
DOI: 10.1515/auom-2017-0028
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Almost principal ideals and tensor product of
hyperlattices

A. Soltani Lashkenari and B. Davvaz

Abstract

In this paper, by considering the notion of congruences on hyper-
lattices we define almost principal ideals on hyperlattices. We inves-
tigate some properties and prove some results about them. Also, we
define compatible functions on hyperlattices and investigate connection
between these functions and almost principal ideals. Then, we define
tensor product of two hyperlattices and present several properties such
as completeness and distributivity on tensor product of hyperlattices.

1 Introduction

Algebraic hyperstructures are a suitable generalization of classical algebraic
structures and first introduced by Marty [15]. Till now, the hyperstructures
are studied from the theoretical point of view and for their applications to
many subjects of pure and applied mathematics [3, 4]. Hyperlattices were
first studied by Konstantinidou and Mittas [12].

We mention here only some names of mathematicians who have worked
in lattices and hyperlattices: J.C. Varlet, T. Nakano, J. Mittas, A. Kehagias,
M. Konstantinidou, K. Serafimidis, V. Leoreanu, I.G. Rosenberg, S. Rasouli,
B. Davvaz, G. Calugareanu, G. Radu, A.R. Ashrafi, for example see [1, 6, 7,
10, 11, 13, 14, 16, 17, 21, 22, 23, 24, 26, 27]. In [8] Jakubik studied several
aspects of the theory of superlattices; in particular he defined congruences
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on hyperlattices and studied the properties of the resulting quotients. Also,
the congruence of hyperlattices are studied in [9]. Compatible functions on
distributive lattices are studied in [18, 19, 20]. In [2, 5, 25] tensor product of
lattices are investigated. In this article, first by considering congruences on
hyperlattices we define compatible functions on lattices and we investigate the
connection between these functions and special ideals on hyperlattices which
we defined almost principal ideals. Also, in the second section we define tensor
product of two hyperlattices and we investigate concepts such as distributivity
and completeness on tensor product of hyperlattices.

2 Basic definitions

A lattice is a partially ordered set L such that for any two elements x, y of L,
glb{x, y} and lub{x, y} exist. If L is a lattice, then we define x∨ y = glb{x, y}
and x∧ y = lub{x, y}. This definition is equivalent to the following definition.
Let L be a non-empty set with two binary operations ∧ and ∨. Let for all
a, b, c ∈ L, the following conditions satisfied:

(1) a ∧ a = a and a ∨ a = a;
(2) a ∧ b = b ∧ a and a ∨ b = b ∨ a;
(3) (a ∧ b) ∧ c = a ∧ (b ∧ c) and (a ∨ b) ∨ c = a ∨ (b ∨ c);
(4) (a ∧ b) ∨ a = a and (a ∨ b) ∧ a = a;

Then, (L,∨,∧) is a lattice.
Join hyperlattice. Let L be a non-empty set,

∨
: L × L → ℘∗(L) be a

hyperoperation, where ℘∗(L) is the family of all non-empty subsets of L, and
∧ : L×L→ L be an operation. Then, (L,

∨
,∧) is a join hyperlattice if for all

x, y, z ∈ L the following conditions hold:

(1) x ∈ x
∨
x and x = x ∧ x;

(2) x
∨

(y
∨
z) = (x

∨
y)

∨
z and x ∧ (y ∧ z) = (x ∧ y) ∧ z;

(3) x
∨
y = y

∨
x and x ∧ y = y ∧ x;

(4) x ∈ x ∧ (x
∨
y) ∩ x

∨
(x ∧ y).

Let A,B ⊆ L. Then, A ∧B = {a ∧ b | a ∈ A, b ∈ B}, A
∨
B =

⋃
a∈A,b∈B

a
∨
b.

Let (L,
∨
,∧) be a join hyperlattice. Accroding to [24], we say L is a strong

join hyperlattice if for all x, y ∈ L, y ∈ x
∨
y implies that x = x ∧ y. We say

that 0 is a zero element of L, if for all x ∈ L we have 0 ≤ x and 1 is a unit
of L if for all x ∈ L, x ≤ 1. We say L is bounded if L has 0 and 1. And y is
a complement of x if 1 ∈ x

∨
y and 0 = x ∧ y. A complemented hyperlattice

is a bounded hyperlattice which every element has a complement. We say L
is distributive if for all x, y, z ∈ L, x ∧ (y

∨
z) = (x ∧ y)

∨
(x ∧ z). And L
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is s-distributive if x
∨

(y ∧ z) = (x
∨
y) ∧ (x

∨
z). Notice that in lattices, the

concepts of distributivity and s-distributivity are equivalent but in hyperlattice
this is not true.

Definition 2.1. Let (L,
∨
,∧) be a join hyperlattice and I, F ⊆ L. We call I

is an ideal of L if: (1) for every x, y ∈ I, x
∨
y ⊆ I; (2) x ≤ I implies x ∈ I.

Also, F is a filter of L if: (1) for every x, y ∈ F, x∧ y ∈ F ; (2) x ≤ a such that
x ∈ F implies a ∈ F.

Notice that I is a prime ideal if for any x, y ∈ L, x ∧ y ∈ I implies that
x ∈ I or y ∈ I and for every a ∈ L the set I = {x ∈ L | x ≤ a} is an ideal of
L which is called principal ideal.

Definition 2.2. Let (L,
∨
,∧) be a join hyperlattice and θ be an equivalence

relation on L. Then, θ is a congruence on L if for any x, y, z ∈ L and x θ y
we have x

∨
z θ y

∨
z and x ∧ z θ y ∧ z.

In this case, we define binary multioperations g,f on L/θ by putting

xθ g yθ = (x
∨
y)θ, xθ f yθ = (x ∧ y)θ,

for each xθ, yθ ∈ L/θ. We denote (L/θ,g,f) = L/θ.

Example 1. [8] Let R be the set of all reals with the natural linear or-
der. Furthermore, let S be the set of all pairs (x, y) with x, y ∈ R. For
(x1, y1), (x2, y2) ∈ S we put (x1, y1) ≤ (x2, y2) if either (x1, y1) = (x2, y2) or
y1 < y2. Then, (S,≤) is a partially ordered set. We define binary multiopera-
tions g,f on S as follows.

Let a, b ∈ S. We denote by afb the set of all lower bounds of the set {a, b}.
Next we put

ag b = bg a =

 S if a = b
S − {a} if a < b
S − {a, b} a, b are incomparable.

Then, (L,g,f) is a superlattice and we define for (x, y), (x′, y′) ∈ S,

(x, y)ρ(x′, y′) ⇔ x = x′.

We have ρ is a congruence on L.

3 Almost principal ideals and compatible functions

In this section, we define almost principal ideals and compatible functions on
join hyperlattices and we investigate connection between them. Also, we prove
some results about them.
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Definition 3.1. Let (L,
∨
,∧) be a join hyperlattice and I ⊆ L. We call I is

an almost principal ideal if the intersection of L with every principal ideal is
a principal ideal.

Similarly, we say that the filter F is principal if the intersection of F with
every principal filter of L is a principal filter of L.

Example 2. Every principal ideal is an almost principal ideal.

Example 3. Consider H = {a, b, c} and the following tables:∨
a b c

a a b c
b b b H
c c H c

∧ a b c
a a a a
b a b a
c a b c

Then, I = {a, b} is not almost principal ideal, since I∩(b] = {b} is not principal
ideal.

Let I, F be almost principal ideal and almost principal filter of L, respec-
tively. For any x ∈ L we set xI = Max(I∩ ↓ x), xF = Min(F∩ ↑ x). Consider
the function fI : L → L such that for any x ∈ L we have fI(x) = xI . We
call fI is the projection function of almost principal ideal I. Also, we define
fF (x) = xF for every almost principal filter F.

Definition 3.2. Let (L,
∨
,∧) be a join hyperlattice. Function

f : L× L× . . .× L︸ ︷︷ ︸
n times

→ L

is a compatible function if for every congruence θ and aiθbi for i = 1, 2, . . . , n,
we have

f(a1, a2, . . . , an) θf(b1, b2, . . . , bn).

Proposition 3.3. If (L,
∨
,∧) is a distributive join hyperlattice, then the func-

tions fI , f
F are compatible functions.

Proof. Suppose that aθb. We prove fI(a) θfI(b). If u ∈↓ a, then u ≤ a and
u ∧ a = u. We have u ∧ a θ u ∧ b ≤ b ∈↓ b. Thus, u θ u ∧ b = v and there
exists v ∈↓ b such that uθv. Therefore, ↓ a θ ↓ b. Since I is almost principal
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ideal, there exist u, v ∈ L such that ↓ a ∩ I =↓ u, ↓ b ∩ I =↓ v and ↓ uθ ↓ v.
Since u ∈↓ u, it follows that there exists c ∈↓ v such that uθc. Since c ∈↓ v, it
follows that c ≤ v and c ∧ v θ u ∧ v, c ∧ v = c. Hence, c θ u ∧ v and u ∧ v θ u.
Similarly, u ∧ v θ v, uθv. Therefore, fI(a)θfI(b).

We denote the set of all almost principal ideals of L by I(L) and the set of
all almost principal filters by F(L).

Proposition 3.4. Let (L,
∨
,∧) be a strong join hyperlattice and I(L) be the

set of almost principal ideals of L. The following conditions hold:

(1) L is an ideal of I(L) and a filter of F(L);

(2) L is convex in F(I(L);

(3) There exists a canonical homomorphism F(I(L)→ I(F(L).

Proof. (1) First, we prove L is a subhyperlattice of I(L). Consider ϕ : L ↪→
I(L) such that for every x ∈ L we have ϕ(x) =↓ x. Since ↓ x is almost
principal ideal of L, it follows that L is a subhyperlattice of I(L). If J is an
almost principal ideal of L and x ∈ L, then x ∧ J = {x ∧ y | y ∈ J} ⊆ J ⊆ L.
Therefore, L is an ideal of I(L). Similarly, we can prove that L is a filter of
F(L).

(2) We show that L is convex in I(L). Let x, y ∈ L, J ∈ I(L) and x ≤ J ≤ y.
We have J ⊆ L. Thus, all ideals and filters are convex. Therefore, L is convex
in I(L) and I(L) is convex in F(I(L)).

(3) Consider ϕ : F(I(L)→ I(F(L) such that ϕ(G) = {F ∈ F(L) | F ∩ J 6=
∅ for every J ∈ G} and for every x ∈ L, we consider G = {I ∈ I(L) |↓ x ⊆ I}.
We define the order relation on G as F1 ≤ F2 if and only if F2 ⊆ F1. We show
that G is a filter of I(L). Let I1, I2 ∈ G. Hence, we obtain

↓ x ⊆ I1 ∩ I2 = I1 ∧ I2 = {a ∧ b | a ∈ I1, b ∈ I2}.

Thus, I1 ∧ I2 ∈ G. Now, let G ≤ I ′ ∈ I(L). We show that I ′ ∈ G. There exists
I ∈ I(L) such that ↓ x ⊆ I ≤ I ′. Let u ∈↓ x. Thus, u ≤ x ∈ I and u ∈ I ≤ I ′.
So, there exists u′ ∈ I ′ such that u ≤ u′ ∈ I ′. Therefore, u ∧ u′ = u ∈ I ′ and
↓ x ⊆ I ′. Hence, G is a filter of I(L).

Notice that if (L,
∨
,∧) is a join hyperlattice, P ⊆ L is a prime ideal of L

and θ is a congruence of L, then we define the congruence of prime ideal P as
θP = (P × P ) ∪ (L \ P )× (L \ P ).

Proposition 3.5. Let (L,
∨
,∧) be a hyperlattice, P be a prime ideal and

I be an almost principal ideal of L. Then, for every x, y ∈ L \ P we have
(xI , yI) ∈ θP .
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Proof. Since xθP y and fI is a compatible function on L, we have fI(x)θP fI(y)
and xIθpyI .

In [23] Rasouli and Davvaz proved that if L is a hyperlattice, I ⊆ L is an
ideal and x /∈ I, then there exists P ∈ Spec(L) such that I ⊆ P , x /∈ P and
for every x, y ∈ L with x 6= y there exists a prime ideal of L containing exactly
one of x or y. Now, by considering the above fact we prove the following result.

Theorem 3.6. Let (L,
∨
,∧) be a distributive strong join hyperlattice and

f : Ln → L be a compatible function on L. If I1, I2, . . . In are almost principal
ideals of L, then, J = {x ∈ L | x ≤ f(xI1 , xI2 , . . . , xIn)} is an almost principal
ideal of L.

Proof. Suppose that y ≤ x ∈ J.We show that y ∈ J. Suppose that y /∈ J. Then,
y 
 f(yI1 , yI2 , . . . , yIn). So, by the above results there exists a prime ideal P
such that f(yI1 , yI2 , . . . , yIn) ∈ P, y /∈ P. Since y ≤ x and P is a prime ideal, it
follows that y /∈ P, x /∈ P. Therefore, x, y ∈ L \ P. By 3.5 (xIi , yIi) ∈ θi. Since
x ≤ f(xI1 , xI2 , . . . , xIn) and x /∈ P , it follows that f(xI1 , xI2 , . . . , xIn) /∈ P.
Thus, we have

(f(xI1 , xI2 , . . . , xIn), f(yI1 , yI2 , . . . , yIn)) /∈ θP .

Since (xIi , yIi) ∈ θi and f is compatible function, the recent relation is a
contradiction. Therefore, y ∈ J. Now, we prove that the intersection of J with
every principal ideal is a principal ideal. We claim y ∧ f(yI1 , yI2 , . . . , yIn) =
Max(J∩ ↓ y). We have z = y∧ f(yI1 , yI2 , . . . , yIn) ≤ y. Let z /∈ J. Thus, there
exists prime ideal Q such that f(zI1 , zI2 , . . . , zIn) ∈ Q, z /∈ Q. Since y ≤ z ∈ Q,
it follows that y /∈ Q. Similarly, we obtain f(yI1 , yI2 , . . . , yIn) /∈ Q. Since
(yIi , zIi) ∈ θQ, it follows that (f(yI1 , yI2 , . . . , yIn), f(yI1 , yI2 , . . . , yIn)) ∈ θQ.
This is a contradiction. Thus, z ∈ J. Also, z ∈↓ y and so z ∈ J∩ ↓ y. Now,
let t ∈ J∩ ↓ y such that t 
 z, t ≤ y. Then, there exists a prime ideal R
such that t /∈ R, z ∈ R. Since t /∈ R, it follows that y /∈ R. Moreover, t ∈ J.
Therefore, t ≤ f(tI1 , tI2 , . . . , tIn) /∈ R. Since z = y∧ f(yI1 , yI2 , . . . , yIn) ∈ R, it
follows that y ∈ R or f(yI1 , yI2 , . . . , yIn) ∈ R. Also, by compatibility of f and
(yIi , tIi) ∈ θR, we have (f(yI1 , yI2 , . . . , yIn), f(tI1 , tI2 , . . . , tIn)) ∈ θR and this
is a contradiction. Thus, for every y ∈ L, Max(J∩ ↓ y) exists. Now, we show
that J is closed under

∨
. Let x, y ∈ J. We have x = x ∧ f(xI1 , xI2 , . . . , xIn)

and y = y ∧ f(yI1 , yI2 , . . . , yIn). Since x, y ≤ x
∨
y, it follows that ↓ x ∩ J ⊆↓

(x
∨
y)∩J and ↓ y∩J ⊆↓ (x

∨
y)∩J. So, Max(↓ x∩J) ≤Max(↓ (x

∨
y)∩J)

and Max(↓ y ∩ J) ≤Max(↓ (x
∨
y) ∩ J). Thus,we have

x, y ≤ max(↓ (x
∨
y) ∩ J) = (x

∨
y) ∧ ((f(x

∨
y)I1 , . . . , f(x

∨
y)In).

By the distributivity of L, x
∨
y ≤ (f(x

∨
y)I1 , f(x

∨
y)I2 , . . . , f(x

∨
y)In).

Hence, x
∨
y ⊆ J and J is almost principal ideal.
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Now, let f̄ : (I(L))n → I(L) with f̄(I1, I2, . . . , In) = {x ∈ L | x ≤
f(xI1 , xI2 , . . . , xIn)}.

Theorem 3.7. Let (L,
∨
,∧) be a strong join hyperlattice and f be a compatible

function on L. Then, f̄ is a compatible function on I(L).

Proof. Suppose that f̄ is not compatible. Then, there exist I1, I2, . . . , In,
J1, J2, . . . , Jn such that (Ii, Ji) ∈ θP . Without loss the generality, suppose that
f̄(I1, I2, . . . , In) ∈ P and f̄(J1, J2, . . . , Jn) /∈ P. Set M = {i ∈ {1, 2, . . . , n} |
Ii ∈ P}. Thus, we obtain

f̄(J1, J2, . . . , Jn) ∧ ∧i/∈MIi ∧ ∧i/∈MJi

 f̄(I1, I2, . . . , In)

∨
(
∨
i∈M Ii)

∨
(
∨
i∈M Ji).

We have f̄(J1, J2, . . . , Jn)∧∧i/∈MIi ∧∧i/∈MJi ∈ P. Since P is a prime ideal, it
follows that ∧i/∈MJi ∈ P or ∧i/∈MIi ∈ P. Thus, we haveIi ∈ P or Ji ∈ P and
this is a contradiction. So, by the definition there exists y ∈ f̄(J1, J2, . . . , Jn)
such that y 
 f̄(I1, I2, . . . , In)

∨∨
i∈M Ii

∨∨
i∈M yi. There exists a prime

ideal Q such that y /∈ Q and f(yI1 , yI2 , . . . , yIn)
∨∨

i∈M Ii
∨∨

i∈M yi ∈ Q.
So, we have f(yI1 , yI2 , . . . , yIn) ∈ Q. But y ∈ f̄(J1, J2, . . . , Jn). Therefore,
y ≤ f(yJ1 , yJ2 , . . . , yJn) and f(yJ1 , yJ2 , . . . , yJn) /∈ Q. This implies that

(f(yI1 , yI2 , . . . , yIn), f(yJ1 , yJ2 , . . . , yJn)) /∈ θQ.

We have yIi = Max(Ii∩ ↓ y) and Ii ≤
∨
i∈M Ii ⊆ Q. Then, for every i ∈

M, Ii ⊆ Q and for every j ∈ M,Ji ⊆ Q. Thus, we obtain (yIi , yJi) ∈ θQ
and (f(yI1 , . . . , yIn), f(yJ1 , . . . , yJn)) ∈ θQ. This is a contradiction and so f̄ is
compatible function on I(L).

4 Tensor product of two hyperlattices

In this section, we introduce tensor product of two hyperlattices and investi-
gate some related properties.

Definition 4.1. Let L1, L2 be two bounded join hyperlattices. We demon-
strate tensor product of two hyperlattices by L1 ⊗ L2, where

L1 ⊗ L2 = {T | T =
∨
θ L

a
b =

∨
{a⊗ b | (a, b) ∈ θ},

Lab (x) =

 1 if x = 0
b if 0 < x ≤ a
0 otherwise.
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Thus, θ = {(a, b) | T (a) > b} and a ⊗ b = Lab (x) ∈ L1 ⊗ L2. Consider t1 :
L1 → L1⊗L2 with t1(a) = La1 = a⊗ 1 for every a ∈ L1 and t2 : L2 → L1⊗L2

with t2(b) = L1
b = 1 ⊗ b for every b ∈ L2. We demonstrate Lab (x) = a ⊗ b.

Thus, we have

La1(x) ∧ L1
b(x) =

 1 x = 0
1 ∧ b = b 0 < x ≤ a
b ∧ 0 = 0 otherwise

= Lab (x) = a⊗ b.

If L1, L2 are s-good hyperlattices, then

La1(x)
∨
L1
b(x) =

 1
∨

1 x = 0
1
∨
b ∧ b = b 0 < x ≤ a

b
∨

0 = 0 otherwise
= Eab (x).

Notice that in L1 ⊗ L2, set Eab = a
∨
b and Lab = a ∧ b.

Proposition 4.2. Let L1, L2 be two bounded s-good join hyperlattices and for
every x ∈ L2 we have x

∨
1 = x. Also, for every a1, a2 ∈ L1 and b1, b2 ∈ L2,

a1 ∧ b1 ≤ a2
∨
b2 in L1 ⊗ L2. Then, a1 ≤ a2 or b1 ≤ b2.

Proof. Suppose that a1 
 a2. Then, we have a1 ∧ b1 = La1b1 (a1) = b1 ≤
Ea2b2 (a1) = 1

∨
b2 = b2.

Definition 4.3. Let L1, L2 be two bounded complete join hyperlattices. A
complete distributive join hyperlattice D is the free product of L1, L2 if there
exists homomorphism ε1 : L1 → D and ε2 : L2 → D such that ε2 ◦ T = ε1,
where T : L1 → L2 is a homomorphism of hyperlattices and for every complete
distributive hyperlattice K and homomorphisms f1 : L1 → K and f2 : L2 →
K, there exists a homomorphism f : D → K such that f ◦ε1 = f1, f ◦ε2 = f2.

Theorem 4.4. Let L1, L2 be two bounded complete distributive join hyperlat-
tice and for every x ∈ L1 or L2 we have x

∨
1 = x. Then, L1⊗L2 is complete

distributive free product of hyperlattices L1 and L2.

Proof. First, we show that for every a, b, c ∈ L1⊗L2, (a
∨
b)∧c = (a∧c)

∨
(b∧

c). In other hand, we show that L
Eb

a
c = E

La
c

Lb
c
. It is easy to see that the recent

relation holds. Now, suppose that S ⊆ L1 ⊗ L2. So, we have

Su ⊆ {b′ ∈ L2 | ∀b ∈ L2, b ∧ b′ = b},
Sl ⊆ {a′ ∈ L1 | ∀a ∈ L1, a ∧ a′ = a}.
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Hence, Su and Sl have the least element. Now, consider t1 : L1 → L1⊗L2 with
t1(a) = a⊗ 1 = La1 and t2 : L2 → L1 ⊗ L2 with t2(b) = 1⊗ b = L1

b . Let K be
an arbitrary complete distributive hyperlattice and f1 : L1 → K, f2 : L2 → K
be homomorphisms. Consider the homomorphism f̂ : L1 × L2 → K with
f̂(a, b) = f1(a) ∧ f2(b). We expand f̂ to f : L1 ⊗ L2 → K. Thus, for every
T ∈ L1 ⊗ L2, we have

f(T ) = f(
∨
i∈I L

ai
bi

) =
∨
i∈I f(ai, bi) =

∨
i∈I(f1(ai) ∧ f2(bi)).

In particular, f(La1) = f1(a)∧f2(1) = f1(a)∧f1(1⊗1) = f1(a∧1) = f1(a). Also,
f ◦ t1(a) = f(a⊗1) = f(La1) = f1(a) and f ◦ t2(b) = f(1⊗ b) = f1(1)∧f2(b) =
f2(b). Now, we show that f is a homomorphism of hyperlattices. We have

f(T ) =
∨
i∈I f1(ai) ∧ f2(bi)

= ∧2I (
∨
J f1(ai)

∨
I−J f2(bi)

= ∧2I{f1(
∨
J ai)

∨
f2(

∨
I−J bi)}

= ∧2I{f1(aj)
∨
f2(bj))}.

Also, f preserves ∧ and L1 ⊗ L2 is the free product of hyperlattices.

Definition 4.5. Let (L,
∨
,∧) be a bounded complete distributive hyperlattice

and A′ ⊆ L. We call A′ is independent if for every a ∈ A′, we have 0 ∈
a ∧

∨
a′∈A′−a′ a

′.

Proposition 4.6. Let L1, L2 be complete hyperlattices. If {ai | i ∈ I} and
{bj | j ∈ J} are independent subsets of L1 and L2, then U = {ai ⊗ bj | (i, j) ∈
I × J} is independent subset of L1 ⊗ L2.

Proof. Suppose that U is not independent. Then, we have

0 /∈ ai ⊗ bj ∧
∨
{ai ⊗ bj | (i, j) ∈ I × J − (i′, j′)}.

Thus, there exists T ∈ L1 ⊗ L2 such that 0 /∈ (L
a′i
b′j
∧ T )(x). Therefore, for

0 < x ≤ a′i, we obtain 0 /∈ b′j∧T (x) and 0 /∈ b′j∧
∨
j∈J−j′ bj . Thus, {bj | j ∈ J}

is an independent subset of L2 and this is a contradiction.

Theorem 4.7. Let L1, L2 be two bounded distributive strong s-good join hy-
perlattices such that for every b ∈ L2, 1 ∈ 1

∨
b and L1 ⊗ L2 is a distributive

hyperlattice.

(1) If a ∈ L1, b ∈ L2 are meet-irreducible elements, then Eab is meet-irreducible
in L1 ⊗ L2;

(2) If T ∈ L1 ⊗ L2 is meet-irreducible, then for every x ∈ L1, T (x) ∈ L2 is
meet-irreducible.
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Proof. (1) Suppose that T1 ∧ T2 = Eab . If x = 0, then T1(x) ∧ T2(x) = 1
∨

1.
Thus, T1(x) = T2(x) = 1. If 0 < x ≤ a, then Eab (x) = 1

∨
b. Therefore,

T1 ∧ T2 = 1
∨
b. Since 1

∨
b ≤ T1(x), T2(x) and T1(x), T2(x) ≤ 1 ∈ 1

∨
b, it

follows that T1(x) = T2(x) = 1
∨
b. If x 
 a, then T1 ∧ T2 = b. Since b is

meet-irreducible, it follows that T1 = b or T2 = b.
(2) Suppose that T (x) = m1∧m2, T (x) 6= m1,m2, T1 = T

∨
Lam1

and T2 =
T
∨
Lam2

. Then, we have T1∧T2 = T
∨

(Lam1
∧Lam2

). Let x ≤ m1,m2. We have
T (x) = T (x)

∨
(m1 ∧m2). Thus, by the distributivity we obtain T = T1 ∧ T2

and since T is meet-irreducible, we have T = T1 or T = T2. For every x ≤ a, we
have T1 = (m1 ∧m2)

∨
m1 6= m1 ∧m2 and T2 = (m1 ∧m2)

∨
m2 6= m1 ∧m2.

This is a contradiction with meet-irreducibility of T. Thus, T (x) = m1 or
T (x) = m2.

Definition 4.8. Let L1, L2 be two join hyperlattices and θ ⊆ L1 × L2.
We call that θ is a G-ideal if θ is an ideal and (ai, bj) ⊆ θ implies that
(∧i∈Iai,

∨
j∈J bj) ⊆ θ and (

∨
i∈I ai,∧j∈Jbj) ⊆ θ.

Theorem 4.9. L1, L2 are two complete distributive strong infinite join hy-
perlattices if and only if L1 ⊗L2 is a complete distributive infinite join hyper-
lattice. (Notice that in if part of theorem L1, L2 should be ordered and order
≤,� should be coincide).

Proof. We make a one to one correspondence between T ∈ L1 ⊗ L2 and θ =
{(a, b) | T (a) > b}. By the definition of L1 ⊗ L2, the construct of

∨
Ti is

equivalent to the construct of ∪θi = ∪σ(Ti). We use the induction for this
construction. Put θ(0) = ∪σ(Ti) and for each ordinal number ε such that
ε = τ + 1 put

θε = {(x, y) | (x, y) ≤ (
∨
xi,∧yi) or (x, y) ≤ (∧xi,

∨
yi), (xi, yi) ⊆ θτ}.

When ε is a limit ordinal, we put θε = ∪τ<εθτ . Suppose that ε0 is the first ordi-
nal number such that θε0 = θε0+1. Then, we have θ = σ(

∨
Ti) =< ∪σ(Ti) > .

We show that θ is a G-ideal of L1 × L2. Let (x1, y1), (x2, y2) ∈ θ. Thus,
there exist ε1, ε2 ≤ ε0 such that (x1, y1) ∈ θε1 , (x2, y2) ∈ θε2 . We show
that (x1

∨
x2, y1

∨
y2) ∈ θε. This relation holds by the definition. Also, the

second condition of ideals holds. If (ai, bj) ⊆ θ, then (ai, bj) ∈ θε. Thus,
(ai, bj) ≤ (

∨
xi,∧yi) or (ai, bj) ≤ (∧xi,

∨
yi). If ai ≤

∨
xi, bi ≤ ∧yi, then we

have (
∨
ai,∧bj) ⊆ θε. Therefore, θ is a G-ideal. Since θ0 = ∪σ(Ti), by the

definition, we have θ =< ∪σ(Ti) > is a G-ideal. Now, let T, Ti ∈ L1 ⊗L2. We
show that T ∧

∨
i∈I Ti =

∨
i∈I(T ∧ Ti). Since Ti ≤

∨
Ti, ≤ is an order and

by the coincidence of two orders, we have
∨

(T ∧ Ti) ≤ T ∧ (
∨
i∈I Ti). For the

converse, let (x, y) ∈ σ(T )∩σ(
∨
Ti) such that σ(T ) is G-ideal correspondence
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T. Thus, (x, y) ∈ σ(T ) and we obtain

(x, y) ∈ σ(
∨
Ti) = {(x, y) | (x, y) ∈ θε}

such that ε ≤ ε0. We prove by the induction on ε. We show that (x, y) ∈
σ(
∨

(T ∧ Ti)). If ε = 0, then (x, y) ∈ σ(Ti) and (x, y) ∈ σ(T ). Thus, (x, y) ∈
σ(T ) ∧ σ(Ti) and (x, y) ∈

∨
(σ(T ) ∧ σ(Ti)). Now, let for ε′ < ε results hold.

If ε = τ + 1, then (x, y) ≤ (
∨
xi,∧yi) or (x, y) ≤ (∧xi,

∨
yi) for (xi, yi) ⊆ θτ .

Since L1, L2 are distributive, it follows that (x, y) = (
∨
xi,∧yi) and in the

second case (x, y) = (∧xi,
∨
yi). We have (xi ∧ x, yi ∧ y) ≤ (xi, yi) ∈ θτ such

that τ < ε = τ+1 and (xi∧x, yi∧y) ≤ (x, y) ∈ σ(T ). Since σ(T ) is a G-ideal, it
follows that (xi∧x, yi∧y) ∈ σ(T ). By hypothesist, (xi∧x, yi∧y) ∈ σ(

∨
(T∧Ti)).

Since σ(
∨

(T ∧ Ti)) is a G-ideal, it follows that (
∨
xi,∧yi) ∈ σ(

∨
(T ∧ Ti))

and (∧xi,
∨
yi) ∈ σ(

∨
(T ∧ Ti)). By properties of G-ideals, we have (x, y) ∈

σ(
∨

(T ∧ Ti)). If ε is a limit ordinal number, by the definition of θε we have
(x, y) ∈ σ(

∨
(T ∧ Ti)). Therefore, σ(T )∩ σ(

∨
Ti) ⊆ σ(

⋂
(T ∧ Ti)) and L1 ⊗L2

is distributive.
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