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AN OPERATOR EXTENSION OF C̆EBYS̆EV
INEQUALITY

Hamid Reza Moradi, Mohsen Erfanian Omidvar and Silvestru
Sever Dragomir

Abstract

Some operator inequalities for synchronous functions that are re-
lated to the c̆ebys̆ev inequality are given. Among other inequalities for
synchronous functions it is shown that

‖φ (f (A) g (A))− φ (f (A))φ (g (A))‖ ≤ max
{∥∥φ (f2 (A)

)
− φ2 (f (A))

∥∥
,
∥∥φ (g2 (A)

)
− φ2 (g (A))

∥∥}
where A is a self-adjoint and compact operator on B (H ), f, g ∈

C (sp (A)) continuous and non-negative functions and φ : B (H ) →
B (H ) be a n-normalized bounded positive linear map. In addition,
by using the concept of quadruple D-synchronous functions which is
generalizes the concept of a pair of synchronous functions, we establish
an inequality similar to c̆ebys̆ev inequality.

1 Introduction and Preliminaries

Let us consider the real sequences p = (p1, . . . , pn) , a = (a1, . . . , an) and
b = (b1, . . . , bn). Then the C̆ebys̆ev functional is defined by

Tn (p; a, b) := Pn

n∑
i=1

piaibi −
n∑

i=1

piai

n∑
i=1

pibi,
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where Pn :=
n∑

i=1

pi. In 1882-1883, C̆ebys̆ev [5, 6], proved that, if a and b are

monotonic in the same (opposite) sense and p is non-negative, then

Tn (p; a, b) ≥ (≤) 0. (1.1)

The inequality (1.1) was mentioned by Hardy, Littlewood, and Pólya in their
book [8] in 1934 in the more general setting of synchronous sequences, i.e. if
a, b are synchronous (asynchronous), this means that

(ai − aj) (bi − bj) ≥ (≤) 0,

for each i, j ∈ {1, . . . , n}, then the inequality (1.1) is valid. For general, real
weights, Mitrinović and Pec̆arić have shown in [16] that the inequality (1.1)
holds true if

0 ≤ Pk ≤ Pn,

for each k ∈ {1, . . . , n− 1}, and a, b are monotonic in the same (opposite)
sense.

A related notion is synchronicity of functions. We say that the functions
f, g : [a, b] → R are synchronous (asynchronous) on the interval [a, b] if they
have satisfy the following condition:

(f (t)− f (s)) (g (t)− g (s)) ≥ (≤) 0, (1.2)

for each t, s ∈ [a, b].
Dragomir [9] generalized C̆ebys̆ev inequality for convex functions on a real

inner product and applied this result to show that if p1, . . . , pn is a sequence

of non-negative numbers with
n∑

i=1

pi ≥ 0 and two sequences (v1, . . . , vn) and

(u1, . . . , un) in a real inner product space are synchronous, namely,
〈vj − vi, uj − ui〉 ≥ 0 for all i, j = 1, . . . , n, then

n∑
j=1

pj 〈vj , uj〉 ≥

〈
n∑

j=1

pjvj ,

n∑
j=1

pjuj

〉
.

Recently Dragomir in [10], proved the following theorem.

Theorem 1.1. Let A be a self-adjoint operator with sp (A) ⊆ [m,M ] for some
real numbers m < M . If f, g : [m,M ] → R are continuous and synchronous
on [m,M ], then

〈f (A) g (A)x, x〉 ≥ 〈f (A)x, x〉 〈g (A)x, x〉 , (1.3)

for any x ∈H with ‖x‖ = 1.
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Motivated by the above results, we provide in this paper several opera-
tor extensions of the C̆ebys̆ev inequality. Some applications for univariate
functions of real variable are provided.

As is customary, we reserve M,m for scalars. Other capital letters are used
to denote general elements of the C∗-algebra B (H ) of all bounded linear
operators acting on a Hilbert space (H , 〈·, ·〉). An operator A ∈ B (H ) is
called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H , and we then write A ≥ 0. For
self-adjoint operators A,B ∈ B (H ) we say that A ≤ B if B − A ≥ 0. The
Gelfand map establishes an isometrically ∗-isomorphism Φ between the set
C (sp (A)) of all continuous functions on the spectrum of A, denoted sp (A),
and the C∗-algebra generated by A and I (see for instance [18, p. 15]). For
any f, g ∈ C (sp (A)) and any α, β ∈ C we have

(I) Φ (αf + βg) = αΦ (f) + βΦ (g);

(II) Φ (fg) = Φ (f) Φ (g);

(III) ‖Φ (f)‖ = ‖f‖ := sup
t∈sp(A)

|f (t)|;

(IV) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for
t ∈ sp (A).

With this notation we define f (A) = Φ (f) for all f ∈ C (sp (A)) and we call
it the continuous functional calculus for a self-adjoint operator A. It is well
known that, if A is a self-adjoint operator and f ∈ C (sp (A)), then f (t) ≥ 0
for any t ∈ sp (A) implies that f (A) ≥ 0. It is extendible for two real valued
functions on sp (A). A linear map φ is positive if φ (A) ≥ 0 whenever A ≥ 0.
It said to be normalized if φ (I) = I. For more studies in this direction, we
refer to [4].

2 Main Results

2.1 Inequalities for Synchronous Functions

First of all, we state a generalization of Theorem 1.1 for normalized positive
linear map as follows:

Theorem 2.1. Let A be a self-adjoint operator and f, g ∈ C (sp (A)) are con-
tinuous and synchronous (asynchronous) functions, and let φ be a normalized
positive linear map on B (H ), then

〈φ (f (A) g (A))x, x〉 ≥ (≤) 〈φ (f (A))x, x〉 〈φ (g (A))x, x〉 , (2.1)

for any x ∈H with ‖x‖ = 1.
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Proof. We give a proof only in the first case. Since f, g are synchronous
functions, from (1.2) we have for any s, t ∈ [a, b] that

f (t) g (t) + f (s) g (s) ≥ f (t) g (s) + f (s) g (t) .

If we fix s ∈ [a, b], and apply the functional calculus for the above inequality
we get

f (A) g (A) + f (s) g (s) 1H ≥ f (A) g (s) + f (s) g (A)

and since φ is normalized positive linear map we can write

φ (f (A) g (A)) + f (s) g (s) 1H ≥ g (s)φ (f (A)) + f (s)φ (f (A))

or

〈φ (f (A) g (A))x, x〉+ f (s) g (s) ≥ g (s) 〈φ (f (A))x, x〉+ f (s) 〈φ (g (A))x, x〉 ,
(2.2)

for each x ∈H with ‖x‖ = 1.
Apply again functional calculus to obtain

〈φ (f (A) g (A))x, x〉 1H + f (A) g (A)

≥ 〈φ (f (A))x, x〉 g (A) + 〈φ (g (A))x, x〉 f (A) .

Again, since φ is normalized positive linear map we get

〈φ (f (A) g (A))x, x〉+ φ (f (A) g (A))

≥ 〈φ (f (A))x, x〉φ (g (A)) + 〈φ (g (A))x, x〉φ (f (A))

or

〈φ (f (A) g (A))x, x〉+ 〈φ (f (A) g (A)) y, y〉
≥ 〈φ (f (A))x, x〉 〈φ (g (A)) y, y〉+ 〈φ (g (A))x, x〉 〈φ (f (A)) y, y〉 ,

(2.3)

for each x, y ∈H with ‖x‖ = ‖y‖ = 1.
Finally, on making y = x in (2.3), we deduce the desired result (2.1).

The case of norm operator may be of interest and is embodied in the
following remark.

Remark 2.1. Let A be a positive operator in B (H ) and f, g ∈ C (sp (A))
asynchronous and non-negative functions, and let φ be a normalized positive
linear map on B (H ). By taking supremum over x ∈ H with ‖x‖ = 1, we
obtain

‖φ (f (A) g (A))‖ ≤ ‖φ (f (A))‖ ‖φ (g (A))‖ .
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Corollary 2.1. Let A be a self-adjoint operator and f, g ∈ C (sp (A)) be
synchronous functions. If we take φ (A) = A, then we have the inequality
(1.3).

The following result follows from Davis-Choi-Jensen’s inequality (see for
instance [7, Theorem 1.20]).

Corollary 2.2. All as in Theorem 2.1, and f, g are non-negative and operator
convex. Then by Davis-Choi-Jensen’s inequality we get

〈φ (f (A) g (A))x, x〉 ≥ 〈φ (f (A))x, x〉 〈φ (g (A))x, x〉
≥ f (〈φ (A)x, x〉) g (〈φ (A)x, x〉) ,

for any x ∈H with ‖x‖ = 1.

As a special case of Corollary 2.2, we have the following Kadison’s inequal-
ity:

Corollary 2.3. If we take f (t) = g (t) = t, we obtain〈
φ
(
A2
)
x, x

〉
≥ 〈φ (A)x, x〉2,

for any x ∈H with ‖x‖ = 1.

The following lemma is known as the McCarty inequality.

Lemma 2.1. Let A ∈ B (H ) , A ≥ 0 and let x ∈H be any unit vector. Then

〈Arx, x〉 ≤ 〈Ax, x〉r, 0 < r ≤ 1. (2.4)

Corollary 2.4. If we put f (t) = tp, g (t) = tq with p, q ≥ 0 and φ (A) = A,
by (2.4) we get

〈Ax, x〉p+q ≥ 〈Apx, x〉 〈Aqx, x〉 ,
for any x ∈H with ‖x‖ = 1.

Remark 2.2. A few remarks are in order.

• It is well-known that φ (A) = X∗AX where X is an operator in B (H )
with X∗X = I, is a normalized positive linear map. According to this
fact from (2.1), we have the following

〈X∗f (A) g (A)Xx, x〉 ≥ 〈X∗f (A)Xx, x〉 〈X∗g (A)Xx, x〉 , (2.5)

for any x ∈H with ‖x‖ = 1.
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• Let f (t) = g (t) = tr where r ≥ 0, in (2.5), then〈
X∗A2rXx, x

〉
≥ 〈X∗ArXx, x〉2, (2.6)

for any x ∈H with ‖x‖ = 1.

• Let X be a unitary and 0 < r ≤ 1 in (2.6), Then〈
X∗A2rXx, x

〉
≥ 〈X∗AXx, x〉2r,

for any x ∈H with ‖x‖ = 1.

Remark 2.3. Let A ∈Mn (C) be a Hermitian matrix. Define φ : Mn (C)→
Mn (C) where φ (A) = 1

n tr (A) 1H . Then from inequality (2.1), we have

1

n
tr (f (A)) tr (g (A)) ≤ tr (f (A) g (A)) .

Furthermore, if we choose f (t) = g (t) = t, we get

1

n
tr2 (A) ≤ tr

(
A2
)
.

We remark that, if A ∈Mn (C) be a positive semi definite matrix then

1

n
tr2 (A) ≤ tr

(
A2
)
≤ tr2 (A) .

The following general result for two operators also holds:

Proposition 2.1. Let A,B be a self-adjoint operators and f, g ∈ C (sp (A))
and f, g ∈ C (sp (B)) are continuous and synchronous functions, and let φ be
a normalized positive linear map on B (H ), then

〈φ (f (A) g (A))x, x〉+ 〈φ (f (B) g (B)) y, y〉
≥ 〈φ (f (A))x, x〉 〈φ (g (B)) y, y〉+ 〈φ (g (A))x, x〉 〈φ (f (B)) y, y〉 ,

(2.7)

for any x, y ∈H with ‖x‖ = ‖y‖ = 1.

Proof. Follows from proof of Theorem 2.1 by applying functional calculus for
self-adjoint operator B in (2.2). However, the details are not given here.

Remark 2.4. We provide now some particular inequalities of interest that
can be derived from Proposition 2.1.
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• By replacing B with A−1 in (2.7), we get

〈φ (f (A) g (A))x, x〉+
〈
φ
(
f
(
A−1

)
g
(
A−1

))
y, y
〉

≤
〈
φ
(
g
(
A−1

))
y, y
〉
〈φ (f (A))x, x〉+

〈
φ
(
f
(
A−1

))
y, y
〉
〈φ (g (A))x, x〉 ,

(2.8)
for any x, y ∈H with ‖x‖ = ‖y‖ = 1.

• By taking supremum over x ∈H with ‖x‖ = 1, and y ∈H with ‖y‖ = 1
in (2.8) respectively, we obtain

‖φ (f (A) g (A))‖+
∥∥φ (f (A−1) g (A−1))∥∥

≤
∥∥φ (g (A−1))∥∥ ‖φ (f (A))‖+

∥∥φ (f (A−1))∥∥ ‖φ (g (A))‖ .
(2.9)

• If we put in (2.9), φ (A) = A and f (t) = tp, g (t) = tq where p, q ≤ 0,
we get ∥∥Ap+q

∥∥+
∥∥A−p−q∥∥ ≤ ‖Ap‖

∥∥A−q∥∥+
∥∥A−p∥∥ ‖Aq‖ .

The following multiple operator version of Theorem 2.1 holds:

Proposition 2.2. Let Ai ∈ B (H ) be self-adjoint operators and φi normalized
positive linear maps (i = 1, . . . , n). If f, g ∈ C (sp (Ai)) are continuous and
synchronous, then

n∑
i=1

〈φi (f (Ai) g (Ai))xi, xi〉 ≥
n∑

i=1

〈φi (f (Ai))xi, xi〉
n∑

i=1

〈φi (g (Ai))xi, xi〉,

for each xi ∈H , i ∈ {1, . . . , n} with
n∑

i=1

‖xi‖2 = 1.

Proposition 2.3. Let Ai ∈ B (H ) be self-adjoint operators and φi normal-
ized positive linear maps (i = 1, . . . , n). Let ω1, . . . , ωn ∈ R+ be any finite

number of positive real numbers such that
n∑

i=1

ωi = 1. If f, g ∈ C (sp (Ai)) are

continuous and synchronous, then〈
n∑

i=1

ωiφi (f (Ai) g (Ai))x, x

〉

≥

〈
n∑

i=1

ωiφi (f (Ai))x, x

〉〈
n∑

i=1

ωiφi (g (Ai))x, x

〉
,

for any x ∈H with ‖x‖ = 1.
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The following useful lemma can be found in [14, Lemma 1] and [2, Theorem
I.1].

Lemma 2.2. Let A,B and C be operators in B (H ), where A and B are

positive. Then

[
A C∗

C B

]
is a positive operator in B (H ⊕H ) if and only if

|〈Cx, y〉|2 ≤ |〈Ax, x〉| |〈By, y〉| for all x, y in H .

Theorem 2.2. Let A be a self-adjoint operator on B (H ) and f, g ∈ C (sp (A))
continuous and non-negative functions, and let φ : B (H ) → B (H ) be a n-
normalized positive linear map. Then

|〈φ (g (A) f (A))− φ (g (A))φ (f (A))x, y〉|2

≤
∣∣〈φ (f2 (A)

)
− φ2 (f (A))x, x

〉∣∣ ∣∣〈φ (g2 (A)
)
− φ2 (g (A)) y, y

〉∣∣ (2.10)

for all x, y in H .

Proof. Let f (A) and g (A) be two self-adjoint operators in B (H ). We have

0 ≤



f (A)
g (A)
I
0
...
0


[
f (A) g (A) I 0 · · · 0

]

=


f2 (A) f (A) g (A) f (A) 0 · · · 0

g (A) f (A) g2 (A) g (A) 0 · · · 0
f (A) g (A) I 0 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · 0

 .
Since φ is n-normalized positive linear map, we get

0 ≤


φ
(
f2 (A)

)
φ (f (A) g (A)) φ (f (A)) 0 · · · 0

φ (g (A) f (A)) φ
(
g2 (A)

)
φ (g (A)) 0 · · · 0

φ (f (A)) φ (g (A)) φ (I) 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0

 .
From the above argument, we have

0 ≤

 φ
(
f2 (A)

)
φ (f (A) g (A)) φ (f (A))

φ (g (A) f (A)) φ
(
g2 (A)

)
φ (g (A))

φ (f (A)) φ (g (A)) I

 .
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It is known that the matrix

[
R T
T ∗ S

]
is positive if and only if R,S are positive

and R ≥ TS−1T ∗, where S−1 denoted the inverse of S. Based on this fact we
have[

φ
(
f2 (A)

)
φ (f (A) g (A))

φ (g (A) f (A)) φ
(
g2 (A)

) ]
≥
[
φ (f (A))
φ (g (A))

]
I−1

[
φ (f (A)) φ (g (A))

]
=

[
φ2 (f (A)) φ (f (A))φ (g (A))

φ (g (A))φ (f (A)) φ2 (g (A))

]
or equivalently[

φ
(
f2 (A)

)
− φ2 (f (A)) φ (f (A) g (A))− φ (f (A))φ (g (A))

φ (g (A) f (A))− φ (g (A))φ (f (A)) φ
(
g2 (A)

)
− φ2 (g (A))

]
≥ 0.

(2.11)
From Lemma 2.2, the inequality (2.11) implies that

|〈φ (g (A) f (A))− φ (g (A))φ (f (A))x, y〉|2

≤
∣∣〈φ (f2 (A)

)
− φ2 (f (A))x, x

〉∣∣ ∣∣〈φ (g2 (A)
)
− φ2 (g (A)) y, y

〉∣∣ , (2.12)

for all x, y in H .

Remark 2.5. If y = x is a unit vector in (2.12), by taking supremum over
x ∈H with ‖x‖ = 1 we get

‖φ (f (A) g (A))− φ (f (A))φ (g (A))‖ ≤ max
{∥∥φ (f2 (A)

)
− φ2 (f (A))

∥∥
,
∥∥φ (g2 (A)

)
− φ2 (g (A))

∥∥}
(2.13)

An application of Theorem 2.2 can be seen in the following result. This
result presents a refinement of the inequality (2.13).

As a matter of fact, if in (2.11), A be a compact operator and φ be a
n-normalized bounded positive linear map, from [1, Theorem 2.1] we have

sj (φ (g (A)A (A))− φ (g (A))φ (f (A))) ≤ sj
(
φ
(
f2 (A)

)
− φ2 (f (A))

⊕φ
(
g2 (A)

)
− φ2 (g (A))

)
,

(2.14)

for j = 1, 2, · · · , n.
Since every unitarily invariant norm is a monotone function of the singular

values of an operator, from the inequality (2.14) we can write

|||φ (g (A)A (A))− φ (g (A))φ (f (A)) ||| ≤ |||φ
(
f2 (A)

)
− φ2 (f (A))

⊕ φ
(
g2 (A)

)
− φ2 (g (A)) |||.

(2.15)
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One of the most famous examples of unitarily invariant norms is the usual
operator norm ‖·‖. Therefore from (2.15), we have

‖φ (f (A) g (A))− φ (f (A))φ (g (A))‖
≤ max

{∥∥φ (f2 (A)
)
− φ2 (f (A))

∥∥ ,∥∥φ (g2 (A)
)
− φ2 (g (A))

∥∥} .
This result based on the following fact

‖A⊕B‖ = max {‖A‖ , ‖B‖} ,

where the direct sum A⊕B denotes the block diagonal matrix

(
A 0
0 B

)
defined

on H ⊕H .

2.2 D-Synchronous Functions

The quadruple (f, g, h, k) is called D-Synchronous
(D-Asynchronous) on I if

det

(
f (s) f (t)
g (s) g (t)

)
det

(
h (s) h (t)
k (s) k (t)

)
≥ (≤) 0,

for each s, t ∈ I. This concept is generalization of synchronous functions, since
for g = 1, k = 1 the quadruple (f, g, h, k) is D-Synchronous if and only if (f, g)
is synchronous on I (see [11]). We observe that

det

(
f (s) f (t)
g (s) g (t)

)
det

(
h (s) h (t)
k (s) k (t)

)
= (f (s) g (t)− g (s) f (t)) (h (s) k (t)− k (s)h (t)) ,

for each s, t ∈ I. For D-Synchronous (D-Asynchronous) functions, the reader
is referred to [11].

Theorem 2.3. Let A be a self-adjoint operator and f, g, h, k ∈ C (sp (A)) are
continuous and D-synchronous functions, and let φ be a normalized positive
linear map on B (H ), then

det

(
〈φ (f (A)h (A))x, x〉 〈φ (f (A) k (A))x, x〉
〈φ (g (A)h (A))x, x〉 〈φ (g (A) k (A))x, x〉

)
≥ 0. (2.16)

for any x ∈H with ‖x‖ = 1.

Proof. Since the quadruple (f, g, h, k) is D-synchronous, then

0 ≤ (f (s) g (t)− g (s) f (t)) (h (x) k (t)− k (s)h (t))

= f (s)h (s) g (t) k (t) + g (s) k (s) f (t)h (t)

− f (s) k (s) g (t)h (t)− g (s)h (s) f (t) k (t)
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this is equivalent to

f (s)h (s) g (t) k (t) + g (s) k (s) f (t)h (t)

≥ f (s) k (s) g (t)h (t) + g (s)h (s) f (t) k (t) .
(2.17)

Fix s ∈ [a, b], and apply the functional calculus for the operator A in (2.17),
we deduce

f (s)h (s) g (A) k (A) + g (s) k (s) f (A)h (A)

≥ f (s) k (s) g (A)h (A) + g (s)h (s) f (A) k (A) .

Since φ is normalized positive linear map we get

f (s)h (s)φ (g (A) k (A)) + g (s) k (s)φ (f (A)h (A))

≥ f (s) k (s)φ (g (A)h (A)) + g (s)h (s)φ (f (A) k (A)) ,

which is clearly equivalent with

f (s)h (s) 〈φ (g (A) k (A))x, x〉+ g (s) k (s) 〈φ (f (A)h (A))x, x〉
≥ f (s) k (s) 〈φ (g (A)h (A))x, x〉+ g (s)h (s) 〈φ (f (A) k (A))x, x〉 ,

for each x ∈H with ‖x‖ = 1.
Apply again functional calculus we obtain

f (A)h (A) 〈φ (g (A) k (A))x, x〉+ g (A) k (A) 〈φ (f (A)h (A))x, x〉
≥ f (A) k (A) 〈φ (g (A)h (A))x, x〉+ g (A)h (A) 〈φ (f (A) k (A))x, x〉 .

Again, since φ is normalized positive linear map we get

φ (f (A)h (A)) 〈φ (g (A) k (A))x, x〉+ φ (g (A) k (A)) 〈φ (f (A)h (A))x, x〉
≥ φ (f (A) k (A)) 〈φ (g (A)h (A))x, x〉+ φ (g (A)h (A)) 〈φ (f (A) k (A))x, x〉

or
〈φ (f (A)h (A)) y, y〉 〈φ (g (A) k (A))x, x〉

+ 〈φ (g (A) k (A)) y, y〉 〈φ (f (A)h (A))x, x〉
≥ 〈φ (f (A)) k (A) y, y〉 〈φ (g (A))h (A)x, x〉

+ 〈φ (g (A))h (A) y, y〉 〈φ (f (A)) k (A)x, x〉 ,

(2.18)

for each x ∈H with ‖x‖ = 1.
Finally, on making y = x in (2.18) we deduce the desired result (2.16).

Remark 2.6. If we take f (t) = tp, g (t) = tq, h (t) = tr, k (t) = ts whre
p, q, r, s ≥ 0 and φ (A) = A in (2.16), then〈

Ap+rx, x
〉 〈
Aq+sx, x

〉
≥
〈
Ap+sx, x

〉 〈
Aq+rx, x

〉
,

for any x ∈H with ‖x‖ = 1.

Proof. The proof is similar to the proof of Theorem 2.3. The details are
omitted.
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atorskom Har’kovskom Universitete, No. 2, pp. 9398; Polnoe sobranie
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Timişoara, 1990. MR1266442 (94m:46033).

[14] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publi-
cations of the Research Institute for Mathematical Sciences. 24(2) (1988),
283–293.
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