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ON BI-ALGEBRAS

Arsham Borumand Saeid, Hee Sik Kim and Akbar Rezaei

Abstract

In this paper, we introduce a new algebra, called a BI-algebra, which
is a generalization of a (dual) implication algebra and we discuss the
basic properties of Bl-algebras, and investigate ideals and congruence
relations.

1 Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCT-algebras ([7]). It is known that the class of BC'K-algebras
is a proper subclass of the class of BCI-algebras. J. Neggers and H. S. Kim
([19]) introduced the notion of d-algebras, which is another useful generaliza-
tion of BC K-algebras and investigated several relations between d-algebras
and BCK-algebras, and then investigated other relations between oriented
digraphs and d-algebras.

It is known that several generalizations of a B-algebra were extensively
investigated by many researchers and properties have been considered system-
atically. The notion of B-algebras was introduced by J. Neggers and H. S.
Kim ([17]). They defined a B-algebra as an algebra (X, ,0) of type (2,0) (i.e.,
a non-empty set with a binary operation “#” and a constant 0) satisfying the
following axioms:

(B1) zxx =0,
(B2) zx0=u,
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(B) (xxy)*xz=xx[zx(0*y)]

for any z,y,z € X.

C. B. Kim and H. S. Kim ([12]) defined a BG-algebra, which is a general-
ization of B-algebra. An algebra (X, «,0) of type (2,0) is called a BG-algebra
if it satisfies (B1), (B2), and

(BG) = = (zxy)*(0+y)

for any z,y € X.

Y. B. Jun, E. H. Roh and H. S. Kim ([9]) introduced the notion of a BH-
algebra which is a generalization of BCK/BCI/BC H-algebras. An algebra
(X, #,0) of type (2,0) is called a BH-algebra if it satisfies (B1), (B2), and

(BH) zxy=y*xx=0impliesz =y

for any z,y € X.

Moreover, A. Walendziak ([21]) introduced the notion of BF/BF,/BF»-
algebras. An algebra (X, ,0) of type (2,0) is called a BF-algebra if it satisfies
(B1),(B2) and

(BF) Ox(x*xy)=y=xx

for any z,y € X.
A BF-algebra is called a BFi-algebra (resp., a BF»-algebra) if it satisfies
(BG) (resp., (BH)).

In this paper, we introduce a new algebra, called a Bl-algebra, which
is a generalization of a (dual) implication algebra, and we discuss the basic
properties of BI-algebras, and investigate ideals and congruence relations.

2 Preliminaries

In what follows we summarize several axioms for construct several generaliza-
tions of BCK/BC1/B-algebras. Let (X;*,0) be an algebra of type (2,0). We
provide several axioms which were discussed in general algebraic structures as
follows: for any z,y,z € X,

(B1) 2 ea =0,
(B2) %0 ==,
(B) (zxy)xz=xx*(z*x(0xy)),
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These axioms played important roles for researchers to construct algebraic
structures and investigate several properties. For details, we refer to [1-23].

Definition 2.1. An algebra (X;#,0) of type (2,0) is called a

e BCI-algebra if satisfies in (B2), (BH) and ((zxy)* (z*2)) % (2xy) =0
for all z,y,z € X ([7]).

e BCK-algebra if it is a BCI-algebra and satisfies in (K) ([22]).
e BCH-algebra if satisfies in (B1), (BH) and (Q) ([6]).

e BH-algebra if satisfies in (B1), (B2) and (BH) (]9]).

e BZ-algebra if satisfies in (B2), (BH) and (BZ) (]23]).

e d-algebra if satisfies in (B1), (K) and (BH) ([19]).

e Q-algebra if satisfies in (B1), (B2) and (Q) ([20]).

e B-algebra if satisfies in (B1), (B2) and (B) ([17]).

e BM-algebra if satisfies in (B2) and (BM) ([11]).

e BO-algebra if satisfies in (B1), (B2) and (BO) ([13]).

e BG-algebra if satisfies in (B1), (B2) and (BG) ([12]).



ON BI-ALGEBRAS 180

BP-algebra if satisfies in (B1), (BP1) and (BP2) ([3]).

BN-algebra if satisfies in (B1), (B2) and (BN) ([10]).

BF-algebra if satisfies in (B1), (B2) and (BF) ([21]).

Cozeter algebra if satisfies in (B1), (B2) and (CO) ([15]).

Definition 2.2. A groupoid (X;x) is called an implication algebra ([1]) if
it satisfies the following identities

(M) (z*xy)*x ==,

(12) (z*xy)*xy = (y*x)*z,
(I3) zx(yxz2) =y=*(xx2),
for all z,y,z € X.

Definition 2.3. Let (X;x) be an implication algebra and let a binary
operation “o” on X be defined by

T*Y :=Yyoc.

Then (X;o0) is said to be a dual implication algebra. In fact, the axioms of
that are as follows:

(DI1) wo(yox) ==,

(DI2) 20 (zoy) = yo (you),

(DI3) (zoy)oz=(xoz2)oy,

for all z,y,z € X. W. Y. Chen and J. S. Oliveira ([4]) proved that in any

implication algebra (X;*) the identity « *xz = y*y holds for all z,y € X. We
denote the identity x * x = y * y by the constant 0. The notion of BI-algebras
comes from the (dual) implication algebra.

3 Bl-algebras

Definition 3.1. An algebra (X;x*,0) of type (2,0) is called a BI-algebra if
(B1) xxx =0,

(BI) zx(yxz)==x
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for all z,y € X.

Let (X, *,0) be a Bl-algebra. We introduce a relation “<” on X by z <y
if and only if x x y = 0. We note that “<” is not a partially order set, but it
is only reflexive.

Example 3.2. (i). Every implicative BC K-algebra is a BI-algebra.
(i1). Let X := {0, a,b,c} be a set with the following table.

QO S O %
o "R OO
SN o O O R
o O ol
(BSOS =N

Then it is easy to see that (X;x*,0) is a Bl-algebra, but it is not implicative
BC K-algebra, since

(cx(cxa)xa=(cxb)yxa=cxa=0b#£0.

(iii). Let X be a set with 0 € X. Define a binary operation “*” on X by

oy — 0 if z=y
R if z#y

Then (X *,0) is an implicative BC' K-algebra ([22]), and hence a BI-algebra.

Note that in Example 3.2(ii), we can see that it is not a B-algebra, since
(cxa)xb=bxb=0#cx*x(bx(0xa))=cx(bx0)=cxb=c.
It is not a BG-algebra, since
c# (cxa)*x(0xa)=bx0=h.
It is not a BM-algebra, since
(bxa)*(bxc)=bxb=0#c*xa=h.
It is not a BF-algebra, since
Ox(axb)=0#bxa=nh.
It is not a BN-algebra, since

(cxb)yxa=cxa=b# (0xa)x(bxc)=0.



ON BI-ALGEBRAS 182

It is not a BO-algebra, since
ck(axa)=cx0=c# (cxa)*(0*xa)=bx0=0b.
It is not a BP-algebra, since
cx(cxb)=cxc=0#0D.

It is not a @-algebra, since

(cxb)xa=cxa=b# (cxa)xb=bxb=0.
It is not a Coxeter algebra, since

(cxa)xb=bxb=0#cx(axb)=cxa=0».
It is not a BZ-algebra, since

((axc)*(0%c))*x(a*x0)=(bx0)*a=0>b#0.

Also, we consider the following example.

Example 3.3. Let X :={0,a,b,c} be a set with the following table.

*‘Oa b ¢
0/]0 0 0 O
ala 0 0 O
blb 0 0 b
clec 0 ¢ O

Then (X;#,0) is a Bl-algebra, but not a BH/BC1T1/BC K-algebra, since
a+b=0and bxa =0, while a # .

Proposition 3.4. If (L;V,A,—,0,1) is a Boolean lattice, then (L;*,0) is
a Bl-algebra, where “x” is defined by x xy = —y A x, for all z,y € L.

Proposition 3.5. Any dual implication algebra is a BI-algebra.

Note that the converse of Proposition 3.5 does not hold in general. See the
following example.

Example 3.6. Let X := {0, a, b} be a set with the following table.
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Then (X;#,0) is a Bl-algebra, but it is not a dual implication algebra, since

ax*x(axc)=axb=a, whilecx (cxa) =cxb=rc.

Proposition 3.7. Let X be a BI-algebra. Then

(i) 20 ==z,

(ii) 0%z =0,

(iii) zxy = (z*y) *y,

(iv) ifyxx =z, Yo,y € X, then X = {0},

(v) ifex(yxz)=yx*(z*z),Vr,y € X, then X = {0},
(vi) ifxxy =2, then zxy =z and y x z = y,
(vii) if (x xy) * (zxu) = (x x 2) * (y xu), then X = {0},
for all x,y,z,u € X.

Proof. (i). Using (BI) and (B1) we have x =z % (x * ) = x % 0.
(ii). By (BI) and (i) we have 0 =0 (x % 0) = 0 * x.
(iii). Given z,y € X, we have

wry=(zxy)*(y*(rxy)) = (wry)*y.
(iv). For z € X, we have
r=xx(yxx)=x*xx=0.

Hence X = {0}.
(v). Given z € X, we have

0=0%(z*x0)=x%(0%0)=zx0=uzx,

Hence X = {0}.
(vi). If  * y = z, then by (iii) we have

zxy=(r*xy)xy=x*xy=2z

Also, yxz=yx(x*xy) =y.
(vii). If x € X, then we have

r=xx0=(xx0)*x(z*xz)=(x*x2)*(0*xz)=0%(0x2)=0%0=0.



ON BI-ALGEBRAS 184

Hence X = {0}. O
Definition 3.8. A Bl-algebra X is said to be right distributive (or left
distributive, resp.) if
(zxy)xz=(xx2)*(yx2), (zx(xxy)=(2%x)*(2xy), resp.)
for all z,y,z € X.
Proposition 3.9. If Bl-algebra X is a left distributive, then X = {0}.
Proof. Let x € X. Then by (BI) and (B1) we have

z=zx(xxx)=(rxx)*x(x*xx)=0%0=0.

O
Example 3.10. (i). Let X := {0, a,b, ¢} be a set with the following table.

*‘Oa b ¢
00 0 0 O
ala 0 a O
bib b 0 0
cle b a O

Then (X;#,0) is a right distributive BI-algebra.
(ii). Example 3.2(ii) is not right distributive, since

(cxa)xb=bxb=0%# (cxb)*(a*xb) =cxa=0.

Proposition 3.11. Let (X;*) be a groupoid with 0 € X. If the following
axioms holds:

(i) zxxz =0,
(ii) z*y =z, for all x # v,
then (X;*,0) is a right distributive BI-algebra.
Proposition 3.12. Let X be a right distributive BI-algebra. Then
(i) yxz <y,
(ii) (y*z)xx <y,

(iii) (x*2)* (y*xz) <z *y,
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(iv) if x <y, then x x z < y * 2,
(v) (xxy)*xz <axx(yx*z),
(vi) if x xy = zxy, then (x x z) xy =0,
for all x,y,z € X.
Proof. For any x,y € X, we have

(i)
(yxz)xy=(y*y)x(wxy) =0x(x*xy)=0,

which shows that y xz < y.

(i)
((yxx) xy) * (x xy)
(y*xy)* (zxy))* (z*y)
(0% (z*y)) * (zxy)
0% (zxy) =0,

(yxaz)xz)xy =

which shows that (y*z) 2z < y.
(iif).
(@rz)x(yxz2)*(xry) = ((wry)*z)*(zxy)
((xy) x (2 xy)) * (2% (x xy))
= Ox(zx(xxy)) =0,

proving that (z*z) * (y* 2) <z *y.
(iv). If z <y, then z * y = 0 and hence

(xxz)x(yxz)=(z*xy)*xz2=0%x2=0,

proving that z x z < y * 2.
(v). By (i), we have z x z < z. It follows from (iv) that (x x z) * (y x 2) <
* (y * z). Using the right distributivity, we obtain (z xy) * z < x * (y * 2).
(vi). Let  * y = z % y. Since X is right distributive, we obtain
(xx2)xy=(z*xy)*(zxy) = (z*xy)*(xxy)=0.
O

It is easy to see that, if x < y, we does not conclude that z xz < z*xy in
general, since, in Example 3.10(i), a < ¢ but

bxa=bLbxc=0.
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Proposition 3.13. Let X have the condition: (z *x) x (z *xy) =y * x for
all x,y,z € X. If v <y, then zxy < z % x.

Proof. If x < y, then x xy = 0. It follows that (z*y) * (z*xz) =z *y = 0.
Hence z xy < z * x. O

An algebra (X *) is said to have an inclusion condition if (z*y)*x = 0 for
all z,y € X. Every right distributive BI-algebra has the inclusion condition
by Proposition 3.12(i). If X is a right distributive BI-algebra, then X is a
quasi-associative algebra by Proposition 3.12(v).

Proposition 3.14. Let X be a right distributive Bl-algebra. Then in-
duced relation “ <7 is a transitive relation.

Proof. If x <y and y < z, then we obtain by Proposition 3.7(i)

xxz = (z*x2)x0

= (z*y)xz

= 0%z
0.
Therefore z < z. O

4 Ideals in BIl-algebras

In what follows, let X denote a BI-algebra unless otherwise specified.

Definition 4.1. A subset I of X is called an ideal of X if
(I1) 0 e 1,
(I12) ye I and zxy € I imply x € I for any z,y € X.

Obviously, {0} and X are ideals of X. We shall call {0} and X a zero ideal
and a trivial ideal, respectively. An ideal I is said to be proper if I # X.

Example 4.2. In Example 3.2(ii), I; = {0,qa,c} is an ideal of X, while
I = {0, a,b} is not an ideal of X, since cxa =b € I and a € I, but ¢ ¢ I5.

We denote the set of all ideals of X by I(X).
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Lemma 4.3. If {I;};ca is a family of ideals of X, then ﬂ I; is an ideal
1€EA
of X.

Proof. Straightforward. O

Since the set I(X) is closed under arbitrary intersections, we have the
following theorem.

Theorem 4.4. (I(X), Q) is a complete lattice.
Proposition 4.5. Let I be an ideal of X. If y € I and x <y, then x € I.

Proof. If y € I and « < y, then z xy =0 € I. Since y € I and [ is an
ideal, we obtain = € I. O

For any z,y € X, define A(z,y) = {t € X : (t*xx)*xy = 0}. It is
easy to see that 0,z € A(z,y). In Example 3.2(ii), A(a,b) = {0,a,b,c} and
A(b,a) ={0,a,b}. Hence A(a,b) # A(b,a). We note that

A(a,0) = {teX:(t*xa)x0=0}
{te X :t*xa=0}
{te X:(t*0)*xa=0}
= A(0,a).

Theorem 4.6. If X is a right distributive BI-algebra, then A(x,y) is an
ideal of X where x,y € X.

Proof. Let z*xy € A(a,b), y € A(a,b). Then ((z *y) *a)*b = 0 and
(yxa) *b=0. By the right distributivity we have

O0=((z*xy)*a)xb = ((x*xa)*(y*xa))=*b
= ((z*a)xb)*((yxa)*b)
= ((z*a)*xb)*0
= (x*a)xb,
whence x € A(a,b). This proves that A(a,b) is an ideal of X. O

Proposition 4.7. Let X be a BI-algebra. Then
(i) A(0,z) C A(x,y), for all z,y € X,
(ii) if A(0,y) is an ideal and x € A(0,y), then A(z,y) C A(0,y).
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Proof. (i). Let z € A(0,z). Then z*xx = (2*0)*x = 0. Hence (z*x)xy =
0%y =0. Thus z € A(z,y) and so A(0,z) C A(x,y).

(ii). Let A(0,y) be an ideal and © € A(0,y). If z € A(x,y), then (z*x)*y =
0. Hence ((z * ) % 0) xy = 0. Therefore z x z € A(0,y). Now, since A(0,y) is
an ideal and = € A(0,y), z € A(0,y). Thus A(z,y) C A(0,y). O

Proposition 4.8. Let X be a BI-algebra. Then

A(0,z) = ﬂ Az, y).

yeX
for all x,y € X.
Proof. By Proposition 4.7(i), we have A(0,z) C ﬂ A(z,y). If z €

yeX
ﬂ A(z,y), then z € A(z,y), for all y € X. It follows that z € A(0,x).
yeX
Hence ﬂ A(z,y) C A0, z). O
yeX

Theorem 4.9. Let I be a non-empty subset of X. Then I is an ideal of
X if and only if A(x,y) C I for all z,y € I.

Proof. Assume that I is an ideal of X and z,y € I. If 2 € A(z,y), then
(zxx)*xy =0 € I. Since I is an ideal and z,y € I, we have z € I. Hence
A(z,y) C I

Conversely, suppose that A(z,y) C I for all 2,y € I. Since (0% z) xy =0,
0 € A(z,y) CI. Let axband b € I. Since (a *b) * (a * b) = 0, we have
a € A(b,axb) C 1, ie.,a€l. ThusI isan ideal of X. O

Proposition 4.10. If I is an ideal X, then

I=|J A(=zy).

z,yel

Proof. Let I be an ideal of X and z € I. Since (z%0) x z = z*xz = 0, we
have z € A(0, z). Hence

1cJawo2)c | Ay

zel z,yel

If z € U A(z,y), then there exist a,b € I such that z € A(a,b). It follows
x,yel
from Theorem 4.9 that z € I, i.e., U A(z,y) C I O

x,yel
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Theorem 4.11. If I is an ideal of X, then

I=JAQ ).

zel

Proof. Let I be an ideal of X and z € I. Since (z%0) xz = z% 2z =0, we
have z € A(0, z). Hence

IC U A(0, 2).

zel

If z € U A(0, z), then there exists a € I such that z € A(0,a), which means

el
that zxa = (2%0)xa =0 € I. Since [ is an ideal of X and a € I, we obtain
z € I. This means that U A(0,z) C F. O

zel

Let X be a right distributive BI-algebra and let I be an ideal of X and
a € X. Define
I''={zecX: xxacl}

Theorem 4.12. If X is a right distributive BI-algebra, then I is the
least ideal of X containing I and a.

Proof. By (B1) we have a*a =0, for all a € X, i.e. a € I, and so I, # 0.
Assume that 7%y € Il and y € I,. Then (z*xy)*a € [ and yxa € I. By
the right distributivity, we have (x * a) * (y * a) € I. Since y *xa € I, we have
xxa €I and so x € IL. Therefore I! is an ideal of X.

Let z € I. Since (z*a)*x = (x*x)*(axx) =0x (axx) =0€ I and I is
an ideal of X, we obtain z xa € I. Hence z € I,. Thus I C I'.

Now, let J be an ideal of X containing I and a. Let z € I'. Then
xxa €l CJ. Since a € J and J is an ideal of X, we have = € J. Therefore
IL CJ. O

The following example shows that the condition, right distributivity, is
Very necessary.

Example 4.13. In Example 3.2(ii), (X; *,0) is a BI-algebra, but not right
distributive, since

(cxa)xb=bxb=0%# (cxb)* (a*xb) =cxa=0.

We can see that I = {0,a} is an ideal of X, but I} = {0,a,b} is not an ideal
of X.
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Note. Let I be an ideal of X and a € X. If we denote
II'={zeX: axxel}

Then I is not an ideal of X in general.

Example 3.14. In Example 3.10(i), I = {0,b} is an ideal of X but
I7 = {a,c} is not an ideal of X, because 0 ¢ I7.

Let A be a non-empty subset of X. The set ({I € I(X)| A C I} is called
an ideal generated by A, written < A >. If A = {a}, we will denote < {a} >,
briefly by < a >, and we call it a principal ideal of X. For I € I(X) and
a € X, we denote by [TU{a}) the ideal generated by TU{a}. For convenience,
we denote [0)) = {0}.

Proposition 4.15. Let A and B be two subsets of X. Then the following
statements hold:

(i) [0) = {0}, [X) =X,
(i) A C B implies [A) C [B),
(iii) if I € I(X), then [I) = I.

5 Congruence relations in B/-algebras

“

Let I be a non-empty set of X. Define a binary relation “ ~;” by

z~yyif andonly if zxy €I and y*xx € I.

The set {y :  ~; y} will be denoted by [x];.

Theorem 5.1. Let I be an ideal of a right distributive BI-algebra X.
Then “ ~1” is an equivalence relation on X.

Proof. Since I is an ideal of X, we have x xx = 0 € I. Thus z ~ z.
So, ~g is reflexive. It is obvious that ~; is symmetric. Now, let x ~; y and
y~rz Thenzxy, y*xx € I and y* 2z, zxy € I. By Proposition 3.12(iii),
we have (z % 2) * (y* 2) < x xy. Since I is an ideal and x *y € I, we have
(x+2)*(y*z) € X and so x*z € I. Similarly, we obtain zxx € I. Thus z ~j z
and so ~j is a transitive relation. Therefore ~; is an equivalence relation on
X. O

Recall that a binary relation “6” on an algebra (X;x) is said to be
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(i) a right compatible relation if 20y and v € X, then (z * u)f(y * u),
(ii) a left compatible relation if 0y and v € X, then (v* z)0(v * y),
(iii) a compatible relation if z0y and ubv, then (z * u)d(y * v).
A compatible equivalence relation on X is called a congruence relation on X.

Theorem 5.2. The equivalence relation “~;” in Theorem 5.1 is a right

congruence relation on X.

Proof. If x ~; y and u € X, then z xy and y * x € I. By Proposition
3.12(iii), we have ((z *u) * (y*u)) *x (x xy) = 0 € I. Since I is an ideal and
xxy € I, we have (z*u)* (y=+u) € I. Similarly we obtain (y*u)* (x*u) € I.
Therefore (x * u) ~1 (y * u).

Example 5.3. In Example 3.10(i), I = {0, a} is an ideal of X and

~I= {(07 0)7 (a7 CL), (07 a), (a7 0), (07 b)7 (b7 0)7 (b, b)’ (Cv b)v (b7 C)v (Cv 0)7 (07 C), (Cv C)}
is a right congruence relation on X and

[0];r = [a]r = {0,a} and [b]; = [¢]; = {0,a,b,c}.

Proposition 5.4. Let I be a subset of X with 0 € I. If I has the condition:
ifexy€el, then (zxx)x(zxy) €I. Then X = 1I.

Proof. Let x :=0 and y := z. Then 0%z =0 € I imply (2% 0) % (z % 2) =
z*x0 =2z € I. Therefore X C I and so I = X. O

Proposition 5.5. Let X be a right distributive BI-algebra and let I, J C
X.

(i) If I C J, then ~;Cr~y,

(ii) If ~j, for all i € A are right congruence relations on X, then ~nj, is also
a right congruence relation on X.
Lemma 5.6. If ~; is a left congruence relation on a right distributive

BI-algebra X, then [0]; is an ideal of X.

Proof. Obviously, 0 € [0];. If y and x % y are in [0]7, then z *xy ~; 0 and
y ~1 0. Tt follows that © = % 0 ~; x % y ~ 0. Therefore z € [0];. O

Proposition 5.7. Let X be a right distributive BI-algebra. Then

¢r ={(a,0) e X x X :zxa=2xxb}
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is a right congruence relation on X.
Proof. Straightforward. O
Example 5.8. In Example 3.10(i),

¢, = {(0,0),(0,a), (a,0), (a,a), (b,b), (c,c), (b, c), (c,b)}
is a right congruence relation on X.

Proposition 5.9. Let X be a BI-algebra. Then
(i) ¢o=X x X,
(i) ¢z C oo,
(iii) if X is right distributive, then ¢z N ¢y C Gpuy,

for all x,y € X.

6 Conclusion and future work

Recently, researchers proposed several kinds of algebraic structures related to
some axioms in many-valued logic and several papers have been published in
this field.

In this paper, we introduced a new algebra which is a generalization of
a (dual) implication algebra, and we discussed the basic properties of BI-
algebras, and investigated ideals and congruence relations. We hope the results
can be a foundation for future works.

As future works, we shall define commutative BI-algebras and discuss on
some relationships between other several algebraic structures. Also, we intend
to study other kinds of ideals, and apply vague sets, soft sets, fuzzy structures
to BI-algebras.

Acknowledgments: The authors wish to thank the reviewers for their ex-
cellent suggestions that have been incorporated into this paper.
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