Arsham Borumand Saeid, Hee Sik Kim and Akbar Rezaei

Abstract

In this paper, we introduce a new algebra, called a BI-algebra, which is a generalization of a (dual) implication algebra and we discuss the basic properties of BI-algebras, and investigate ideals and congruence relations.

1 Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([7]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. J. Neggers and H. S. Kim ([19]) introduced the notion of d-algebras, which is another useful generalization of BCK-algebras and investigated several relations between d-algebras and BCK-algebras, and then investigated other relations between oriented digraphs and d-algebras.

It is known that several generalizations of a B-algebra were extensively investigated by many researchers and properties have been considered systematically. The notion of B-algebras was introduced by J. Neggers and H. S. Kim ([17]). They defined a B-algebra as an algebra (X, *, 0) of type (2,0) (i.e., a non-empty set with a binary operation "*" and a constant 0) satisfying the following axioms:

$$(B1) \ x * x = 0,$$

(B2) x * 0 = x,

Key Words: BI-algebra, (right, left) distributive, congruence relation.

2010 Mathematics Subject Classification: 06F35; 20N02.

Received: 15.12.2015 Accepted: 30.04.2016

(B)
$$(x * y) * z = x * [z * (0 * y)]$$

for any $x, y, z \in X$.

C. B. Kim and H. S. Kim ([12]) defined a BG-algebra, which is a generalization of B-algebra. An algebra (X, *, 0) of type (2,0) is called a BG-algebra if it satisfies (B1), (B2), and

$$(BG)$$
 $x = (x * y) * (0 * y)$

for any $x, y \in X$.

Y. B. Jun, E. H. Roh and H. S. Kim ([9]) introduced the notion of a BH-algebra which is a generalization of BCK/BCI/BCH-algebras. An algebra (X, *, 0) of type (2,0) is called a BH-algebra if it satisfies (B1), (B2), and

$$(BH)$$
 $x * y = y * x = 0$ implies $x = y$

for any $x, y \in X$.

Moreover, A. Walendziak ([21]) introduced the notion of $BF/BF_1/BF_2$ -algebras. An algebra (X, *, 0) of type (2,0) is called a BF-algebra if it satisfies (B1), (B2) and

$$(BF) \ 0 * (x * y) = y * x$$

for any $x, y \in X$.

A BF-algebra is called a BF_1 -algebra (resp., a BF_2 -algebra) if it satisfies (BG) (resp., (BH)).

In this paper, we introduce a new algebra, called a BI-algebra, which is a generalization of a (dual) implication algebra, and we discuss the basic properties of BI-algebras, and investigate ideals and congruence relations.

2 Preliminaries

In what follows we summarize several axioms for construct several generalizations of BCK/BCI/B-algebras. Let (X;*,0) be an algebra of type (2,0). We provide several axioms which were discussed in general algebraic structures as follows: for any $x,y,z\in X$,

(B1)
$$x * x = 0$$
,

$$(B2) x * 0 = x,$$

(B)
$$(x * y) * z = x * (z * (0 * y)),$$

$$(BG) \ x = (x * y) * (0 * y),$$

$$(BM) (z*x)*(z*y) = y*x,$$

$$(BH)$$
 $x * y = 0$ and $y * x = 0$ implies $x = y$,

$$(BF) \ 0 * (x * y) = y * x,$$

$$(BN) (x*y)*z = (0*z)*(y*x),$$

$$(BO) x * (y * z) = (x * y) * (0 * z),$$

$$(BP) \ x * (x * y) = y,$$

(Q)
$$(x * y) * z = (x * z) * y$$
,

$$(CO) (x * y) * z = x * (y * z),$$

$$(BZ) ((x*z)*(y*z))*(x*y) = 0,$$

$$(K) \ 0 * x = 0.$$

These axioms played important roles for researchers to construct algebraic structures and investigate several properties. For details, we refer to [1-23].

Definition 2.1. An algebra (X; *, 0) of type (2, 0) is called a

- BCI-algebra if satisfies in (B2), (BH) and ((x*y)*(x*z))*(z*y) = 0 for all $x, y, z \in X$ ([7]).
- BCK-algebra if it is a BCI-algebra and satisfies in (K) ([22]).
- BCH-algebra if satisfies in (B1), (BH) and (Q) ([6]).
- BH-algebra if satisfies in (B1), (B2) and (BH) ([9]).
- BZ-algebra if satisfies in (B2), (BH) and (BZ) ([23]).
- d-algebra if satisfies in (B1), (K) and (BH) ([19]).
- Q-algebra if satisfies in (B1), (B2) and (Q) ([20]).
- B-algebra if satisfies in (B1), (B2) and (B) ([17]).
- BM-algebra if satisfies in (B2) and (BM) ([11]).
- BO-algebra if satisfies in (B1), (B2) and (BO) ([13]).
- BG-algebra if satisfies in (B1), (B2) and (BG) ([12]).

- BP-algebra if satisfies in (B1), (BP1) and (BP2) ([3]).
- BN-algebra if satisfies in (B1), (B2) and (BN) ([10]).
- BF-algebra if satisfies in (B1), (B2) and (BF) ([21]).
- Coxeter algebra if satisfies in (B1), (B2) and (CO) ([15]).

Definition 2.2. A groupoid (X; *) is called an *implication algebra* ([1]) if it satisfies the following identities

- (I1) (x * y) * x = x,
- (I2) (x * y) * y = (y * x) * x,
- (I3) x * (y * z) = y * (x * z),

for all $x, y, z \in X$.

Definition 2.3. Let (X;*) be an implication algebra and let a binary operation " \circ " on X be defined by

$$x * y := y \circ x$$
.

Then $(X; \circ)$ is said to be a *dual implication algebra*. In fact, the axioms of that are as follows:

- (DI1) $x \circ (y \circ x) = x$,
- (DI2) $x \circ (x \circ y) = y \circ (y \circ x),$
- (DI3) $(x \circ y) \circ z = (x \circ z) \circ y$,

for all $x, y, z \in X$. W. Y. Chen and J. S. Oliveira ([4]) proved that in any implication algebra (X; *) the identity x * x = y * y holds for all $x, y \in X$. We denote the identity x * x = y * y by the constant 0. The notion of BI-algebras comes from the (dual) implication algebra.

3 BI-algebras

Definition 3.1. An algebra (X; *, 0) of type (2, 0) is called a BI-algebra if

- (B1) x * x = 0,
- (BI) x * (y * x) = x

for all $x, y \in X$.

Let (X, *, 0) be a BI-algebra. We introduce a relation " \leq " on X by $x \leq y$ if and only if x * y = 0. We note that " \leq " is not a partially order set, but it is only reflexive.

Example 3.2. (i). Every implicative BCK-algebra is a BI-algebra. (ii). Let $X := \{0, a, b, c\}$ be a set with the following table.

Then it is easy to see that (X; *, 0) is a BI-algebra, but it is not implicative BCK-algebra, since

$$(c*(c*a))*a = (c*b)*a = c*a = b \neq 0.$$

(iii). Let X be a set with $0 \in X$. Define a binary operation "*" on X by

$$x * y = \begin{cases} 0 & \text{if } x = y \\ x & \text{if } x \neq y \end{cases}$$

Then (X; *, 0) is an implicative BCK-algebra ([22]), and hence a BI-algebra.

Note that in Example 3.2(ii), we can see that it is not a B-algebra, since

$$(c*a)*b = b*b = 0 \neq c*(b*(0*a)) = c*(b*0) = c*b = c.$$

It is not a BG-algebra, since

$$c \neq (c * a) * (0 * a) = b * 0 = b.$$

It is not a BM-algebra, since

$$(b*a)*(b*c) = b*b = 0 \neq c*a = b.$$

It is not a BF-algebra, since

$$0 * (a * b) = 0 \neq b * a = b.$$

It is not a BN-algebra, since

$$(c*b)*a = c*a = b \neq (0*a)*(b*c) = 0.$$

It is not a BO-algebra, since

$$c * (a * a) = c * 0 = c \neq (c * a) * (0 * a) = b * 0 = b.$$

It is not a BP-algebra, since

$$c * (c * b) = c * c = 0 \neq b.$$

It is not a Q-algebra, since

$$(c*b)*a = c*a = b \neq (c*a)*b = b*b = 0.$$

It is not a Coxeter algebra, since

$$(c*a)*b = b*b = 0 \neq c*(a*b) = c*a = b.$$

It is not a BZ-algebra, since

$$((a*c)*(0*c))*(a*0) = (b*0)*a = b \neq 0.$$

Also, we consider the following example.

Example 3.3. Let $X := \{0, a, b, c\}$ be a set with the following table.

Then (X; *, 0) is a BI-algebra, but not a BH/BCI/BCK-algebra, since

$$a * b = 0$$
 and $b * a = 0$, while $a \neq b$.

Proposition 3.4. If $(L; \lor, \land, \neg, 0, 1)$ is a Boolean lattice, then (L; *, 0) is a BI-algebra, where "*" is defined by $x * y = \neg y \land x$, for all $x, y \in L$.

Proposition 3.5. Any dual implication algebra is a BI-algebra.

Note that the converse of Proposition 3.5 does not hold in general. See the following example.

Example 3.6. Let $X := \{0, a, b\}$ be a set with the following table.

Then (X; *, 0) is a BI-algebra, but it is not a dual implication algebra, since

$$a * (a * c) = a * b = a$$
, while $c * (c * a) = c * b = c$.

Proposition 3.7. Let X be a BI-algebra. Then

- (i) x * 0 = x,
- (ii) 0 * x = 0,
- (iii) x * y = (x * y) * y,
- (iv) if y * x = x, $\forall x, y \in X$, then $X = \{0\}$,
- (v) if x * (y * z) = y * (x * z), $\forall x, y \in X$, then $X = \{0\}$,
- (vi) if x * y = z, then z * y = z and y * z = y,
- (vii) if (x * y) * (z * u) = (x * z) * (y * u), then $X = \{0\}$,

for all $x, y, z, u \in X$.

Proof. (i). Using (BI) and (B1) we have x = x * (x * x) = x * 0.

- (ii). By (BI) and (i) we have 0 = 0 * (x * 0) = 0 * x.
- (iii). Given $x, y \in X$, we have

$$x * y = (x * y) * (y * (x * y)) = (x * y) * y.$$

(iv). For $x \in X$, we have

$$x = x * (y * x) = x * x = 0.$$

Hence $X = \{0\}$.

(v). Given $x \in X$, we have

$$0 = 0 * (x * 0) = x * (0 * 0) = x * 0 = x,$$

Hence $X = \{0\}$.

(vi). If x * y = z, then by (iii) we have

$$z * y = (x * y) * y = x * y = z.$$

Also, y * z = y * (x * y) = y.

(vii). If $x \in X$, then we have

$$x = x * 0 = (x * 0) * (x * x) = (x * x) * (0 * x) = 0 * (0 * x) = 0 * 0 = 0.$$

Hence
$$X = \{0\}$$
.

Definition 3.8. A BI-algebra X is said to be *right distributive* (or *left distributive*, resp.) if

$$(x * y) * z = (x * z) * (y * z), (z * (x * y) = (z * x) * (z * y), resp.)$$

for all $x, y, z \in X$.

Proposition 3.9. If BI-algebra X is a left distributive, then $X = \{0\}$.

Proof. Let $x \in X$. Then by (BI) and (B1) we have

$$x = x * (x * x) = (x * x) * (x * x) = 0 * 0 = 0.$$

Example 3.10. (i). Let $X := \{0, a, b, c\}$ be a set with the following table.

Then (X; *, 0) is a right distributive BI-algebra.

(ii). Example 3.2(ii) is not right distributive, since

$$(c*a)*b = b*b = 0 \neq (c*b)*(a*b) = c*a = b.$$

Proposition 3.11. Let (X;*) be a groupoid with $0 \in X$. If the following axioms holds:

- (i) x * x = 0,
- (ii) x * y = x, for all $x \neq y$,

then (X; *, 0) is a right distributive BI-algebra.

Proposition 3.12. Let X be a right distributive BI-algebra. Then

- (i) $y * x \leq y$,
- (ii) $(y * x) * x \le y$,
- (iii) $(x*z)*(y*z) \le x*y$,

(iv) if
$$x \leq y$$
, then $x * z \leq y * z$,

(v)
$$(x*y)*z \le x*(y*z)$$
,

(vi) if
$$x * y = z * y$$
, then $(x * z) * y = 0$,

for all $x, y, z \in X$.

Proof. For any $x, y \in X$, we have

(i)

$$(y*x)*y = (y*y)*(x*y) = 0*(x*y) = 0,$$

which shows that $y * x \leq y$.

(ii).

$$\begin{array}{rcl} ((y*x)*x)*y & = & ((y*x)*y)*(x*y) \\ & = & ((y*y)*(x*y))*(x*y) \\ & = & (0*(x*y))*(x*y) \\ & = & 0*(x*y) = 0, \end{array}$$

which shows that $(y * x) * x \le y$.

(iii).

$$\begin{array}{rcl} ((x*z)*(y*z))*(x*y) & = & ((x*y)*z)*(x*y) \\ & = & ((x*y)*(x*y))*(z*(x*y)) \\ & = & 0*(z*(x*y)) = 0, \end{array}$$

proving that $(x*z)*(y*z) \le x*y$.

(iv). If $x \leq y$, then x * y = 0 and hence

$$(x*z)*(y*z) = (x*y)*z = 0*z = 0,$$

proving that $x * z \le y * z$.

(v). By (i), we have $x*z \le x$. It follows from (iv) that $(x*z)*(y*z) \le x*(y*z)$. Using the right distributivity, we obtain $(x*y)*z \le x*(y*z)$.

(vi). Let x * y = z * y. Since X is right distributive, we obtain

$$(x*z)*y = (x*y)*(z*y) = (x*y)*(x*y) = 0.$$

It is easy to see that, if $x \le y$, we does not conclude that $z * x \le z * y$ in general, since, in Example 3.10(i), $a \le c$ but

$$b*a = b \leq b*c = 0.$$

Proposition 3.13. Let X have the condition: (z*x)*(z*y) = y*x for all $x, y, z \in X$. If $x \le y$, then $z*y \le z*x$.

Proof. If $x \le y$, then x * y = 0. It follows that (z * y) * (z * x) = x * y = 0. Hence $z * y \le z * x$.

An algebra (X; *) is said to have an *inclusion condition* if (x * y) * x = 0 for all $x, y \in X$. Every right distributive BI-algebra has the inclusion condition by Proposition 3.12(i). If X is a right distributive BI-algebra, then X is a quasi-associative algebra by Proposition 3.12(v).

Proposition 3.14. Let X be a right distributive BI-algebra. Then induced relation " \leq " is a transitive relation.

Proof. If $x \leq y$ and $y \leq z$, then we obtain by Proposition 3.7(i)

$$x*z = (x*z)*0$$

$$= (x*z)*(y*z)$$

$$= (x*y)*z$$

$$= 0*z$$

$$= 0.$$

Therefore $x \leq z$.

4 Ideals in BI-algebras

In what follows, let X denote a BI-algebra unless otherwise specified.

Definition 4.1. A subset I of X is called an *ideal* of X if

- (I1) $0 \in I$,
- (I2) $y \in I$ and $x * y \in I$ imply $x \in I$ for any $x, y \in X$.

Obviously, $\{0\}$ and X are ideals of X. We shall call $\{0\}$ and X a zero ideal and a trivial ideal, respectively. An ideal I is said to be proper if $I \neq X$.

Example 4.2. In Example 3.2(ii), $I_1 = \{0, a, c\}$ is an ideal of X, while $I_2 = \{0, a, b\}$ is not an ideal of X, since $c * a = b \in I_2$ and $a \in I_2$, but $c \notin I_2$.

We denote the set of all ideals of X by I(X).

Lemma 4.3. If $\{I_i\}_{i\in\Lambda}$ is a family of ideals of X, then $\bigcap_{i\in\Lambda}I_i$ is an ideal of X.

Proof. Straightforward.

Since the set I(X) is closed under arbitrary intersections, we have the following theorem.

Theorem 4.4. $(I(X), \subseteq)$ is a complete lattice.

Proposition 4.5. Let I be an ideal of X. If $y \in I$ and $x \leq y$, then $x \in I$.

Proof. If $y \in I$ and $x \leq y$, then $x * y = 0 \in I$. Since $y \in I$ and I is an ideal, we obtain $x \in I$.

For any $x, y \in X$, define $A(x, y) := \{t \in X : (t * x) * y = 0\}$. It is easy to see that $0, x \in A(x, y)$. In Example 3.2(ii), $A(a, b) = \{0, a, b, c\}$ and $A(b, a) = \{0, a, b\}$. Hence $A(a, b) \neq A(b, a)$. We note that

$$\begin{array}{lcl} A(a,0) & = & \{t \in X : (t*a)*0 = 0\} \\ & = & \{t \in X : t*a = 0\} \\ & = & \{t \in X : (t*0)*a = 0\} \\ & = & A(0,a). \end{array}$$

Theorem 4.6. If X is a right distributive BI-algebra, then A(x,y) is an ideal of X where $x, y \in X$.

Proof. Let $x*y \in A(a,b), y \in A(a,b)$. Then ((x*y)*a)*b = 0 and (y*a)*b = 0. By the right distributivity we have

$$0 = ((x * y) * a) * b = ((x * a) * (y * a)) * b$$

$$= ((x * a) * b) * ((y * a) * b)$$

$$= ((x * a) * b) * 0$$

$$= (x * a) * b,$$

whence $x \in A(a, b)$. This proves that A(a, b) is an ideal of X.

Proposition 4.7. Let X be a BI-algebra. Then

- (i) $A(0,x) \subseteq A(x,y)$, for all $x,y \in X$,
- (ii) if A(0,y) is an ideal and $x \in A(0,y)$, then $A(x,y) \subseteq A(0,y)$.

Proof. (i). Let $z \in A(0, x)$. Then z * x = (z * 0) * x = 0. Hence (z * x) * y = 0 * y = 0. Thus $z \in A(x, y)$ and so $A(0, x) \subseteq A(x, y)$.

(ii). Let A(0, y) be an ideal and $x \in A(0, y)$. If $z \in A(x, y)$, then (z*x)*y = 0. Hence ((z*x)*0)*y = 0. Therefore $z*x \in A(0, y)$. Now, since A(0, y) is an ideal and $x \in A(0, y)$, $z \in A(0, y)$. Thus $A(x, y) \subseteq A(0, y)$.

Proposition 4.8. Let X be a BI-algebra. Then

$$A(0,x) = \bigcap_{y \in X} A(x,y).$$

for all $x, y \in X$.

Proof. By Proposition 4.7(i), we have $A(0,x)\subseteq\bigcap_{y\in X}A(x,y).$ If $z\in$

 $\bigcap_{y \in X} A(x,y)$, then $z \in A(x,y)$, for all $y \in X$. It follows that $z \in A(0,x)$.

Hence
$$\bigcap_{y \in X} A(x,y) \subseteq A(0,x)$$
.

Theorem 4.9. Let I be a non-empty subset of X. Then I is an ideal of X if and only if $A(x,y) \subseteq I$ for all $x,y \in I$.

Proof. Assume that I is an ideal of X and $x,y\in I$. If $z\in A(x,y)$, then $(z*x)*y=0\in I$. Since I is an ideal and $x,y\in I$, we have $z\in I$. Hence $A(x,y)\subseteq I$.

Conversely, suppose that $A(x,y) \subseteq I$ for all $x,y \in I$. Since (0*x)*y = 0, $0 \in A(x,y) \subseteq I$. Let a*b and $b \in I$. Since (a*b)*(a*b) = 0, we have $a \in A(b,a*b) \subseteq I$, i.e., $a \in I$. Thus I is an ideal of X.

Proposition 4.10. If I is an ideal X, then

$$I = \bigcup_{x,y \in I} A(x,y).$$

Proof. Let I be an ideal of X and $z \in I$. Since (z * 0) * z = z * z = 0, we have $z \in A(0, z)$. Hence

$$I \subseteq \bigcup_{z \in I} A(0, z) \subseteq \bigcup_{x, y \in I} A(x, y)$$

If $z \in \bigcup_{x,y \in I} A(x,y)$, then there exist $a,b \in I$ such that $z \in A(a,b)$. It follows

from Theorem 4.9 that
$$z \in I$$
, i.e., $\bigcup_{x,y \in I} A(x,y) \subseteq I$.

Theorem 4.11. If I is an ideal of X, then

$$I = \bigcup_{x \in I} A(0, x).$$

Proof. Let I be an ideal of X and $z \in I$. Since (z * 0) * z = z * z = 0, we have $z \in A(0, z)$. Hence

$$I\subseteq \bigcup_{z\in I}A(0,z).$$

If $z \in \bigcup_{x \in I} A(0, z)$, then there exists $a \in I$ such that $z \in A(0, a)$, which means

that $z*a=(z*0)*a=0\in I$. Since I is an ideal of X and $a\in I$, we obtain $z\in I$. This means that $\bigcup_{x\in I}A(0,x)\subseteq F$.

Let X be a right distributive BI-algebra and let I be an ideal of X and $a \in X$. Define

$$I_a^l := \{ x \in X : x * a \in I \}.$$

Theorem 4.12. If X is a right distributive BI-algebra, then I_a^l is the least ideal of X containing I and a.

Proof. By (B1) we have a*a=0, for all $a\in X$, i.e. $a\in I_a^l$ and so $I_a\neq\emptyset$. Assume that $x*y\in I_a^l$ and $y\in I_a^l$. Then $(x*y)*a\in I$ and $y*a\in I$. By the right distributivity, we have $(x*a)*(y*a)\in I$. Since $y*a\in I$, we have $x*a\in I$ and so $x\in I_a^l$. Therefore I_a^l is an ideal of X.

Let $x \in I$. Since $(x*a)*x = (x*x)*(a*x) = 0*(a*x) = 0 \in I$ and I is an ideal of X, we obtain $x*a \in I$. Hence $x \in I_a$. Thus $I \subseteq I_a^l$.

Now, let J be an ideal of X containing I and a. Let $x \in I_a^l$. Then $x*a \in I \subseteq J$. Since $a \in J$ and J is an ideal of X, we have $x \in J$. Therefore $I_a^l \subseteq J$.

The following example shows that the condition, right distributivity, is very necessary.

Example 4.13. In Example 3.2(ii), (X; *, 0) is a BI-algebra, but not right distributive, since

$$(c*a)*b = b*b = 0 \neq (c*b)*(a*b) = c*a = b.$$

We can see that $I=\{0,a\}$ is an ideal of X, but $I_b^l=\{0,a,b\}$ is not an ideal of X.

Note. Let I be an ideal of X and $a \in X$. If we denote

$$I_a^r := \{ x \in X : a * x \in I \}$$

Then I_a^r is not an ideal of X in general.

Example 3.14. In Example 3.10(i), $I = \{0, b\}$ is an ideal of X but $I_c^r = \{a, c\}$ is not an ideal of X, because $0 \notin I_c^r$.

Let A be a non-empty subset of X. The set $\bigcap \{I \in I(X) | A \subseteq I\}$ is called an *ideal generated by* A, written < A >. If $A = \{a\}$, we will denote $< \{a\} >$, briefly by < a >, and we call it a *principal ideal* of X. For $I \in I(X)$ and $a \in X$, we denote by $[I \cup \{a\})$ the ideal generated by $I \cup \{a\}$. For convenience, we denote $[\emptyset) = \{0\}$.

Proposition 4.15. Let A and B be two subsets of X. Then the following statements hold:

- (i) $[0) = \{0\}, [X) = X,$
- (ii) $A \subseteq B$ implies $[A) \subseteq [B)$,
- (iii) if $I \in I(X)$, then [I] = I.

5 Congruence relations in BI-algebras

Let I be a non-empty set of X. Define a binary relation " \sim_I " by

$$x \sim_I y$$
 if and only if $x * y \in I$ and $y * x \in I$.

The set $\{y : x \sim_I y\}$ will be denoted by $[x]_I$.

Theorem 5.1. Let I be an ideal of a right distributive BI-algebra X. Then " \sim_I " is an equivalence relation on X.

Proof. Since *I* is an ideal of *X*, we have $x*x=0 \in I$. Thus $x \sim_I x$. So, \sim_I is reflexive. It is obvious that \sim_I is symmetric. Now, let $x \sim_I y$ and $y \sim_I z$. Then x*y, $y*x \in I$ and y*z, $z*y \in I$. By Proposition 3.12(iii), we have $(x*z)*(y*z) \leq x*y$. Since *I* is an ideal and $x*y \in I$, we have $(x*z)*(y*z) \in X$ and so $x*z \in I$. Similarly, we obtain $z*x \in I$. Thus $x \sim_I z$ and so \sim_I is a transitive relation. Therefore \sim_I is an equivalence relation on *X*. □

Recall that a binary relation " θ " on an algebra (X;*) is said to be

- (i) a right compatible relation if $x\theta y$ and $u \in X$, then $(x * u)\theta(y * u)$,
- (ii) a left compatible relation if $x\theta y$ and $v \in X$, then $(v * x)\theta(v * y)$,
- (iii) a compatible relation if $x\theta y$ and $u\theta v$, then $(x*u)\theta(y*v)$.

A compatible equivalence relation on X is called a *congruence relation* on X.

Theorem 5.2. The equivalence relation " \sim_I " in Theorem 5.1 is a right congruence relation on X.

Proof. If $x \sim_I y$ and $u \in X$, then x * y and $y * x \in I$. By Proposition 3.12(iii), we have $((x * u) * (y * u)) * (x * y) = 0 \in I$. Since I is an ideal and $x * y \in I$, we have $(x * u) * (y * u) \in I$. Similarly we obtain $(y * u) * (x * u) \in I$. Therefore $(x * u) \sim_I (y * u)$.

Example 5.3. In Example 3.10(i), $I = \{0, a\}$ is an ideal of X and

$$\sim_I := \{(0,0), (a,a), (0,a), (a,0), (0,b), (b,0), (b,b), (c,b), (b,c), (c,0), (0,c), (c,c)\}$$

is a right congruence relation on X and

$$[0]_I = [a]_I = \{0, a\}$$
 and $[b]_I = [c]_I = \{0, a, b, c\}.$

Proposition 5.4. Let I be a subset of X with $0 \in I$. If I has the condition: if $x * y \in I$, then $(z * x) * (z * y) \in I$. Then X = I.

Proof. Let
$$x:=0$$
 and $y:=z$. Then $0*z=0\in I$ imply $(z*0)*(z*z)=z*0=z\in I$. Therefore $X\subseteq I$ and so $I=X$.

Proposition 5.5. Let X be a right distributive BI-algebra and let $I, J \subseteq X$.

- (i) If $I \subseteq J$, then $\sim_I \subseteq \sim_J$,
- (ii) If \sim_{I_i} for all $i \in \Lambda$ are right congruence relations on X, then $\sim_{\cap I_i}$ is also a right congruence relation on X.

Lemma 5.6. If \sim_I is a left congruence relation on a right distributive BI-algebra X, then $[0]_I$ is an ideal of X.

Proof. Obviously, $0 \in [0]_I$. If y and x * y are in $[0]_I$, then $x * y \sim_I 0$ and $y \sim_I 0$. It follows that $x = x * 0 \sim_I x * y \sim_I 0$. Therefore $x \in [0]_I$.

Proposition 5.7. Let X be a right distributive BI-algebra. Then

$$\phi_x := \{ (a, b) \in X \times X : x * a = x * b \}$$

is a right congruence relation on X.

Example 5.8. In Example 3.10(i),

$$\phi_b = \{(0,0), (0,a), (a,0), (a,a), (b,b), (c,c), (b,c), (c,b)\}$$

is a right congruence relation on X.

Proposition 5.9. Let X be a BI-algebra. Then

- (i) $\phi_0 = X \times X$,
- (ii) $\phi_x \subseteq \phi_0$,
- (iii) if X is right distributive, then $\phi_x \cap \phi_y \subseteq \phi_{x*y}$,

for all $x, y \in X$.

6 Conclusion and future work

Recently, researchers proposed several kinds of algebraic structures related to some axioms in many-valued logic and several papers have been published in this field.

In this paper, we introduced a new algebra which is a generalization of a (dual) implication algebra, and we discussed the basic properties of BI-algebras, and investigated ideals and congruence relations. We hope the results can be a foundation for future works.

As future works, we shall define commutative BI-algebras and discuss on some relationships between other several algebraic structures. Also, we intend to study other kinds of ideals, and apply vague sets, soft sets, fuzzy structures to BI-algebras.

Acknowledgments: The authors wish to thank the reviewers for their excellent suggestions that have been incorporated into this paper.

References

- [1] J. C. Abbott, Semi-boolean algebras, Mate. Vesnik 4(1967), 177-198.
- [2] S. S. Ahn and H. S. Kim, On QS-algebras, J. Chungcheong Math. Soc. ${\bf 12}(1999),\ 33\text{-}41.$

[3] S. S. Ahn and J. S. Han, *On BP-algebras*, Hacettepe Journal of Mathematics and Statistics **42**(2013), 551-557.

- [4] W. Y. Chen and J. S. Oliveira, *Implication algebras and the metropolis rota axioms for cubic lattices*, J. Algebra **171**(1995), 383-396.
- [5] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8(2001), 1-6.
- [6] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes, Kobe Univ. 11(1983), 313-320.
- [7] K. Iseki, On BCI-algebras, Math. Sem. Notes, Kobe Univ. 8(1980), 125-130.
- [8] K. Iseki, H. S. Kim and J. Neggers, On J-algebras, Sci. Math. Jpn. 63(2006), 413-419.
- [9] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. 1(1998), 347-354.
- [10] C. B. Kim and H. S. Kim, On BN-algebras, Kyungpook Math. J. 53(2013), 175-184.
- [11] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Jpn. 63(2006), 421-427.
- [12] C. B. Kim and H. S. Kim, *On BG-algebras*, Demonstratio Math. **41**(2008), 497-505.
- [13] C. B. Kim and H. S. Kim, On BO-algebras, Math. Slovaca $\mathbf{62}(2012)$, 855-864.
- [14] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. $\bf 67 (2007)$, 113-116.
- [15] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26(2004), 471-481.
- [16] M. Kondo, On the class of QS-algebras, Int. Math. & Math. J. Sci. $\mathbf{49}(2004)$, 2629-2639.
- [17] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik **54**(2002), 21-29.
- [18] J. Neggers and H. S. Kim, On β -algebras, Math. Slovaca $\mathbf{52}(2002)$, 517-530.

- [19] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49(1999), 19-26.
- [20] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Int. Math. & Math. J. Sci. 27(2001), 749-757.
- [21] A. Walendziak, On BF-algebras, Math. Slovaca 57(2007), 119-128.
- [22] H. Yisheng, BCI-algebra, Science Press, Beijing, 2006.
- [23] X. H. Zhang and R. F. Ye, BZ-algebras and groups, J. Math. & Phy. Sci. ${\bf 29}(1995),\ 223$ -233.

Arsham Borumand Saeid,

Department of Pure Mathematics, Faculty of Mathematics and Computer,

Shahid Bahonar University of Kerman, Kerman, Iran.

Email: arsham@uk.ac.ir

Hee Sik Kim (corresponding author),

Department of Mathematics, Research Institute for Natural Sciences,

Hanyang University, Seoul, 04763, Korea.

Email: heekim@hanyang.ac.kr

Akbar Rezaei,

Department of Mathematics,

Payame Noor University, p.o.box. 19395-3697, Tehran, Iran.

Email: rezaei@pnu.ac.ir