ 1⇒ ‖u‖p
+

≤ Φ(u) ≤ ‖u‖p
−
,

(iii) ‖u‖ ≥ 1⇒ ‖u‖p
−
≤ Φ(u) ≤ ‖u‖p

+

,

(iv) ‖un‖ → 0⇔ Φ(un)→ 0,

(v) ‖un‖ → ∞⇔ Φ(un)→∞.

Let η : ∂Ω → R be a measurable. Define the weighted variable exponent
Lebesgue space by

L
p(x)
η(x)(∂Ω) =

{
u : ∂Ω→ R is measurable and∫

∂Ω

|η(x)||u|p(x)dσ <∞
}
,

with the norm

|u|(p(x),a(x)) = inf{τ > 0;

∫
∂Ω

|η(x)||u
τ
|p(x)dσ ≤ 1},

where dσ is the measure on the boundary.

Lemma 2.4. (cf. [8]) Let ρ(x) =
∫
∂Ω
|a(x)||u|p(x)dσ for u ∈ L

p(x)
a(x)(∂Ω) we

have
|u|(p(x),η(x)) ≥ 1⇒ |u|p

−

(p(x),η(x)) ≤ ρ(u) ≤ |u|p
+

(p(x),η(x)),

|u|(p(x),η(x)) ≤ 1⇒ |u|p
+

(p(x),η(x)) ≤ ρ(u) ≤ |u|p
−

(p(x),η(x)).

Define

p∂(x) = (p(x))∂ :=


(N−1)p(x)
N−p(x) p(x) < N,

+∞ p(x) ≥ N,
(2.3)

p∂(x)r(x) :=
r(x)− 1

r(x)
p∂(x),

where x ∈ ∂Ω, r ∈ C(∂Ω,R) and r(x) > 1.
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Proposition 2.5. (cf. [19], [20]) If q ∈ C+(Ω) and q(x) < p∗∂(x) for any
x ∈ Ω, then the embedding from W 1,p(·)(Ω) to Lq(x)(∂Ω) is compact and con-
tinuous.

In this part we give a brief overview on some prerequisites on non-smooth
analysis which are needed in the sequel. Let X be a Banach space and X?

its topological dual. By ‖ · ‖ we will denote the norm in X and by < ·, · >X
the duality brackets for the pair (X,X?). A function f : X → R is said to be
locally Lipschitz, if for every x ∈ X there exists a neighbourhood U of x and
a constant K > 0 depending on U such that |f(y)− f(z)| ≤ K‖y − z‖ for all
y, z ∈ U.
Let f : X → R be a locally Lipschitz functional and u, v ∈ X, v 6= 0. We call
the generalized directional derivative of f in u with respect to the direction v
the number

f0(u; v) = lim sup
w→u,λ→0+

f(w + λv)− f(w)

λ
.

The generalized gradient of f at u ∈ X is defined by

∂f(u) = {x? ∈ X? : < x?, v >X≤ f0(u; v), ∀v ∈ X},

which is a nonempty, convex and w?−compact subset of X?, where < ·, · >X
is the duality pairing between X? and X.
A point x ∈ X is said to be a critical point of the locally Lipschitz functional
f : X → R if 0 ∈ ∂f(x), that is, f0(x, v) ≥ 0, for every v ∈ X\{0}.

Proposition 2.6. (cf. [6]) Let h, g : X → R be locally Lipschitz functionals.
Then, for every u, v ∈ X the following conditions hold:
(1) h0(u; ·) is subadditive, positively homogeneous;
(2) ∂h is convex and weakly∗ compact;
(3) (−h)0(u; v) = h0(u;−v);
(4) the set-valued mapping h : X → 2X

∗
is weakly∗ u.s.c.;

(5) h0(u; v) = maxu∗∈∂h(u) < u∗, v >;
(6) ∂(λh)(u) = λ∂h(u) for every λ ∈ R;
(7) (h+ g)0(u; v) ≤ h0(u; v) + g0(u; v);
(8) the function m(u) = minν∈∂h(u) νX∗ exists, and is lower semi continuous;
i.e., lim infu→u0

m(u) ≥ m(u0).

To indicate the existence for solution of (1.1), we consider a functional
J(u) = φ(u)+λI(u)−F(u) associated to (1.1) which is defined by J(u) : X → R
such that ∀u ∈ X

φ(u) =

∫
Ω

1

p(x)
[|∇u|p(x) + |u|p(x)]dx, I(u) =

∫
Ω

1

q(x)
|u|q(x)dx,
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F(u) =

∫
∂Ω

F (x, u(x))dσ.

Proposition 2.7. (cf. [22]) The operator φ
′
(u) : X → X? is given by

< φ
′
(u), v >=

∫
Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv)dx, ∀u, v ∈ X.

and satisfies the following properties:
(i) φ

′
is continuous, bounded and strictly monotone.

(ii) φ
′

is of (S+) type.
(iii) φ

′
is a homeomorphism.

Definition 2.8. The functional I : X → X? verifies the (S+) property if for
any weakly convergence sequence {un}n ⊂ X to u in X and

lim sup
n→∞

< I(un), un − u >≤ 0,

implies that {un}n converges strongly to u in X.

We say that I satisfies the nonsmooth Palais-Smale condition, if any sequence
{xn}n≥1 ⊆ X such that {I(xn)}n≥1 is bounded and m(xn) = min{‖x∗‖∗ :
x∗ ∈ ∂I(xn)} ⇒ 0 as n→∞, has a strongly convergent subsequence.

3 Main Result

We assume that F : Ω × R → R is a Carathéodory function, which is locally
Lipschitz in the second variable and satisfying the following properties:
(F1) For almost all x ∈ Ω and all v ∈ ∂F (x, t), we have |v| ≤ α(x) with
α(x) ∈ L∞+ (Ω) = {f ∈ L∞(Ω) : ess infx∈Ωf(x) > 0};
(F2) |F (x, s)| ≤ ε|s|q+ + c(ε) for all (x, s) ∈ Ω× R, q− ≤ q+ < (p∗)−;

(F3) lim|u|→0+
f(x,u)

up−−1
=∞ uniformly for x ∈ ∂Ω.

We state our main result in the following theorem.

Theorem 3.1. Suppose that conditions F1 − F3 are satisfied. Then there
exists λ∗ such that for any λ ∈ (0, λ∗), problem 1.1 has a sequence of non-
trivial solutions {un} and un → 0 as n→∞.

For proving our main result, we need some lemmas and a proposition.
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Lemma 3.2. Suppose that Fi, i = 1, 2, 3 hold and λ ∈ (−∞, q
−λ∗
p+ ). Then

functional J satisfies the Palais-Smale condition.

Proof. Let {un}n≥1 ⊆ W
1,p(·)
0 (Ω) be a sequence such that {J(un)}n≥1 is

bounded andm(un)→ 0 as n→∞.We will show that the sequence {un}n≥1 ⊆
W

1,p(·)
0 (Ω) is bounded.

Assume by contradiction by passing to a subsequence, we can suppose that
‖un‖ → ∞ as n→∞.
Let zn = un

‖un‖ for all n ≥ 1. Up to a subsequence, we assume that

zn → z in Lp(·)(Ω),

zn(x)→ z(x) a.e. in Ω,

zn ⇀ z in X,

as n→∞.
Applying Lebourg’s mean value theorem (cf. [6]), imply the existence of

vn(x) ∈ ∂(x, θxun(x)) with 0 < θx < 1 for almost all x ∈ ∂Ω and for all n ≥ 1,

such that
|F (x, un(x))− F (x, 0)| = θxun(x) ≤ |θx| · |un(x)|.

From hypothesis F1,

|F (x, un(x))| ≤ |F (x, 0)|+ α(x)|un(x)| ≤ α1 + α1|un(x)|,

for some α1, α2 > 0.
Then

|
∫
∂Ω

F (x, un(x))

‖un‖ς
| ≤

∫
∂Ω

|F (x, un(x))|
‖un‖ς

≤
∫
∂Ω

α1 + α1|un(x)|
‖un‖ς

≤ α3

‖un‖ς
+

α4

‖un‖ς−1
,

∀ς > 1 and for some α3, α4.

Hence,

F (x, un(x))

‖un‖ς
→ 0 as n→∞. (3.1)

Due to |J(un)| ≤M and ‖un‖ → ∞ for all n ≥ 1, we can assume that ‖un‖ ≥ 1
and ∫

Ω

1

p(x)
|∇un|p(x)dx−

∫
Ω

λ

q(x)
|un|q(x) −

∫
∂Ω

F (x, un(x))dx ≤M. (3.2)
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These are two cases.
Case 1. λ > 0.∫

Ω

1

p+
|∇un|p(x)dx−

∫
Ω

λ

q−
|un|q(x) −

∫
∂Ω

F (x, un(x))dx ≤M. (3.3)

By the definition of λ∗, and the continuous embedding of X into Lq(·)(Ω)∫
Ω

( 1

p+
− λ

q−λ∗

)
|∇un|p(x)dx−

∫
∂Ω

F (x, un(x))dx ≤M. (3.4)

We consider now two subcases.
Subcase 1.1. Suppose that there exists a sequence {un}n≥1 ⊆ Lp(·)(Ω) such
that

‖∇un‖p(·) ≤ 1 for all n ≥ 1.

According to proposition 2.3 it follows that∫
Ω

( 1

p+
− λ

q−λ∗

)
|∇un|p

+

p(·)dx−
∫
∂Ω

F (x, un(x))dx ≤M.

Dividing the inequality by ‖un‖p
+

∫
Ω

( 1

p+
− λ

q−λ∗

)
|∇zn|p

+

p(·)dx−
∫
∂Ω

F (x, un(x))

‖un‖p+
dx ≤ M

‖un‖p+
. (3.5)

By the fact that 1
p+ −

λ
q−λ∗

> 0 and (3.1), it leads to

∇zn → 0 in Lp(·)(Ω). (3.6)

Subcase 1.2. If subcase 1.1 does not hold, then we can suppose that there
exists a subsequence {un}n≥1 ⊆ Lp(·)(Ω) such that

‖∇un‖p(·) > 1 for all n ≥ 1.

According to the proposition 2.3, it follows that∫
Ω

( 1

p+
− λ

q−λ∗

)
|∇un|p

−

p(x)dx−
∫
∂Ω

F (x, un(x))dx ≤M.

Dividing the inequality by ‖un‖p
−

∫
Ω

( 1

p+
− λ

q−λ∗

)
|∇zn|p

−

p(·)dx−
∫
∂Ω

F (x, un(x))

‖un‖p−
dx ≤ M

‖un‖p−
. (3.7)
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If we pass to the limit as n→∞ in (3.7) and relation (3.1),

∇zn → 0 in Lp(·)(Ω). (3.8)

Consequently, by (3.6) and (3.8)

∇zn → 0 in Lp(·)(Ω). (3.9)

Case 2. Let λ ≤ 0. Using (3.2),∫
Ω

1

p+
|∇un|p(x)dx−

∫
∂Ω

F (x, un(x))dx ≤M. (3.10)

Again, as already shown, there are two subcases.
Subcase 2.1. Suppose that there exists a {un}n≥1 ⊆ Lp(·)(Ω) such that

‖∇un‖p(·) ≤ 1 for all n ≥ 1.

According to proposition 2.3

1

p+
‖∇un‖p

+

p(·) −
∫
∂Ω

F (x, un(x))dx ≤M.

Dividing the inequality by ‖un‖p
+

∫
Ω

1

p+
|∇zn|p

+

p(·)dx−
∫
∂Ω

F (x, un(x))

‖un‖p+
dx ≤ M

‖un‖p+
. (3.11)

By the fact that 1
p+ > 0 and (3.1),

∇zn → 0 in Lp(·)(Ω). (3.12)

Subcase 2.2. If subcase 1.1 does not hold, then we can suppose that there
exists a subsequence {un}n≥1 ⊆ Lp(·)(Ω) such that

‖∇un‖p(·) > 1 for all n ≥ 1.

In view of proposition 2.3 it follows that∫
Ω

( 1

p+
− λ

q−λ∗

)
|∇un|p

−

p(·)dx−
∫
∂Ω

F (x, un(x))dx ≤M.

With similar arguments as in the proof of relation in subcase 2.1, we can show
that

∇zn → 0 in Lp(·)(Ω).
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These two cases imply that

∇zn → 0 in Lp(·)(Ω). (3.13)

Using λ∗ in (3.3) in another way. Similarly, dividing argument in two cases

zn → 0 in Lp(·)(Ω). (3.14)

From (3.9), (3.13) and (3.14),

zn → 0 in X. (3.15)

Denote by zn = un

‖un‖ then ‖zn‖ = 1 for all n ≥ 1 which represents a con-

tradiction with (3.15). So {un}n≥1 ⊆ X is bounded. Hence, by passing to a
subsequence if necessary, we may assume that

un → u weakly in X,

un ⇀ u in Lq(·)(Ω),

un ⇀ u in Lr(·)(Ω). (3.16)

Since ∂J(un) ⊆ X? is weakly compact and the norm functional in a Banach
space is weakly lower semicontinuous, by the Weierstrass theorem, we can
assume that u∗n ∈ ∂J(un) such that

‖u∗n‖∗ = m(un), for n ≥ 1.

Then, for every n ≥ 1,

u∗n = φ′un − λ|un|q(x)−2un − v∗n (3.17)

where v∗n ∈ ∂F(un) ⊆ Lr
′(·)(Ω) for n ≥ 1. Choosing the sequence {un}n≥1 ⊆

W
1,p(·)
0 (Ω),

|〈u∗n, υ〉| ≤ εn‖υ‖ for all υ ∈W 1,p(·)
0 (Ω), (3.18)

with εn ↘ 0.
Putting ν = un − u in (3.18) and using (3.17),

〈φ′un, un − u〉 − λ
∫

Ω

|un|q(x)−2un(un − u)(x)dx−
∫
∂Ω

v∗n(x)(un − u)(x)dx



INFINITELY MANY SOLUTIONS FOR A CLASS OF HEMIVARIATIONAL
INEQUALITIES INVOLVING p(x)-LAPLACIAN 77

≤ εn‖un − u‖. (3.19)

Since {un}n≥1 ⊆ Lp(·)(Ω) is bounded, using proposition 2.1 and the com-

pactly embedded W
1,p(·)
0 (Ω) into Lq(·)(Ω) then {un} converges strongly to u

in Lq(·)(Ω) we deduce that

λ

∫
Ω

|un(x)|q(x)−2un(x)(un−u)(x)dx ≤ λ(
1

q−
+

1

q′−
)‖|un|q(x)−1‖q′(·)‖un−u‖q(·) → 0

as n→∞, where 1
q(x) + 1

q′(x) = 1. The following relation∫
∂Ω

v∗n(x)(un − u)(x)dx→ 0 as n→∞,

holds true.
If we pass to the limit in (3.19) as n→∞

lim sup
n→∞

〈φ′un, un − u〉 ≤ 0. (3.20)

Taking into account that the operator φ has the (S+) property,

un → u in X.

This proves that J satisfies the Palais-Smale condition.

Definition 3.3. Let X be a Banach space and denote

Γ := {A ⊂ X\{0} : A is closed in X and symmetric with respect to the orgin}.

For A ∈ Γ, we define genus γ(A) as follows:

γ(A) =: inf{m ∈ N : ∃ϕ ∈ C(A,Rm\{0}),−ϕ(x) = ϕ(−x)}.

If there is no mapping ϕ as above for any m ∈ N, then γ(A) = +∞. Let γk
denote the family of closed symmetric subsets A of X such that 0 /∈ A and
γ(A) ≥ k.

For the convenience of the readers, we summarize the properties of a genus.
We refer the readers to (cf. [3]) for the proof of the next proposition.

Proposition 3.4. Let A and B be closed symmetric subsets of X which do
not contain the origin. Then the following hold.
(1) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B);
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(2) If there exists an odd homeomorphism from A to B, then γ(A) = γ(B);
(3) If γ(B) <∞, then γ(A\B) ≥ γ(A)− γ(B);
(4) If A is compact, then γ(A) < ∞ and γ(Nδ(A)) = γ(A) for δ > 0 small
enough;
(5) The n−dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam
theorem.

The following version of the symmetric mountain-pass lemma is due to
Kajikiya (cf. [14]).

Lemma 3.5. Let X be an infinite-dimensional space and J ∈ C1(X,R) satisfy
(B1) and (B2) as follows;
(B1) J(u) is even, bounded from below, J(0) = 0 and J(u) satisfies the Palais-
Smale condition.
(B2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak

J(u) < 0.
Then either (R1) or (R2) as the following holds.
(R1) There exists a sequence {uk} such that J′(uk) = 0, J(uk) < 0 and {uk}
converges to zero.
(R2) There exist two sequences {uk} and {vk} such that J′(uk) = 0, J(uk) <
0, uk 6= 0, limk→∞ uk = 0, J′(vk) = 0, J(vk) < 0, limk→∞ vk = 0 and {vk}
converges to a non-zero limit.

Remark 3.6. From lemma 3.5, there is a sequence {uk} of critical points
such that J(uk) ≤ 0, uk 6= 0 and limk→∞ uk = 0.

Let J(u) be the functional defined as before, we have

J(u) =

∫
Ω

(|∇u|p(x) + a(x)|u(x)|p(x))dx

p(x)
− λ

∫
Ω

|u|q(x)

q(x)
dx−

∫
∂Ω

F (x, u(x))dσ

≥ 1

p+
‖u‖p

+

p(·) −
λ

q−
‖u‖q

+

q(·) −
∫
∂Ω

(ε|u|q
+

+ c(ε)|∂Ω|)dσ

≥ 1

p+
‖u‖p

+

p(·) − (
λ

q−
+ ε)‖u‖q

+

q(·) − c(ε)|∂Ω|)

= A‖u‖p
+

−B‖u‖q
+

q(·) − C,

where ε = λ
q− , A = 1

p+ , B = 2λ
q− , C = c λq− |∂Ω|, for any u ∈ W 1,p(·)

0 (Ω) with

‖u‖p(·) < 1. We define

p(t) = Atp
+

−Btq
+

− C
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then J(u) ≥ p(‖u‖p(·)). By the definition of p(t) and the fact that p+ < q+,
p(t) attains its positive maximum, there exists

R1 = (
p+A

q+B
)

1

p+−q+

such that
d1 = p(R1) = max

t≥0
p(t) > 0.

Hence, for d0 ∈ (0, d1), we may find R0 < R1 such that p(R0) = d0. For these
values R1 and R0, we can choose a smooth function h(t) defined as follows

h(t) =


1 0 ≤ t ≤ R0

Atp
+
−C−d1

Btq+
t ≥ R1

C∞, h(t) ∈ [0, 1], R0 ≤ t ≤ R1.

(3.21)

Let ρ(u) = h(‖u‖p(·)) and consider the perturbation of J(u).

J̃(u) =

∫
Ω

(|∇u|p(x) + a(x)|u(x)|p(x))dx

p(·)

−ρ(u)

∫
Ω

λ|u|q(x)

q(x)
dx− ρ(u)

∫
∂Ω

F (x, u(x))dσ. (3.22)

J̃(u) ≥ A‖u‖p
+

p(·) −Bρ(u)‖u‖q
+

p(·) − C = p̄(‖u‖p(·)),

where p̄(t) = Atp
+ −Bh(t)tq

+ − C and

p̄(t) =

{
p(t) 0 ≤ t ≤ R0

d1 t ≥ R1.
(3.23)

Proposition 3.7. Let J̄(u) be in (3.22). Then
(1) J̄ ∈ C1(X,R) and J̄ is even and bounded from below,
(2) If J̄(u) < d0 then p̄(‖u‖) < d0, consequently, ‖u‖p(·) < R0 and J(u) =
J̄(u),
(3) Suppose that F1 − F3 hold, then J̄(u) satisfies the (PS) condition.

Lemma 3.8. Assume that (F3) holds. Then for any k ∈ N, there exists

δ = δ(k) > 0 such that γ({u ∈W 1,p(·)
0 (Ω); J̃(u) ≤ −δ(k)}\{0}) ≥ k.
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Proof. (F3) implies that

F (x, ιu) ≥ N(ι)(ιu)p
−
, N(ι)→∞ as ι→ 0. (3.24)

Let Ek be a k−dimensional subspace of W
1,p(·)
0 (Ω). Hence, for any u ∈ Ek

with ‖u‖p(·) = 1 and ι small enough, for 0 < ι < min{R0, 1}

J̄(ιu) = J(ιu)

=

∫
Ω

ιp(x) (|∇u|p(x) + a(x)|u(x)|p(x))dx

p(x)
−

∫
Ω

ιp(x) λ|u|q(x)

q(x)
dx−

∫
∂Ω

F (x, ιu(x))dσ

≤
∫

Ω

1

p−
ιp
− (|∇u|p(x) + a(x)|u(x)|p(x))dx

p(x)
− 1

q+
ιq

+
∫

Ω

λ|u|q(x)

q(x)
dx−N(ι)ιp

−
∫
∂Ω

|u|p
−
dσ.

Since Ek is a space of finite dimension, all the norms in Ek are equivalent.
We define

Ak = inf{
∫

Ω

|u|q(x)dx : u ∈ Ek, ‖u‖p(·) = 1} > 0,

Bk = inf{
∫

Ω

|u|p
−
dx : u ∈ Ek, ‖u‖p(·) = 1} > 0.

In view of (3.24), it implies that

J̄(u) ≤ 1

p−
ιp
−
− 1

q+
ιq

+

Ak −N(ι)ιp
−
Bk

≤ ιp
−

(
1

p−
−N(ι)Bk)− 1

q+
ιq

+

Ak = −δ(k) < 0, as ι→ 0,

since lim|ι|→0N(ι) = +∞. It results that

{u ∈ Ek; ‖u‖p(·) = ι} ⊂ {u ∈W 1,p(·)
0 (Ω); J̄(u) ≤ −δ(k)}\{0}.

Proof of Theorem 3.1: we define

ck = inf
A∈Γk

sup
u∈A

J̄(u).

According to proposition 3.7(1) and lemma 3.8, it results that −∞ < ck < 0.
Therefore, assumptions (B1) and (B2) of lemma 3.5 are verified. As a result,
there exists a sequence {uk} converging to zero. Hence, theorem 3.1 follows
by proposition 3.7(2).
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[20] O. Kováčik , J. Rákosnínk , On spaces Lp(x) and W 1,p(x), Czechoslovak
Math. J., 41(1991), 592-618.

[21] X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)−Laplacian
Dirichlet problems , Nonlinear Anal., 52(2003), 1843-1852.

[22] L. Li, L. Ding, W. W. Pan, Existence of multiple solutions for a
p(x)−biharmonic equation, Electron J Differ Equ, 2013(2013), No. 139,
1-10.

[23] D. Motreanu, P. Winkert, Variational-hemivariational inequalities with
nonhomogeneous neumann boundary condition, Le Matematiche, Vol.
(2010) Fasc. II, 109-119 doi: 10.4418/2010.65.2.12
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[25] V. Rădulescu, D. Repovs, Partial differential equations with variable
exponents, Variational Methods and Qualitative Analysis, CRC Press,
Taylor & Francis Group, Boca Raton, 2015.

Fariba Fattahi,
Department of Mathematics,
University of Mazandaran, Babolsar, IRAN.
Email: F.Fattahi@stu.umz.ac.ir

Mohsen Alimohammady,
Department of Mathematics,
University of Mazandaran, Babolsar, IRAN.
Email:Amohsen@umz.ac.ir


