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ON BI-ALGEBRAS

Arsham Borumand Saeid, Hee Sik Kim and Akbar Rezaei

Abstract

In this paper, we introduce a new algebra, called a BI-algebra, which
is a generalization of a (dual) implication algebra and we discuss the
basic properties of BI-algebras, and investigate ideals and congruence
relations.

1 Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras ([7]). It is known that the class of BCK-algebras
is a proper subclass of the class of BCI-algebras. J. Neggers and H. S. Kim
([19]) introduced the notion of d-algebras, which is another useful generaliza-
tion of BCK-algebras and investigated several relations between d-algebras
and BCK-algebras, and then investigated other relations between oriented
digraphs and d-algebras.

It is known that several generalizations of a B-algebra were extensively
investigated by many researchers and properties have been considered system-
atically. The notion of B-algebras was introduced by J. Neggers and H. S.
Kim ([17]). They defined a B-algebra as an algebra (X, ∗, 0) of type (2,0) (i.e.,
a non-empty set with a binary operation “∗” and a constant 0) satisfying the
following axioms:

(B1) x ∗ x = 0,

(B2) x ∗ 0 = x,
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(B) (x ∗ y) ∗ z = x ∗ [z ∗ (0 ∗ y)]

for any x, y, z ∈ X.
C. B. Kim and H. S. Kim ([12]) defined a BG-algebra, which is a general-

ization of B-algebra. An algebra (X, ∗, 0) of type (2,0) is called a BG-algebra
if it satisfies (B1), (B2), and

(BG) x = (x ∗ y) ∗ (0 ∗ y)

for any x, y ∈ X.
Y. B. Jun, E. H. Roh and H. S. Kim ([9]) introduced the notion of a BH-

algebra which is a generalization of BCK/BCI/BCH-algebras. An algebra
(X, ∗, 0) of type (2,0) is called a BH-algebra if it satisfies (B1), (B2), and

(BH) x ∗ y = y ∗ x = 0 implies x = y

for any x, y ∈ X.
Moreover, A. Walendziak ([21]) introduced the notion of BF/BF1/BF2-

algebras. An algebra (X, ∗, 0) of type (2,0) is called a BF -algebra if it satisfies
(B1), (B2) and

(BF ) 0 ∗ (x ∗ y) = y ∗ x

for any x, y ∈ X.
A BF -algebra is called a BF1-algebra (resp., a BF2-algebra) if it satisfies

(BG) (resp., (BH)).

In this paper, we introduce a new algebra, called a BI-algebra, which
is a generalization of a (dual) implication algebra, and we discuss the basic
properties of BI-algebras, and investigate ideals and congruence relations.

2 Preliminaries

In what follows we summarize several axioms for construct several generaliza-
tions of BCK/BCI/B-algebras. Let (X; ∗, 0) be an algebra of type (2, 0). We
provide several axioms which were discussed in general algebraic structures as
follows: for any x, y, z ∈ X,

(B1) x ∗ x = 0,

(B2) x ∗ 0 = x,

(B) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)),
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(BG) x = (x ∗ y) ∗ (0 ∗ y),

(BM) (z ∗ x) ∗ (z ∗ y) = y ∗ x,

(BH) x ∗ y = 0 and y ∗ x = 0 implies x = y,

(BF ) 0 ∗ (x ∗ y) = y ∗ x,

(BN) (x ∗ y) ∗ z = (0 ∗ z) ∗ (y ∗ x),

(BO) x ∗ (y ∗ z) = (x ∗ y) ∗ (0 ∗ z),

(BP ) x ∗ (x ∗ y) = y,

(Q) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(CO) (x ∗ y) ∗ z = x ∗ (y ∗ z),

(BZ) ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0,

(K) 0 ∗ x = 0.

These axioms played important roles for researchers to construct algebraic
structures and investigate several properties. For details, we refer to [1-23].

Definition 2.1. An algebra (X; ∗, 0) of type (2, 0) is called a

• BCI-algebra if satisfies in (B2), (BH) and ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0
for all x, y, z ∈ X ([7]).

• BCK-algebra if it is a BCI-algebra and satisfies in (K) ([22]).

• BCH-algebra if satisfies in (B1), (BH) and (Q) ([6]).

• BH-algebra if satisfies in (B1), (B2) and (BH) ([9]).

• BZ-algebra if satisfies in (B2), (BH) and (BZ) ([23]).

• d-algebra if satisfies in (B1), (K) and (BH) ([19]).

• Q-algebra if satisfies in (B1), (B2) and (Q) ([20]).

• B-algebra if satisfies in (B1), (B2) and (B) ([17]).

• BM -algebra if satisfies in (B2) and (BM) ([11]).

• BO-algebra if satisfies in (B1), (B2) and (BO) ([13]).

• BG-algebra if satisfies in (B1), (B2) and (BG) ([12]).
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• BP -algebra if satisfies in (B1), (BP1) and (BP2) ([3]).

• BN -algebra if satisfies in (B1), (B2) and (BN) ([10]).

• BF -algebra if satisfies in (B1), (B2) and (BF ) ([21]).

• Coxeter algebra if satisfies in (B1), (B2) and (CO) ([15]).

Definition 2.2. A groupoid (X; ∗) is called an implication algebra ([1]) if
it satisfies the following identities

(I1) (x ∗ y) ∗ x = x,

(I2) (x ∗ y) ∗ y = (y ∗ x) ∗ x,

(I3) x ∗ (y ∗ z) = y ∗ (x ∗ z),

for all x, y, z ∈ X.

Definition 2.3. Let (X; ∗) be an implication algebra and let a binary
operation “ ◦ ” on X be defined by

x ∗ y := y ◦ x.

Then (X; ◦) is said to be a dual implication algebra. In fact, the axioms of
that are as follows:

(DI1) x ◦ (y ◦ x) = x,

(DI2) x ◦ (x ◦ y) = y ◦ (y ◦ x),

(DI3) (x ◦ y) ◦ z = (x ◦ z) ◦ y,

for all x, y, z ∈ X. W. Y. Chen and J. S. Oliveira ([4]) proved that in any

implication algebra (X; ∗) the identity x ∗ x = y ∗ y holds for all x, y ∈ X. We
denote the identity x ∗x = y ∗ y by the constant 0. The notion of BI-algebras
comes from the (dual) implication algebra.

3 BI–algebras

Definition 3.1. An algebra (X; ∗, 0) of type (2, 0) is called a BI-algebra if

(B1) x ∗ x = 0,

(BI) x ∗ (y ∗ x) = x
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for all x, y ∈ X.

Let (X, ∗, 0) be a BI-algebra. We introduce a relation “≤” on X by x ≤ y
if and only if x ∗ y = 0. We note that “≤” is not a partially order set, but it
is only reflexive.

Example 3.2. (i). Every implicative BCK-algebra is a BI-algebra.
(ii). Let X := {0, a, b, c} be a set with the following table.

∗ 0 a b c
0 0 0 0 0
a a 0 a b
b b b 0 b
c c b c 0

Then it is easy to see that (X; ∗, 0) is a BI-algebra, but it is not implicative
BCK-algebra, since

(c ∗ (c ∗ a)) ∗ a = (c ∗ b) ∗ a = c ∗ a = b 6= 0.

(iii). Let X be a set with 0 ∈ X. Define a binary operation “ ∗ ” on X by

x ∗ y =

{
0 if x = y
x if x 6= y

Then (X; ∗, 0) is an implicative BCK-algebra ([22]), and hence a BI-algebra.

Note that in Example 3.2(ii), we can see that it is not a B-algebra, since

(c ∗ a) ∗ b = b ∗ b = 0 6= c ∗ (b ∗ (0 ∗ a)) = c ∗ (b ∗ 0) = c ∗ b = c.

It is not a BG-algebra, since

c 6= (c ∗ a) ∗ (0 ∗ a) = b ∗ 0 = b.

It is not a BM -algebra, since

(b ∗ a) ∗ (b ∗ c) = b ∗ b = 0 6= c ∗ a = b.

It is not a BF -algebra, since

0 ∗ (a ∗ b) = 0 6= b ∗ a = b.

It is not a BN -algebra, since

(c ∗ b) ∗ a = c ∗ a = b 6= (0 ∗ a) ∗ (b ∗ c) = 0.
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It is not a BO-algebra, since

c ∗ (a ∗ a) = c ∗ 0 = c 6= (c ∗ a) ∗ (0 ∗ a) = b ∗ 0 = b.

It is not a BP–algebra, since

c ∗ (c ∗ b) = c ∗ c = 0 6= b.

It is not a Q-algebra, since

(c ∗ b) ∗ a = c ∗ a = b 6= (c ∗ a) ∗ b = b ∗ b = 0.

It is not a Coxeter algebra, since

(c ∗ a) ∗ b = b ∗ b = 0 6= c ∗ (a ∗ b) = c ∗ a = b.

It is not a BZ-algebra, since

((a ∗ c) ∗ (0 ∗ c)) ∗ (a ∗ 0) = (b ∗ 0) ∗ a = b 6= 0.

Also, we consider the following example.

Example 3.3. Let X := {0, a, b, c} be a set with the following table.

∗ 0 a b c
0 0 0 0 0
a a 0 0 0
b b 0 0 b
c c 0 c 0

Then (X; ∗, 0) is a BI-algebra, but not a BH/BCI/BCK-algebra, since

a ∗ b = 0 and b ∗ a = 0, while a 6= b.

Proposition 3.4. If (L;∨,∧,¬, 0, 1) is a Boolean lattice, then (L; ∗, 0) is
a BI-algebra, where “ ∗ ” is defined by x ∗ y = ¬y ∧ x, for all x, y ∈ L.

Proposition 3.5. Any dual implication algebra is a BI-algebra.

Note that the converse of Proposition 3.5 does not hold in general. See the
following example.

Example 3.6. Let X := {0, a, b} be a set with the following table.

∗ 0 a b
0 0 0 0
a a 0 a
b b b 0
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Then (X; ∗, 0) is a BI-algebra, but it is not a dual implication algebra, since

a ∗ (a ∗ c) = a ∗ b = a, while c ∗ (c ∗ a) = c ∗ b = c.

Proposition 3.7. Let X be a BI-algebra. Then

(i) x ∗ 0 = x,

(ii) 0 ∗ x = 0,

(iii) x ∗ y = (x ∗ y) ∗ y,

(iv) if y ∗ x = x, ∀x, y ∈ X, then X = {0},

(v) if x ∗ (y ∗ z) = y ∗ (x ∗ z), ∀x, y ∈ X, then X = {0},

(vi) if x ∗ y = z, then z ∗ y = z and y ∗ z = y,

(vii) if (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u), then X = {0},

for all x, y, z, u ∈ X.

Proof. (i). Using (BI) and (B1) we have x = x ∗ (x ∗ x) = x ∗ 0.
(ii). By (BI) and (i) we have 0 = 0 ∗ (x ∗ 0) = 0 ∗ x.
(iii). Given x, y ∈ X, we have

x ∗ y = (x ∗ y) ∗ (y ∗ (x ∗ y)) = (x ∗ y) ∗ y.

(iv). For x ∈ X, we have

x = x ∗ (y ∗ x) = x ∗ x = 0.

Hence X = {0}.
(v). Given x ∈ X, we have

0 = 0 ∗ (x ∗ 0) = x ∗ (0 ∗ 0) = x ∗ 0 = x,

Hence X = {0}.
(vi). If x ∗ y = z, then by (iii) we have

z ∗ y = (x ∗ y) ∗ y = x ∗ y = z.

Also, y ∗ z = y ∗ (x ∗ y) = y.
(vii). If x ∈ X, then we have

x = x ∗ 0 = (x ∗ 0) ∗ (x ∗ x) = (x ∗ x) ∗ (0 ∗ x) = 0 ∗ (0 ∗ x) = 0 ∗ 0 = 0.
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Hence X = {0}.

Definition 3.8. A BI-algebra X is said to be right distributive (or left
distributive, resp.) if

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), (z ∗ (x ∗ y) = (z ∗ x) ∗ (z ∗ y), resp.)

for all x, y, z ∈ X.

Proposition 3.9. If BI-algebra X is a left distributive, then X = {0}.

Proof. Let x ∈ X. Then by (BI) and (B1) we have

x = x ∗ (x ∗ x) = (x ∗ x) ∗ (x ∗ x) = 0 ∗ 0 = 0.

Example 3.10. (i). Let X := {0, a, b, c} be a set with the following table.

∗ 0 a b c
0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

Then (X; ∗, 0) is a right distributive BI-algebra.
(ii). Example 3.2(ii) is not right distributive, since

(c ∗ a) ∗ b = b ∗ b = 0 6= (c ∗ b) ∗ (a ∗ b) = c ∗ a = b.

Proposition 3.11. Let (X; ∗) be a groupoid with 0 ∈ X. If the following
axioms holds:

(i) x ∗ x = 0,

(ii) x ∗ y = x, for all x 6= y,

then (X; ∗, 0) is a right distributive BI-algebra.

Proposition 3.12. Let X be a right distributive BI-algebra. Then

(i) y ∗ x ≤ y,

(ii) (y ∗ x) ∗ x ≤ y,

(iii) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,
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(iv) if x ≤ y, then x ∗ z ≤ y ∗ z,

(v) (x ∗ y) ∗ z ≤ x ∗ (y ∗ z),

(vi) if x ∗ y = z ∗ y, then (x ∗ z) ∗ y = 0,

for all x, y, z ∈ X.

Proof. For any x, y ∈ X, we have
(i).

(y ∗ x) ∗ y = (y ∗ y) ∗ (x ∗ y) = 0 ∗ (x ∗ y) = 0,

which shows that y ∗ x ≤ y.
(ii).

((y ∗ x) ∗ x) ∗ y = ((y ∗ x) ∗ y) ∗ (x ∗ y)

= ((y ∗ y) ∗ (x ∗ y)) ∗ (x ∗ y)

= (0 ∗ (x ∗ y)) ∗ (x ∗ y)

= 0 ∗ (x ∗ y) = 0,

which shows that (y ∗ x) ∗ x ≤ y.
(iii).

((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = ((x ∗ y) ∗ z) ∗ (x ∗ y)

= ((x ∗ y) ∗ (x ∗ y)) ∗ (z ∗ (x ∗ y))

= 0 ∗ (z ∗ (x ∗ y)) = 0,

proving that (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y.
(iv). If x ≤ y, then x ∗ y = 0 and hence

(x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z = 0 ∗ z = 0,

proving that x ∗ z ≤ y ∗ z.
(v). By (i), we have x ∗ z ≤ x. It follows from (iv) that (x ∗ z) ∗ (y ∗ z) ≤

x ∗ (y ∗ z). Using the right distributivity, we obtain (x ∗ y) ∗ z ≤ x ∗ (y ∗ z).
(vi). Let x ∗ y = z ∗ y. Since X is right distributive, we obtain

(x ∗ z) ∗ y = (x ∗ y) ∗ (z ∗ y) = (x ∗ y) ∗ (x ∗ y) = 0.

It is easy to see that, if x ≤ y, we does not conclude that z ∗ x ≤ z ∗ y in
general, since, in Example 3.10(i), a ≤ c but

b ∗ a = b 6≤ b ∗ c = 0.
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Proposition 3.13. Let X have the condition: (z ∗ x) ∗ (z ∗ y) = y ∗ x for
all x, y, z ∈ X. If x ≤ y, then z ∗ y ≤ z ∗ x.

Proof. If x ≤ y, then x ∗ y = 0. It follows that (z ∗ y) ∗ (z ∗ x) = x ∗ y = 0.
Hence z ∗ y ≤ z ∗ x.

An algebra (X; ∗) is said to have an inclusion condition if (x∗y)∗x = 0 for
all x, y ∈ X. Every right distributive BI-algebra has the inclusion condition
by Proposition 3.12(i). If X is a right distributive BI-algebra, then X is a
quasi-associative algebra by Proposition 3.12(v).

Proposition 3.14. Let X be a right distributive BI-algebra. Then in-
duced relation “ ≤ ” is a transitive relation.

Proof. If x ≤ y and y ≤ z, then we obtain by Proposition 3.7(i)

x ∗ z = (x ∗ z) ∗ 0

= (x ∗ z) ∗ (y ∗ z)
= (x ∗ y) ∗ z
= 0 ∗ z
= 0.

Therefore x ≤ z.

4 Ideals in BI-algebras

In what follows, let X denote a BI-algebra unless otherwise specified.

Definition 4.1. A subset I of X is called an ideal of X if

(I1) 0 ∈ I,

(I2) y ∈ I and x ∗ y ∈ I imply x ∈ I for any x, y ∈ X.

Obviously, {0} and X are ideals of X. We shall call {0} and X a zero ideal
and a trivial ideal, respectively. An ideal I is said to be proper if I 6= X.

Example 4.2. In Example 3.2(ii), I1 = {0, a, c} is an ideal of X, while
I2 = {0, a, b} is not an ideal of X, since c ∗ a = b ∈ I2 and a ∈ I2, but c /∈ I2.

We denote the set of all ideals of X by I(X).
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Lemma 4.3. If {Ii}i∈Λ is a family of ideals of X, then
⋂
i∈Λ

Ii is an ideal

of X.

Proof. Straightforward.

Since the set I(X) is closed under arbitrary intersections, we have the
following theorem.

Theorem 4.4. (I(X),⊆) is a complete lattice.

Proposition 4.5. Let I be an ideal of X. If y ∈ I and x ≤ y, then x ∈ I.

Proof. If y ∈ I and x ≤ y, then x ∗ y = 0 ∈ I. Since y ∈ I and I is an
ideal, we obtain x ∈ I.

For any x, y ∈ X, define A(x, y) := {t ∈ X : (t ∗ x) ∗ y = 0}. It is
easy to see that 0, x ∈ A(x, y). In Example 3.2(ii), A(a, b) = {0, a, b, c} and
A(b, a) = {0, a, b}. Hence A(a, b) 6= A(b, a). We note that

A(a, 0) = {t ∈ X : (t ∗ a) ∗ 0 = 0}
= {t ∈ X : t ∗ a = 0}
= {t ∈ X : (t ∗ 0) ∗ a = 0}
= A(0, a).

Theorem 4.6. If X is a right distributive BI-algebra, then A(x, y) is an
ideal of X where x, y ∈ X.

Proof. Let x ∗ y ∈ A(a, b), y ∈ A(a, b). Then ((x ∗ y) ∗ a) ∗ b = 0 and
(y ∗ a) ∗ b = 0. By the right distributivity we have

0 = ((x ∗ y) ∗ a) ∗ b = ((x ∗ a) ∗ (y ∗ a)) ∗ b
= ((x ∗ a) ∗ b) ∗ ((y ∗ a) ∗ b)
= ((x ∗ a) ∗ b) ∗ 0

= (x ∗ a) ∗ b,

whence x ∈ A(a, b). This proves that A(a, b) is an ideal of X.

Proposition 4.7. Let X be a BI-algebra. Then

(i) A(0, x) ⊆ A(x, y), for all x, y ∈ X,

(ii) if A(0, y) is an ideal and x ∈ A(0, y), then A(x, y) ⊆ A(0, y).
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Proof. (i). Let z ∈ A(0, x). Then z ∗x = (z ∗ 0) ∗x = 0. Hence (z ∗x) ∗ y =
0 ∗ y = 0. Thus z ∈ A(x, y) and so A(0, x) ⊆ A(x, y).

(ii). Let A(0, y) be an ideal and x ∈ A(0, y). If z ∈ A(x, y), then (z∗x)∗y =
0. Hence ((z ∗ x) ∗ 0) ∗ y = 0. Therefore z ∗ x ∈ A(0, y). Now, since A(0, y) is
an ideal and x ∈ A(0, y), z ∈ A(0, y). Thus A(x, y) ⊆ A(0, y).

Proposition 4.8. Let X be a BI-algebra. Then

A(0, x) =
⋂
y∈X

A(x, y).

for all x, y ∈ X.

Proof. By Proposition 4.7(i), we have A(0, x) ⊆
⋂
y∈X

A(x, y). If z ∈⋂
y∈X

A(x, y), then z ∈ A(x, y), for all y ∈ X. It follows that z ∈ A(0, x).

Hence
⋂
y∈X

A(x, y) ⊆ A(0, x).

Theorem 4.9. Let I be a non-empty subset of X. Then I is an ideal of
X if and only if A(x, y) ⊆ I for all x, y ∈ I.

Proof. Assume that I is an ideal of X and x, y ∈ I. If z ∈ A(x, y), then
(z ∗ x) ∗ y = 0 ∈ I. Since I is an ideal and x, y ∈ I, we have z ∈ I. Hence
A(x, y) ⊆ I.

Conversely, suppose that A(x, y) ⊆ I for all x, y ∈ I. Since (0 ∗ x) ∗ y = 0,
0 ∈ A(x, y) ⊆ I. Let a ∗ b and b ∈ I. Since (a ∗ b) ∗ (a ∗ b) = 0, we have
a ∈ A(b, a ∗ b) ⊆ I, i.e., a ∈ I. Thus I is an ideal of X.

Proposition 4.10. If I is an ideal X, then

I =
⋃

x,y∈I
A(x, y).

Proof. Let I be an ideal of X and z ∈ I. Since (z ∗ 0) ∗ z = z ∗ z = 0, we
have z ∈ A(0, z). Hence

I ⊆
⋃
z∈I

A(0, z) ⊆
⋃

x,y∈I
A(x, y)

If z ∈
⋃

x,y∈I
A(x, y), then there exist a, b ∈ I such that z ∈ A(a, b). It follows

from Theorem 4.9 that z ∈ I, i.e.,
⋃

x,y∈I
A(x, y) ⊆ I.
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Theorem 4.11. If I is an ideal of X, then

I =
⋃
x∈I

A(0, x).

Proof. Let I be an ideal of X and z ∈ I. Since (z ∗ 0) ∗ z = z ∗ z = 0, we
have z ∈ A(0, z). Hence

I ⊆
⋃
z∈I

A(0, z).

If z ∈
⋃
x∈I

A(0, z), then there exists a ∈ I such that z ∈ A(0, a), which means

that z ∗ a = (z ∗ 0) ∗ a = 0 ∈ I. Since I is an ideal of X and a ∈ I, we obtain

z ∈ I. This means that
⋃
x∈I

A(0, x) ⊆ F .

Let X be a right distributive BI-algebra and let I be an ideal of X and
a ∈ X. Define

I la := {x ∈ X : x ∗ a ∈ I}.

Theorem 4.12. If X is a right distributive BI-algebra, then I la is the
least ideal of X containing I and a.

Proof. By (B1) we have a ∗ a = 0, for all a ∈ X, i.e. a ∈ I la and so Ia 6= ∅.
Assume that x ∗ y ∈ I la and y ∈ I la. Then (x ∗ y) ∗ a ∈ I and y ∗ a ∈ I. By
the right distributivity, we have (x ∗ a) ∗ (y ∗ a) ∈ I. Since y ∗ a ∈ I, we have
x ∗ a ∈ I and so x ∈ I la. Therefore I la is an ideal of X.

Let x ∈ I. Since (x ∗ a) ∗ x = (x ∗ x) ∗ (a ∗ x) = 0 ∗ (a ∗ x) = 0 ∈ I and I is
an ideal of X, we obtain x ∗ a ∈ I. Hence x ∈ Ia. Thus I ⊆ I la.

Now, let J be an ideal of X containing I and a. Let x ∈ I la. Then
x ∗ a ∈ I ⊆ J . Since a ∈ J and J is an ideal of X, we have x ∈ J. Therefore
I la ⊆ J .

The following example shows that the condition, right distributivity, is
very necessary.

Example 4.13. In Example 3.2(ii), (X; ∗, 0) is a BI-algebra, but not right
distributive, since

(c ∗ a) ∗ b = b ∗ b = 0 6= (c ∗ b) ∗ (a ∗ b) = c ∗ a = b.

We can see that I = {0, a} is an ideal of X, but I lb = {0, a, b} is not an ideal
of X.
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Note. Let I be an ideal of X and a ∈ X. If we denote

Ira := {x ∈ X : a ∗ x ∈ I}

Then Ira is not an ideal of X in general.

Example 3.14. In Example 3.10(i), I = {0, b} is an ideal of X but
Irc = {a, c} is not an ideal of X, because 0 /∈ Irc .

Let A be a non-empty subset of X. The set
⋂
{I ∈ I(X)| A ⊆ I} is called

an ideal generated by A, written < A >. If A = {a}, we will denote < {a} >,
briefly by < a >, and we call it a principal ideal of X. For I ∈ I(X) and
a ∈ X, we denote by [I ∪{a}) the ideal generated by I ∪{a}. For convenience,
we denote [∅) = {0}.

Proposition 4.15. Let A and B be two subsets of X. Then the following
statements hold:

(i) [0) = {0}, [X) = X,

(ii) A ⊆ B implies [A) ⊆ [B),

(iii) if I ∈ I(X), then [I) = I.

5 Congruence relations in BI-algebras

Let I be a non-empty set of X. Define a binary relation “ ∼I ” by

x ∼I y if and only if x ∗ y ∈ I and y ∗ x ∈ I.

The set {y : x ∼I y} will be denoted by [x]I .

Theorem 5.1. Let I be an ideal of a right distributive BI-algebra X.
Then “ ∼I ” is an equivalence relation on X.

Proof. Since I is an ideal of X, we have x ∗ x = 0 ∈ I. Thus x ∼I x.
So, ∼I is reflexive. It is obvious that ∼I is symmetric. Now, let x ∼I y and
y ∼I z. Then x ∗ y, y ∗ x ∈ I and y ∗ z, z ∗ y ∈ I. By Proposition 3.12(iii),
we have (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y. Since I is an ideal and x ∗ y ∈ I, we have
(x∗z)∗(y∗z) ∈ X and so x∗z ∈ I. Similarly, we obtain z∗x ∈ I. Thus x ∼I z
and so ∼I is a transitive relation. Therefore ∼I is an equivalence relation on
X.

Recall that a binary relation “θ” on an algebra (X; ∗) is said to be
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(i) a right compatible relation if xθy and u ∈ X, then (x ∗ u)θ(y ∗ u),

(ii) a left compatible relation if xθy and v ∈ X, then (v ∗ x)θ(v ∗ y),

(iii) a compatible relation if xθy and uθv, then (x ∗ u)θ(y ∗ v).

A compatible equivalence relation on X is called a congruence relation on X.

Theorem 5.2. The equivalence relation “∼I” in Theorem 5.1 is a right
congruence relation on X.

Proof. If x ∼I y and u ∈ X, then x ∗ y and y ∗ x ∈ I. By Proposition
3.12(iii), we have ((x ∗ u) ∗ (y ∗ u)) ∗ (x ∗ y) = 0 ∈ I. Since I is an ideal and
x ∗ y ∈ I, we have (x ∗u) ∗ (y ∗u) ∈ I. Similarly we obtain (y ∗u) ∗ (x ∗u) ∈ I.
Therefore (x ∗ u) ∼I (y ∗ u).

Example 5.3. In Example 3.10(i), I = {0, a} is an ideal of X and

∼I := {(0, 0), (a, a), (0, a), (a, 0), (0, b), (b, 0), (b, b), (c, b), (b, c), (c, 0), (0, c), (c, c)}

is a right congruence relation on X and

[0]I = [a]I = {0, a} and [b]I = [c]I = {0, a, b, c}.

Proposition 5.4. Let I be a subset of X with 0 ∈ I. If I has the condition:
if x ∗ y ∈ I, then (z ∗ x) ∗ (z ∗ y) ∈ I. Then X = I.

Proof. Let x := 0 and y := z. Then 0 ∗ z = 0 ∈ I imply (z ∗ 0) ∗ (z ∗ z) =
z ∗ 0 = z ∈ I. Therefore X ⊆ I and so I = X.

Proposition 5.5. Let X be a right distributive BI-algebra and let I, J ⊆
X.

(i) If I ⊆ J , then ∼I⊆∼J ,

(ii) If ∼Ii for all i ∈ Λ are right congruence relations on X, then ∼∩Ii is also
a right congruence relation on X.

Lemma 5.6. If ∼I is a left congruence relation on a right distributive
BI-algebra X, then [0]I is an ideal of X.

Proof. Obviously, 0 ∈ [0]I . If y and x ∗ y are in [0]I , then x ∗ y ∼I 0 and
y ∼I 0. It follows that x = x ∗ 0 ∼I x ∗ y ∼I 0. Therefore x ∈ [0]I .

Proposition 5.7. Let X be a right distributive BI-algebra. Then

φx := {(a, b) ∈ X ×X : x ∗ a = x ∗ b}
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is a right congruence relation on X.

Proof. Straightforward.

Example 5.8. In Example 3.10(i),

φb = {(0, 0), (0, a), (a, 0), (a, a), (b, b), (c, c), (b, c), (c, b)}

is a right congruence relation on X.

Proposition 5.9. Let X be a BI-algebra. Then

(i) φ0 = X ×X,

(ii) φx ⊆ φ0,

(iii) if X is right distributive, then φx ∩ φy ⊆ φx∗y,

for all x, y ∈ X.

6 Conclusion and future work

Recently, researchers proposed several kinds of algebraic structures related to
some axioms in many-valued logic and several papers have been published in
this field.

In this paper, we introduced a new algebra which is a generalization of
a (dual) implication algebra, and we discussed the basic properties of BI-
algebras, and investigated ideals and congruence relations. We hope the results
can be a foundation for future works.

As future works, we shall define commutative BI-algebras and discuss on
some relationships between other several algebraic structures. Also, we intend
to study other kinds of ideals, and apply vague sets, soft sets, fuzzy structures
to BI-algebras.

Acknowledgments: The authors wish to thank the reviewers for their ex-
cellent suggestions that have been incorporated into this paper.
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