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Walrasian economy and some properties of
convexly compact sets

Mirela Cristea, Doina Dascălu∗, and Laura Nicoleta Nasta

Abstract

G. Žitković defined the notion of a convexly compact set in a topo-
logical space and, among other things, used it to give an extension of the
Walrasian excess-demand theorem. We continue the study of convexly
compactness in LCS spaces and prove a Krein-Milman theorem in this
setting.

1 Introduction

At the end of the 19th century L. Walras [6] defined the state of an economic
system at a given moment by using a system of equations involving the demand
and the supply, the equilibrium meaning that the supply is the same as the
demand. In the 1950’s K. J. Arrow and G. Debreu and, independently, L. W.
McKenzie developed a model of production, exchange, and consumption in a
competitive economy, and, more than that, they proved the existence of an
equilibrium point for this model. We will describe below Arrow and Debreu’s
model constructed in [2]. For a survey of these results and background and
subsequent developments, see [5].

The system is based on two principal categories of elements: n production
units (typically enterprises) and m consumption units (typically individuals).
Also, the economy implies the exchange of a certain number of commodities,
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whose number is l (note that types of labor might also be some of these com-
modities). As is customary, we will use the letters y, Y for quantities related
to production units and the letters x,X for quantities related to consumption
units.

We assume then that we have n production units labeled by the set
{1, . . . , n}. A production unit may produce a certain commodity or consume
it; in the first case the commodity is an output of the unit, while in the sec-
ond it is an input. A production plan for unit j is an vector y ∈ Rl, where
the component yjh, 1 ≤ h ≤ l denotes the output/input of the commodity
h, where inputs are negative and outputs as positive numbers. We make the
notation Ω = {x = (x1, . . . , xl) ∈ Rl : xi ≥ 0, ∀i}

It is realistic to assume that not all vectors in Rl are possible production
plans for a given unit - there might be constraints of size, capacity, etc. The
assumption we make is that each production unit j has an associated set Yj ⊂
Rl of possible production plans. For yj ∈ Yj , y = (yj1, . . . , yjl), the component
yjh, 1 ≤ h ≤ l denotes the output/input of the commodity h; remember inputs
are negative and outputs are positive numbers. Define Y =

∑n
j=1 Yj ; then the

elements of Y represent the possible output/input values of commodities for
the whole production sector. We assume then that Yj satisfy the following
three conditions:

I.a For each j, Yj is closed, convex, and 0 ∈ Yj .
I.b. Y ∩ Ω = 0.
I.c. Y ∩ (−Y ) = 0.
The different assertions in I.a. are natural. Assumption I.b. says that on

the level of the whole production sector there cannot be only outputs without
any inputs. Assumption I.c. is a consequence of the fact that at least one of
the commodities is labor, which cannot be an output of a production unit.

We pass now to the consumption units, that is, individuals. A vector
x ∈ Rl may be regarded also as a consumption vector for a unit i; in this case
the component xih represents the quantity of the commodity h consumed by
the individual i. Here also it is realistic to assume that, even in the absence
of budgetary constraints, not all vectors in Rl may be consumption vectors.
Thus for each i ∈ {1, . . . ,m}, we denote by Xi the set consumption vectors
that unit i would choose without any budgetary constraint. Then Xi ⊂ Rl

and for a vector xi ∈ Xi and h ∈ {1, . . . , l}, the component xih represents the
quantity of the commodity h consumed by the unit i.

The main constraint that has to be satisfied by the sets Xi comes from the
fact that quantities of consumed non-labor commodities have to be positive (an
individual does not produce), while the quantity of labor supplied is bounded
by natural factors (capacity, length of time). Since labor supplied is considered
negative as a commodity consumed by an individual, there should be a lower



WALRASIAN ECONOMY AND SOME PROPERTIES OF CONVEXLY
COMPACT SETS 71

bound for it. Thus we assume that the set Xi satisfies the following condition:
II. Xi is closed, convex, and bounded from below, i.e. there exists ξi ∈ Rl

such that ξih ≤ xih for every xi ∈ Xi and every h ∈ {1, . . . , l}.

Another important element is introduced by the preferences of each indi-
vidual. We assume that each consumption unit i has a preference scale that
determines preferences between the consumption vectors. The preference scale
of unit i is determined by a function ui : Xi → R, such that x is preferred to
x′ if and only if ui(x) ≥ ui(x

′). We assume that the functions ui satisfy the
following conditions:

III.a. ui is continuous.
III.b For any x ∈ Xi there exists x′ ∈ Xi such that ui(x

′) > ui(x).
III.c. For x, x′ ∈ Xi, if ui(x

′) > ui(x) then ui(tx + (1 − t)x′) > ui(x) for
t ∈ (0, 1).

Assumptions III.a. and III.c. may be regarded as natural; see, however, [2]
for some interesting comments. Assumption III.b. means that there is no “ide-
ally” preferred consumption vector, that some improvement is always possible.

Two more elements characterize the consumption units. First, each con-
sumption unit i is endowed with some initial holdings of the different com-
modities, defined by a vector ζi ∈ Rl. Secondly, we assume that the individual
are always shareholders in the production units; then the share of the profit
of the jth production unit that is distributed to the consumption unit i is
denoted by αij . We assume that they satisfy the following conditions:

IV.a. There exists xi ∈ Xi such that xi,h < ζi,h for all h ∈ {1, . . . , l}.
IV.b.

∑m
i=1 αij = 1 for all j ∈ {1, . . . , n}

The significance of IV.b. is obvious. That of IV.a. is less evident. It
says that any individual i could consume something of each commodity, and
still have a positive quantity remaining. This turns out in the theory to be
a necessary condition for the existence of the searched equilibrium point; it
means that this existence implies the fact that each individual should be able
to influence each commodity.

Finally, the functioning of the economy implies the existence of a system
of prices for each commodity. this is again a vector p ∈ Rn; since prices are
positive we have ph ≥ 0 for all h, and we may always assume the normalization
condition that the sum of all prices is equal to 1. So we are considering the set
P = {p = (p1, . . . , pl) ∈ Rl : ph ≥ 0,

∑l
h=1 ph = 1}, and for the price vector p

we have p ∈ P . We denote by 〈·, ·〉 the euclidean inner product on Rl, so that

〈x, y〉 =
∑l

h=1 xhyh.
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Definition 1. A competitive equilibrium is an element

(x∗1, . . . , x
∗
m, y

∗
1 , . . . , y

∗
n, p
∗) ∈

m∏
i=1

Xi ×
m∏
j=1

Yj × Rl

that satisfies the following conditions:
1. y∗j maximizes 〈p∗, yj〉 over yj ∈ Yj . This means that each production

unit should obtain for its production the maximum total price possible.

2. x∗i maximizes ui(xi) when xi ∈ {x ∈ Xi : 〈p∗, x〉 ≤ 〈p∗, ζi〉+
n∑

j=1

〈p∗, y∗j 〉}.

This represents the maximization of the preference functions for each consump-
tion unit. The supplementary condition, besides x ∈ Xi, stipulates that the
consumption is limited by the initial holdings plus the share of the production
units that are attributed to the given consumption unit.

3. p∗ ∈ P .
4. If z∗ =

∑m
i=1 x

∗
i −

∑n
j=1 y

∗
j −

∑m
i=1 ζi then z∗h ≤ 0 for every h ∈ {1, . . . , l}

and 〈p∗, z∗〉 = 0. A detailed analysis of condition shows that it allows the
possibility that if a commodity has zero price, then supply may exceed demand.
This is not possible for a nonzero price, since the excess would drive the price
down; but the fact that prices have to be nonnegative makes necessary this
slight complication.

Then the main Theorem 1 in [2] states the existence of an equilibrium
point:

Theorem 1. If an economic system satisfies conditions I - IV, then there
exists an equilibrium point.

The setting above was finite dimensional, hence locally compact. The equi-
librium theory for an economic system has been also considered in the more
general setting of infinite-dimensional spaces. For a survey, see [4]. In order
to obtain competitive equilibrium in infinite-dimensional spaces, G. Žitković
introduced in [7] the notion of a convexly compact set (see Definition 2) and
proved a Walrasian excess-demand theorem in topological spaces. In this con-
text he proved the following theorem (Theorem 4.11 in [7]):

Theorem 2. Suppose that X is a topological vector space and let C be a
convexly compact subset of X. We assume that D ⊂ C is convex and closed
and the function F : C ×D → R satisfy the following conditions:

1. {x ∈ C : F (x, y) ≤ 0} is closed and convex for each y ∈ D.
2. Fx : D → R, Fx(y) = F (x, y) is concave, and for each x ∈ C.
3. F (y, y) ≤ 0 for each y ∈ D.
Then there exists x0 ∈ C such that F (x0, y) ≤ 0, for every y ∈ D.
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Convexly compactness has thus been shown to be an important notion for
the economy of infinite-dimensional systems. The purpose of this paper is to
understand how far this notion is from compactness. The main result of this
paper, see Theorem 3 below, is that the well-known Krein-Milman theorem
holds for convexly compact sets. Remember that the original Krein-Milman
theorem says that in a LCS (locally convex space) every compact and convex
set is the closure of the convex hull of its extremal points. A version of this
theorem for cones (the cones, obviously, are not compact) is due to Choquet.
Applications to economic theory can be found, for example, in [3].

2 Results

Definition 2. Suppose that X is a topological vector space and C is convex
subset of X. C is called convexly compact if the following is true:

If a family {Fi}i∈I of convex subsets of C which are relatively closed in C is
such that for any finite subset J ⊂ I we have

⋂
j∈J Fj 6= ∅, then

⋂
i∈I FI 6= ∅.

Notations. If X is a vector space and A is a subset of X space we denote
by co(A) the convex hull of A and if C is a convex subset of X we denote
by ext(C) the set of extremal points of C. Remember that a ∈ C is called
an extremal point for C if whenever x, y ∈ C and α ∈ [0, 1] are such that
a = αx+(1−α)y we must have that a = x or a = y. A subset S ⊂ C is called
extremal if whenever x, y ∈ C, α ∈ (0, 1) are such that αx+ (1−α)y ∈ S then
we must have x ∈ S and y ∈ S.

If X is a topological space and A is a subset of X we denote by A the
closure of A.

Lemma 1. Suppose that X is a LCS. If C ⊂ X is a compactly convex set,
then C is closed.

Proof. Suppose that C is not closed and let x ∈ C \C. Let {Vi} a fundamental
system of neighborhoods for x which are closed and convex. Then Fi := Vi∩C
are convex and relatively closed in C,

⋂
i∈I FI = ∅, but

⋂
j∈J Fj 6= ∅ for any

finite subset J ⊂ I. The contradiction obtained proves the lemma.

Lemma 2. Suppose that X is a LCS, C ⊂ X is a compactly convex subset of
X and L : X → R is a linear continuous functional. Then L|C is bounded.

Proof. For n ∈ N let Fn = {x ∈ C : L(X) ≥ n}. Fn are closed and convex,
Fn ⊂ Fm for n > m and ∩n≥1Fn = ∅. It follows that there exists n0 such that
Fn0

= ∅ and therefore L|C < n0. Similarly L|C is bounded from below.
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Lemma 3. Suppose that X is a LCS, C ⊂ X is a compactly convex subset
of X and L : X → R is linear and continuous function. Then L attains its
maximum on C.

Proof. Let α = supC L(x). Then, by Lemma 2, α is finite. Let Fn = {x ∈ C :
L(X) ≥ α − 1

n}. By the definition of α, Fn 6= ∅ for all n ≥ 1. Also Fn are
closed and convex and Fn ⊂ Fm for n > m. It follows that for any A ⊂ N,
A finite, the intersection ∩n∈AFn is not empty. As C is compact convex we
deduce that ∩n∈NFn 6= ∅. Therefore there exists x ∈ C with L(x) = α.

The next theorem is the analogue, for convexly compact sets, of the clas-
sical Krein–Milman theorem.

Theorem 3. Suppose that X is a LCS, C ⊂ X is a compactly convex subset
of X. Then C = co(ext(C)).

Proof. First we prove that every compactly convex set C has an extremal
point. Let (K,≤) be the set of non-empty extremal closed convex subsets of
C with the order given by K1 ≤ K2 if and only if K2 ⊂ K1. We want to
show that (K,≤) has a maximal element and we apply Zorn’s Lemma. Let
{Ki}i∈I be a chain. By the definition of convex compactness ∩i∈IKi 6= ∅.
Obviously it is extremal and convex. Let K0 be a maximal element. We claim
that K0 consists of just one point. Suppose not and let x1 6= x2 ∈ K0. Let
L : X → R be linear and continuous such that L(x1) < L(x2) (which exists by
the Hahn-Banach theorem). Note that K0 is closed and convex compact. Let
α = maxK0

L(x) which exists by Lemma 3 and K ′0 = K0 ∩ {x : L(x) = α}. It
follows that K ′0 is convex and extremal for K0 and hence for C, K ′0 ⊂ K0 and
as x1 6∈ K ′0 we have also that K ′0 6= K0. This contradicts the maximality of
K0.

We prove now that C = co(ext(C)). Suppose now that this is not the
case and let x0 ∈ C \ co(ext(C)). Note that co(ext(C)) is convex compact.
Let L : X → R be linear and continuous such that L(x0) > max{L(x) : x ∈
co(ext(C))}. Let C ′ = max{L(x) : x ∈ C}. Then C ′ is extremal for C, it is
closed and convex compact, and, at the same time, C ′ ∩ co(ext(C)) = ∅. By
the first part of the proof C ′ has and extremal point x1. As C ′ is extremal
for C, we have that x1 is an extremal point for C as well which is impossible
since x1 6∈ co(ext(C))

The following examples are relevant for the relation between compactness
and convexly compactness in locally convex spaces.

Examples.
1. Let C ⊂ Rn be a convex subset. Then C is convexly compact if and only
if it is compact. This follows from Lemma 1 and Lemma 2.
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2. If X is a reflexive Banach space then the closed unit ball is convexly
compact. This follows from Alaoglu Theorem and the fact that a convex set
is closed in the norm topology if and only if is closed in the weak topology.

3. The closed unit ball in l1 is not convexly compact. This follows from
Theorem 3 and from the fact that the closed unit ball in l1 has no extremal
point.

Remark. A non-empty subset S of convex set C in a vector space X is called
semi-extremal if C \ S is convex. This is the same as saying that if x, y ∈ C,
α ∈ [0, 1], and αx+(1−α)y ∈ S then we must have x ∈ S or y ∈ S. Andersen
and Poulsen [1] proved that if X is a LCS, C is a compact convex subset and
S ⊂ C is closed and semi-extremal then S∩ext(C) 6= ∅. The same proof works
in the convexly compact setting. Hence one obtains the following statement:
if X is a LCS, C is a convexly compact subset and S ⊂ C is closed and
semi-extremal then S ∩ ext(C) 6= ∅.
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