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Numerical Range on Weighted Hardy Spaces as
Semi Inner Product Spaces

Mohammad Taghi Heydari

Abstract

The semi-inner product, in the sense of Lumer, on weighted Hardy
space which generate the norm is unique. Also we will discuss some prop-
erties of the numerical range of bounded linear operators on weighted
Hardy spaces.

1 Introduction

Let T be a (bounded linear) operator on a complex Hilbert space H. The
numerical range of T is the set

W (T ) := {〈Tx, x〉 : x ∈ H, ‖x‖ = 1} (1.1)

in the complex plane, where 〈., .〉 denotes the inner product in H. In other
words, W (T ) is the image of the unit sphere {x ∈ H : ‖x‖ = 1} of H under
the (bounded) quadratic form x 7→ 〈Tx, x〉.

Some properties of the numerical range follow easily from the definition.
For one thing, the numerical range is unchanged under the unitary equivalence
of operators: W (T ) = W (U∗TU) for any unitary U . It also behaves nicely
under the operation of taking the adjoint of an operator: W (T ∗) = {z : z ∈
W (T )}. One of the most fundamental properties of the numerical range is its
convexity, stated by the famous Toeplitz-Hausdorff Theorem. It is known that
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W (T ) is a connected set and its closure contains the spectrum of T . Also in
the finite dimensional case, W (T ) is compact.

By the contrast to the long history of the Hilbert space numerical range,
the birth of the general theory was long delayed and its growth has been
spectacular. No concept of numerical range appropriate to general normed
linear spaces appeared until 1961 and 1962, when distinct, though related,
concepts were introduced independently by Bauer [2] and Lumer [13].

Let X be a complex vector space. The mapping [·, ·] : X×X → C is called
a semi-inner product, in the sense of Lumer, if the following properties are
satisfied:

(i) [x+ y, z] = [x, z] + [y, z] for all x, y, z ∈ X;

(ii) [λx, y] = λ[x, y] for all x, y ∈ X and λ ∈ C;

(iii) [x, x] ≥ 0 for all x ∈ X ;

(iv) |[x, y]|2 ≤ [x, x][y, y] for all x, y ∈ X and λ ∈ C.

Lumer [13] showed that a semi-inner product space is a normed linear space

with the norm [x, x]
1
2 . On the other hand every normed linear space (X, ‖.‖)

has at least one semi-inner product [., .] such that

[x, x] = ‖x‖2 (x ∈ X). (1.2)

If a semi-inner product satisfying (1.2), the definition of numerical range
used for Hilbert spaces at once generalizes to give the definition of the numer-
ical range W (T ) for a linear operator on X,

W (T ) = {[Tx, x] : ||x|| = 1}.

On the face of this definition has the serious defect that it is not an invariant
of the normed space (X, ||.||). There are many semi-inner-product(infinite) on
X satisfying (1.2) except when the unit ball of X is smooth(i.e., for all x, with
‖x‖ = 1, there is a unique x∗ in dual space X, X∗, such that ‖x∗‖ = 1 and
x∗(x) = 1).

Lumer proved that, coW (T ), the closed convex hull of W (T ), is indepen-
dent of the choice of semi-inner product satisfying (1.2). In fact, he showed
that coW (T ) depends only on the norms of the operators in two dimensional
linear subspace spanned by I, the identity operator, and T .

In this paper, we establish a fundamental proposition, which says that the
unit ball of weighted Hardy spaces is smooth. By this proposition we show
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that there is one and only one semi-inner product on weighted Hardy spaces
in Lumer’s sense which satisfies (1.2). In addition, some properties of the
numerical range of bounded linear operators on weighted Hardy spaces are
discussed.

2 weighted Hardy space

In this section, we recall the definition of the weighted Hardy spaces, which
will be used in the sequel.

Let 1 < p < ∞ and {β(n)}n be a sequence of positive numbers with
β(0) = 1. The weighted Hardy space, which is denoted by Hp(β), is the set

of all formal power series f(z) =
∑∞
n=0 f̂(n)zn with

‖f‖p = ‖f‖pHp(β) =

∞∑
n=0

|f̂(n)|pβ(n)p <∞.

Let µ(K) =
∑
n∈K β(n)p, for K ⊆ N ∪ {0}. Then µ is a σ-finite measure

and Hp(β) = Lp(µ). So the space Hp(β) is a reflexive Banach space with the

norm ‖.‖Hp(β), and the dual of Hp(β) is Hq(β
p
q ), where 1/p + 1/q = 1 and

βp/q = {β(n)p/q} (see, [14]).
In the case p = 2, the weighted Hardy spaces with β(n) = 1, β(n) =

(n+ 1)
−1
2 and β(n) = (n+ 1)

1
2 are classical Hardy space, Bergman space and

the Dirichlet space, respectively (see [6], [8], [18] for more about them).

The space H2(β) becomes to a Hilbert space with inner product

〈f, g〉 =

∞∑
n=0

anbnβ(n)2,

where f(z) =
∑
anz

n and g(z) =
∑
bnz

n are the elements of H2(β) (see,
[15]).

The notation 〈f, g〉 is to stand for g(f) where f ∈ Hp(β) and g ∈ (Hp(β))∗.
Note that (see, [17]):

〈f, g〉 =

∞∑
n=0

f̂(n)ĝ(n)β(n)p.

For f ∈ Hp(β) and g ∈ Hq(β
p
q ), with f(z) =

∑
anz

n and g(z) =
∑
bnz

n,
we define f∗ and ∗g by f∗ =

∑
|an|p−1sgn(an)zn and ∗g =

∑
|bn|q−1sgn(bn)zn
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respectively, where sgn(0) = 0 and sgn(w) = w
|w| for a nonzero complex num-

ber w. Clearly

‖f∗‖qq = ‖f∗‖q
Hq(β

p
q )

=

∞∑
n=0

|f̂(n)|pβ(n)p = ‖f‖pp <∞,

and

‖∗g‖pp =

∞∑
n=0

|ĝ(n)|qβ(n)p = ‖g‖qq <∞.

Thus f∗ ∈ Hq(β
p
q ) and ∗g ∈ Hp(β). Obviously, one can see that ∗(f∗) = f for

all f ∈ Hp(β) and (∗g)∗ = g for all g in (Hp(β))∗. By a simple computation
we also have the following consequences:

a) If α ≥ 0 and f ∈ Hp(β) then (αf)∗ = αp−1f∗

b) If f ∈ Hp(β), 〈f, f∗〉 = ‖f‖pp
Proposition 2.1. The unit ball of Hp(β) is smooth.

Proof. Suppose f ∈ Hp(β), g ∈ (Hp(β))∗, ‖f‖ = ‖g‖ = 1 and 〈f, g〉 = 1.
Then

1 = 〈f, g〉 ≤ ‖f‖‖g‖ = 1.

Therefore equality occurs in Holder inequality and there are complex num-
bers α and η (independent of n) such that |f̂(n)|pβ(n)p = α|ĝ(n)|qβ(n)p and

arg(f̂(n)ĝ(n)) = η (see [11]). Hence |f̂(n)|p = α|ĝ(n)|q. But

1 = ‖f‖pp =
∑
|f̂(n)|pβ(n)p = α

∑
|ĝ(n)|qβ(n)p = α,

and hence |f̂(n)|p = |ĝ(n)|q. On the other hand

1 =
∑

f̂(n)ĝ(n)β(n)p

=
∑
|f̂(n)||ĝ(n)| eiarg(f̂(n)ĝ(n))β(n)p

= eiη
∑
|f̂(n)||f̂(n)|p/qβ(n)p = eiη.

Therefore eiarg(f̂(n)ĝ(n)) = 1, or equivalently eiarg(f̂(n)) = eiarg(ĝ(n)). This
implies

ĝ(n) = |f̂(n)|p/qeiarg(f̂(n)),
or

g = f∗.

Hence the unit ball of Hp(β) is smooth.
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Define a semi-inner product on Hp(β) by

[g, f ] := 〈g, Ff 〉, (2.1)

where f, g ∈ Hp(β) and Ff := ‖f‖2−pf∗. Obviously, we have [f, f ] = ‖f‖2p.
Thus, by Proposition 2.1, it is the only semi-inner product on weighted Hardy
space in Lumer’s sense on Hp(β) which satisfies (1.2).

3 results and discussion

In this section we use the proposition 2.1 as a way to guide the discussion.
But first, we recall some other basic properties of weighted Hardy spaces.

Suppose f ∈ Hp(β), our definition of f∗ implies:

• ∗(f∗) = f for all f ∈ Hp(β) and (∗g)∗ = g for all g in (Hp(β))∗.

• f → f∗ is a bijection from Hp(β) onto (Hp(β))∗ that is isometry.

Also it has the additional nice properties, i.e.,

• The fundamental proposition 2.1.

• There is no ambiguity in the numerical range with respect to our def-
inition. Indeed, in terms of a semi-inner-product satisfying (1.2), the
definition of usual numerical range for Hilbert space operator at once
generalizes to give the definition of the numerical range W (T ) for a lin-
ear operator on X,

W (T ) = {[Tx, x] : ‖x‖ = 1}.

In most cases, there are infinitely many semi-inner products on X satis-
fying (1.2). But, for bounded linear operator T on weighted Hardy space
Hp(β) the spatial numerical range of T , V (T ), coincides with numerical
range W (T ), Indeed,

W (T ) = V (T )

:= {〈Tx, x∗〉 : x ∈ X,x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = 〈x, x∗〉 = 1}.

whereW (T ) is the numerical range of T respect to the semi inner product
defined by (2.1). Therefore

V (T ) = W (T ) = {〈Tf, f∗〉 : f ∈ Hp(β), ‖f‖ = 1}.
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In the following, we discuss some properties of the numerical range of a
bounded linear operator T on Hp(β) and show that it is need not be con-
vex, even if T is compact.

Recall that the usual notation σ(T ), σp(T ) and σap(T ) for the spectrum,
point spectrum and approximate point spectrum of T respectively.

Theorem 3.1. Let T be a bounded linear operator on Hp(β). Then
(i) W (T ) = W (T ∗);
(ii) W (T ) need not be convex;
(iii) σp(T ) ⊆W (T );

(iv) σ(T ) ⊆W (T ), the closure of W (T ) .

Proof. (i): By [ [4],Corollary 9.6] we have W (T ) ⊆W (T ∗). For the other hand
since Hp(β) is reflexive Banach space and T ∗∗ |Hp(β)= T , we have

W (T ∗) ⊆W (T ∗∗) = W (T ).

(ii): Let β(1) = 1 and T be the linear operator on Hp(β) defined by

(T̂ f)(n) =

 if̂(0) + f̂(1) n = 0,

−(f̂(0) + if̂(1)) n = 1,
0 n > 1.

Therefore

W (T ) = {〈Tf, f∗〉 : ‖f‖ = 1, f ∈ Hp(β)}
= {(T̂ f)(0)|f̂(0)|

p
q e−iθ0 + (T̂ f)(1)|f̂(1)|

p
q e−iθ1 : ‖f‖ = 1, f ∈ Hp(β)},

where θ0 = arg(f̂(0)) and θ1 = arg(f̂(1)). By writing

|f̂(0)| = r, |f̂(1)| = s, θ = θ1 − θ0

, we have

W (T ) = {rs(rp−2−sp−2)cosθ+ i[rp−sp+rs(rp+2+sp+2)sinθ] : rp+sp ≤ 1}.

Now, let

α = sup{Rez : z ∈W (T )} = sup{rs(rp−2 − sp−2) : rp + sp ≤ 1},

and

β = sup{W (T ) ∩ R}
= sup{cosθ.rs(rp−2 − sp−2) :

rp + sp ≤ 1 and rp − sp + rs(rp+2 + sp+2)sinθ = 0}
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We have α > β unless p = 2. If

z = rs(rp−2 − sp−2)cosθ + i[rp − sp + rs(rp+2 + sp+2)sinθ] ∈W (T )

then the conjugate of z is

z = sr(sp−2− rp−2)cos(π+ θ) + i[sp− rp+ sr(sp+2 + rp+2)sin(π+ θ)] ∈W (T )

and W (T ) is symmetry with respect to real axis. Thus α attained at points
above and below the real axis, and we obtain that W (T ) is not convex unless
p = 2 (see also [1]).

(iii): Let λ ∈ σp(T ). Then there exists a non zero function f ∈ Hp(β) such

that Tf = λf . Put g = f
||f ||p . Then, by property of .∗ and 〈., .〉 in weighted

Hardy space, we have

〈Tg, g∗〉 = 〈 λ

||f ||p
f,

1

||f ||p−1p

f∗〉

=
λ

||f ||pp
〈f, f∗〉

=
λ

||f ||pp
||f ||pp

= λ.

Hence λ ∈W (T ).

(iv): This part is proved by Williams in [16] for Banach spaces, but the
following proof for weighted Hardy spaces is elementary. Let λ ∈ σap(T ).
There exists a sequence {fn} in Hp(β) such that ||fn||p = 1 and (T−λ)fn → 0
as n→∞. Thus

〈Tfn, f∗n〉 → λ〈fn, f∗n〉 = λ||fn||pp = λ

as n→∞ and λ ∈W (T ). Then (iv) hold by (i), (ii) and the identity

σ(T ) = σap(T )
⋃
σp(T

∗).

In the following theorem, we prove an interesting result for compact oper-
ators acting on Hp(β).



Numerical Range on Weighted Hardy Spaces as Semi Inner Product Spaces 94

Theorem 3.2. If T is a compact operator on Hp(β), then coW (T ) obtained
by connecting all points in W (T ) to the origin. In fact

coW (T ) = co({0}
⋃
W (T )).

Proof. Since T is compact on an infinite dimensional Banach space, we have
0 ∈ σ(T ). By part (iv) of Theorem 3.1 we have 0 ∈W (T ) that implies

co({0}
⋃
W (T )) ⊆ coW (T )

For the other hand, let α ∈W (T ). Then there exists a sequence {fn} ∈ Hp(β)
with ||fn||p = 1 and 〈Tfn, f∗n >→ α. By reflexivity of Hp(β) and Banach-
Alaoglu theorem, there exists a subsequence of {fn}, without loss of generality,
assume {fn}, such that fn → f in weak topology for some f in Hp(β) with
||fn||p ≤ 1 and f∗n → f∗ in weak-star topology.

Then
〈Tf, f∗n − f∗〉 → 0,

and since T is compact, we have

Tfn → Tf

Also

|〈Tfn, f∗n〉 − 〈Tf, f∗〉| = |〈Tfn, f∗n〉 − 〈Tf, f∗〉 ± 〈Tf, f∗n〉|
= |〈Tfn − f, f∗n〉+ 〈Tf, f∗n − f∗〉|
≤ ||T (fn − f)||||f∗n||+ |〈Tf, f∗n − f∗〉| → 0.

Hence, 〈Tfn, f∗n〉 → 〈Tf, f∗〉 as n→∞ and so indeed α = 〈Tf, f∗〉.

If α 6= 0, then f 6= 0 and

α = ||f ||pp〈T (
f

||f ||p
), (

f

||f ||p
)∗〉 ∈ ||f ||ppW (T ),

thus
coW (T ) ⊆ co({0}

⋃
W (T )),

and so the proof is complete.

Corollary 3.3. Let T be a compact operator on Hp(β). If W (T ) is closed
then 0 ∈W (T ). Also, if 0 ∈W (T ) then co(W (T )) is closed.
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Corollary 3.4. If T is a compact operator on Hp(β) such that W (T ) is star
shaped respect to zero i.e., tz ∈ W (T ) for 0 ≤ t ≤ 1 and z ∈ W (T ). Then
W (T ) is closed.

Proof. Since W (T ) is star shaped respect to zero then we have (see [1])

W (T ) = {〈Tf, f∗〉 : ||f ||p ≤ 1}.

Let α ∈ W (T ), then α = 〈Tf, f∗〉 for some f in Hp(β) with ||fn||p ≤ 1
(Theorem 3.2). Thus α ∈W (T ) and so W (T ) is closed.

Remark 3.5. Uniformly convex spaces (or uniformly rotund spaces) are com-
mon examples of reflexive Banach spaces. The concept of uniform convexity
was first introduced by James A. Clarkson in 1936 (see [5]).
A uniformly convex space is a normed vector space so that, for every 0 < ε ≤ 2
there is some δ > 0 so that for any two vectors with ‖x‖ = 1 and ‖y‖ = 1, the
condition

‖x− y‖ ≥ ε

implies that: ∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

Intuitively, the center of a line segment inside the unit ball must lie deep
inside the unit ball unless the segment is short. The Milman-Pettis theorem
states that every uniformly convex Banach space is reflexive, while the con-
verse is not true.

Let T be a bounded linear operator on Hp(β). Since Hp(β) is uniformly
convex (See [4]), then we have the following:

• ∂σ(T ) ⊆W (T )

• {λ : λ ∈W (T ), |λ| = ||T ||} ⊆ ∂σ(T )

• If sup{|λ| : λ ∈W (T )} = ||T ||, then sup{|λ| : λ ∈ σ(T )} = ||T ||.

• Since Hp(β) is strictly convex (i.e., f 6= 0, g 6= 0 and ||f + g||p =
||f ||p + ||g||p imply that f = cg for some constant c > 0). We have that
if λ ∈W (T ) and |λ| = ||T ||, then λ is an eigenvalue of T .
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Remark 3.6. Let the numerical index of a normed spaceX be the real number
n(X) defined by

n(X) = inf{v(T ) : T ∈ B(X), ||T || = 1}

where
v(T ) = sup{|λ| : λ ∈ V (T )}

is the numerical radius of T . Clearly, v is a semi-norm on B(X), and v(T ) ≤
||T || for every T ∈ B(X). It was shown by Glickfeld [9] (and essentially by
Bohnenblust and Karlin [3]) that if X is a complex space, then e−1||T || ≤ v(T )
for every T ∈ B(X) where e = exp1, so that for complex spaces, v is always a
norm and it is equivalent to the operator norm ||.||.

Obviously, n(X) is the greatest constant k ≥ 0 such that k||T || ≤ v(T ) for
every T ∈ B(X). Note that for any complex Banach spaceX, e−1 ≤ n(X) ≤ 1.
The concept of the numerical index was first suggested by Lumer [13]. At that
time, it was known that if X is a complex Hilbert space (with dimX > 1) then
n(X) = 1

2 and if it is real then n(X) = 0 so that for real spaces, 0 ≤ n(X) ≤ 1.

Later, Duncan et al. [4] determined the range of values of the numerical
index. More precisely, they proved that

{n(X) : X real Banach} = [0, 1],

{n(X) : X complex Banach space} = [e−1, 1].

As an interesting open problem is to compute the numerical index of Hp(β).
Since Hp(β) = Lp(µ) for some µ, so the n(Hp(β)) is dominated by n(`p). For
more details see [7].
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