Numerical Range on Weighted Hardy Spaces as Semi Inner Product Spaces

Open access

Abstract

The semi-inner product, in the sense of Lumer, on weighted Hardy space which generate the norm is unique. Also we will discuss some properties of the numerical range of bounded linear operators on weighted Hardy spaces.

[1] A. Abdollahi and M. T. Heydari, Spatial Numerical Range of Operators on Weighted Hardy Spaces, International Journal of Mathematics and Mathematical Sciences. DOI:10.1155/2011/812680

[2] F. L. Bauer, On the Filed of Valuse Subordinates to a Norm, Numer. Math. 4 (1961) 103-111.

[3] H.F. Bohnenblust, S. Karlin, Geometrical properties of the unit sphere in Banach algebra, Ann. Math. 62 (1955) 217-229.

[4] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Notes Series 2, Cambridge, 1971.

[5] J. A. Clarkson, Uniformly Convex Spaces, Trans. Amer. Math. Soc. 40 (1936): 396-414

[6] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1995

[7] Elmouloudi Ed-dari, On the numerical index of Banach spaces, Linear Algebra and its Applications 403 (2005) 86-96.

[8] E. A. Gallardo-Gutierrez and A. Montes-Rodriguez, The role of the spectrum in the cyclic behavior of composition operators, Mem. Amer. Math. Soc. 167 (2004), no. 791, x+81 pp.

[9] B.W. Glickfeld, On an inequality of Banach algebra geometry and semiinner product space theory, Illinois J. Math. 14 (1970) 76-81.

[10] Gustafon, K. E., K. M. Rao.: The numerical range, the field of values of linear operators and matrices. Springer. New York. 1997.

[11] L. P. Kuptsov, Hölder inequality, in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Kluwer Academic Publishers, 2001, ISBN 978-1556080104.

[12] K. Jahedi and B. Youseff, Numerical Range of Operators Acting on Banach Spaces, Czechoslovak Mathematical Journal, Vol. 62 (2012), No. 2, 495-503.

[13] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 1961 29-43.

[14] K. Seddighi, K. Hedayatiyan and B. Youseff, Operators acting on certain Banach spaces of analytic functions, Internat. J. Math. Math. Sci. 18 (1995), no. 1, 107-110.

[15] A. L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, pp. 49-128. Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974.

[16] J. P. Williams, Spectra of Products and Numerical Ranges, J. Math. Anal. and Appl. 17 (1967) 214-220.

[17] B. Youseff and S. Jahedi, Composition operators on Banach spaces of formal power series, Boll. Unione Math. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003), no. 2, 481-487.

[18] N. Zorboska, Composition operators on S spaces, Indiana Univ. Math.

J. 39 (1990), 847-857.

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Journal Information


IMPACT FACTOR 2018: 0.638
5-year IMPACT FACTOR: 0.58


CiteScore 2018: 0.55

SCImago Journal Rank (SJR) 2018: 0.254
Source Normalized Impact per Paper (SNIP) 2018: 0.583

Mathematical Citation Quotient (MCQ) 2016: 0.10

Target Group

researchers in all fields of pure and applied mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 76 3
PDF Downloads 65 50 4