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On Generalized Jacobsthal and
Jacobsthal-Lucas polynomials

P. Catarino and M. L. Morgado

Abstract

In this paper we introduce a generalized Jacobsthal and Jacobsthal-
Lucas polynomials, Jh,n and jh,n, respectively, that consist on an exten-
sion of Jacobsthal’s polynomials Jn(x) and Jacobsthal-Lucas polynomi-
als jn(x). We provide their properties and a generalization of the usual
identities. We also present, for each one of these generalized polynomi-
als, their ordinary generating functions and matrices. In the last part of
the paper, we present some special kind of tridiagonal matrices whose
entries are elements of these generalized polynomials.

1 Introduction

Fibonacci-like recursion relations are a special case of difference equations that
can be solved by the combinatorics function technique method. Fibonacci
polynomials are polynomials that can be defined by Fibonacci-like recursion
relations and they were studied in 1883 by E. C. Catalan and E. Jacobsthal.
For example, E. C. Catalan studied the polynomials Fn(x) defined by the
recurrence relation

Fn(x) = xFn−1(x) + Fn−2(x), n ≥ 3 (1)
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where F1(x) = 1 and F2(x) = x. This is an example of several polynomial
sequences that can be defined by recurrence relations of order two.

Also many sequences of numbers can be defined by recurrence relations
of order two, such as the Fibonacci numbers, Lucas numbers, Pell numbers,
Pell-Lucas numbers, Jacobsthal numbers, Jacobsthal-Lucas numbers, among
others. Various generalizations have also been studied (see, for example, [1, 3,
4, 8, 16, 17], among others researchers). In particular, for n > 0, the sequence
of Jacobsthal numbers {Jn}n is defined through the recurrence relation:

Jn+1 = Jn + 2Jn−1, n ≥ 1 (2)

with J0 = 0 and J1 = 1. If we consider

jn+1 = jn + 2jn−1, n ≥ 1 (3)

and let j0 = 2, j1 = 1, then we obtain the sequence of Jacobsthal-Lucas
numbers {jn}n.

A generalization of this kind of sequence of numbers is the sequence {Jk,n}n
of k−Jacobsthal numbers defined by

Jk,n+1 = kJk,n + 2Jk,n−1, n ≥ 1 (4)

where Jk,0 = 0 and Jk,1 = 1. Also the sequence {jk,n}n of k−Jacobsthal-Lucas
numbers defined by

jk,n+1 = kjk,n + 2jk,n−1, n ≥ 1 (5)

with jk,0 = 2 and jk,1 = 1 is a generalization of the Jacobsthal-Lucas sequence.
Various studies have been published about some properties concerning this
type of sequences, (see, for example, [2, 10, 11]). Note that in the particular
case where k = 1, (4) reduces to (2) and (5) reduces to (3).

These numbers and their properties are useful in several areas as image pro-
cessing, communications, signal processing, encoding (see [5, 14, 7, 19]), when
certain linear systems of equations need to be solved, namely Toeplitz matrix
problems. A recent example is the use of the circulant matrices to solve the
Toeplitz structure linear system of equations obtained after the discretization
of fractional differential equations (see [18]).

A natural extension of the Jacobsthal numbers is given by the Jacobsthal
polynomials, which are introduced by Horadam in [12] and defined as follows:

Jn+1 (x) = Jn(x) + 2xJn−1(x), n > 0, J0(x) = 0, J1(x) = 1. (6)

Here we are interested in a generalization of (6), which we call the generalized
Jacobsthal polynomials, or the h(x)−Jacobsthal polynomials, that are defined
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by:

Jh,n+1 (x) = Jh,n(x) + h(x)Jh,n−1(x), n > 0, (7)

Jh,0(x) = 0, Jh,1(x) = 1, (8)

where h(x) is a polynomial with real coefficients.
In a similar way, the Jacobsthal-Lucas polynomials, defined by

jn+1 (x) = jn(x) + 2xjn−1(x), n > 0, j0(x) = 2, j1(x) = 1, (9)

are also a natural extension of the Jacobsthal-Lucas numbers. A generalization
of (9) which we call the generalized Jacobsthal-Lucas polynomials, or the
h(x)−Jacobsthal-Lucas polynomials is defined by

jh,n+1 (x) = jh,n(x) + h(x)jh,n−1(x), n > 0, (10)

jh,0(x) = 2, jh,1(x) = 1. (11)

Note that in the particular case where h(x) = 2x, (7) and (8) reduces to (6),
(10) and (11) reduces to (9).

The paper is organized as follows: in Section 2 we present the generating
functions for polynomials (7) and (8) and also (10) and (11). In section 3
we extend some usual known identities for these generalized polynomials. In
section 4 we discuss their generating matrices and consider a special kind of
tridiagonal matrices whose entries are both, generalized Jacobsthal and gener-
alized Jacobsthal-Lucas polynomials. We end this paper with some conclusions
and plans for further investigation.

2 Generating functions

In this section we present the ordinary generating function for polynomials
(7) and (8) and also (10) and (11). Horadam in [11] present the ordinary
generating function for sequences (2) and (3). Djordjević in [6] present the or-
dinary generating function for polynomials (6) and (9). In [13] we can find the
ordinary generating function for sequence (4) and in [2] we have the ordinary
generating function for sequence (5). Now, consider the ordinary generating
function, gJ(t), of the sequence {Jh,n(x)}n defined by:

gJ(t) =

∞∑
n=0

Jh,n(x)tn. (12)

Theorem 2.1. The ordinary generating function for the sequence {Jh,n(x)}n
is

gJ(t) =
t

1− t− t2h(x).
(13)
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Proof. Using (12), we have:

gJ(t)− tgJ(t)− t2h(x)gJ(t)

=

∞∑
n=0

Jh,n(x)t
n −

∞∑
n=0

Jh,n(x)t
n+1 − h(x)

∞∑
n=0

Jh,n(x)t
n+2

= Jh,0(x)︸ ︷︷ ︸
0

+t Jh,1(x)︸ ︷︷ ︸
1

+

∞∑
n=2

Jh,n(x)t
n −

∞∑
n=1

Jh,n−1(x)t
n − h(x)

∞∑
n=2

Jh,n−2(x)t
n

= t+

∞∑
n=2

Jh,n(x)t
n − Jh,0(x)︸ ︷︷ ︸

0

t−
∞∑

n=2

Jh,n−1(x)t
n − h(x)

∞∑
n=2

Jh,n−2(x)t
n

= t+

∞∑
n=2

Jh,n(x)t
n −

∞∑
n=2

Jh,n−1(x)t
n − h(x)

∞∑
n=2

Jh,n−2(x)t
n

= t+

∞∑
n=2

(Jh,n(x)− Jh,n−1(x)− h(x)Jh,n−2(x))︸ ︷︷ ︸
0

tn = t,

and thus (13) follows.

The ordinary generating function, gj(t), of the sequence {jh,n(x)} is defined
by:

gj(t) =

∞∑
n=0

jh,n(x)tn. (14)

Theorem 2.2. The ordinary generating function for the sequence {jh,n(x)}n
is

gj(t) =
2− t

1− t− t2h(x).
(15)

Proof. Using (14), we have:

gj(t) = jh,0 (x)t0 + jh,1 (x)t+

∞∑
n=2

jh,n(x)tn

= 2 + t+

∞∑
n=2

jh,n(x)tn

= 2 + t+

∞∑
n=2

(jh,n−1(x) + h(x)jh,n−2(x))tn

(16)
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= 2 + t+

∞∑
n=2

jh,n−1(x)tn + h(x)

∞∑
n=2

jh,n−2(x)tn

= 2 + t+

∞∑
n=2

jh,n−1(x)tn−1t+ h(x)

∞∑
n=2

jh,n−2(x)tn−2t2

= 2 + t+ t(

∞∑
n=1

jh,n−1(x)tn−1 − jh,0(x)) + h(x)t2
∞∑
n=2

jh,n−2(x)tn−2

= 2 + t− 2t+

∞∑
n=0

jh,n(x)tn(t+ h(x)t2)

= 2− t+ gj(t)(t+ h(x)t2),

and thus the result derives.

3 Some identities for the generalized polynomials

In this section we extend some usual known identities for these generalized
polynomials. Similar identities for sequences (2), (3), (6), (9), (4) and (5) are
also studied and we can find these identities in the literature (see, for example,
[2], [6], [11], [12], [13], among others).

3.1 The h(x)−Jacobsthal polynomials

The h(x)−Jacobsthal polynomials may be computed through the following
Binet-style formula:

Theorem 3.1. (Generalized Binet-style formula)
For the sequence {Jh,n(x)}n we have

Jh,n(x) =
αn(x)− βn(x)

α(x)− β(x)
, n ≥ 0, (17)

where

α(x) =
1 +

√
1 + 4h(x)

2
and β(x) =

1−
√

1 + 4h(x)

2
. (18)

Proof. The characteristic equation of relation (7) is:

ν2 − ν − h(x) = 0,

whose roots are α(x) and β(x). Therefore, for n ≥ 0, the solution of (7) is
given by:

Jh,n(x) = Aαn(x) +Bβn(x).
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From the initial conditions (8) it follows that A and B must satisfy the fol-
lowing system {

A+B = 0
Aα(x) +Bβ(x) = 1

and hence A = 1√
1+4h(x)

and B = −1√
1+4h(x)

. Since α(x)−β(x) =
√

1 + 4h(x),

we obtain (17).

Next we generalize some identities known for the Jacobsthal polynomials,
namely the Catalan, the Cassini and the d’Ocagne identities:

Jn−r(x)Jn+r(x)− J2
n(x) = (−1)n−r+1(2x)n−rJr(x), (19)

Jn−1(x)Jn+1(x)− J2
n(x) = (−1)n(2x)n−1, (20)

Jm(x)Jn+1(x)− Jm+1(x)Jh,n(x) = (−1)n(2x)nJm−n(x), m > n, (21)

respectively. Before we proceed, let us first note that

α(x)β(x) = −h(x). (22)

Theorem 3.2. (Generalized Catalan’s identity)
For n and r, nonnegative integer numbers, such that r ≤ n, we have

Jh,n−r(x)Jh,n+r(x)− J2
h,n(x) = (−1)n−r+1(h(x))n−rJh,r(x). (23)

Proof. Using the generalized Binet-style formula (17), and taking (22) into
account, we have

Jh,n−r(x)Jh,n+r(x)− J2
h,n(x) =

(
αn−r(x)− βn−r(x)

α(x)− β(x)

)(
αn+r(x)− βn+r(x)

α(x)− β(x)

)
−

(
αn(x)− βn(x)

α(x)− β(x)

)2

= − (α(x)β(x))
n−r

(
αr(x)− βr(x)

α(x)− β(x)

)2

= (−1)n−r+1(h(x))n−rJh,r(x).

In the particular case where r = 1 we obtain the generalized Cassini iden-
tity.

Theorem 3.3. (Generalized Cassini’s identity)
For any natural number n, we have

Jh,n−1(x)Jh,n+1(x)− J2
h,n(x) = (−1)n(h(x))n−1. (24)
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Proof. This identity follows immediately by taking r = 1 in (19) and taking
the second initial condition in (8) into account.

Theorem 3.4. (Generalized d’Ocagne’s identity)
Suppose that n is a nonnegative integer number and m any natural number.
If m > n then:

Jh,m(x)Jh,n+1(x)− Jh,m+1(x)Jh,n(x) = (−1)n(h(x))nJh,m−n(x). (25)

Proof.

Jh,m(x)Jh,n+1(x)− Jh,m+1(x)Jh,n(x) =

=

(
αm(x)− βm(x)

α(x)− β(x)

)(
αn+1(x)− βn+1(x)

α(x)− β(x)

)
−

(
αm+1(x)− βm+1(x)

α(x)− β(x)

)(
αn(x)− βn(x)

α(x)− β(x)

)
= (α(x)β(x))

n
(α(x)− β(x))

(
αm−n(x)− βm−n(x)

(α(x)− β(x)2)

)
= (−h(x))nJh,m−n(x).

Note that if we consider h(x) = 2x, (23), (24) and (25) reduce to (19), (20)
and (21), respectively.

3.2 The h(x)−Jacobsthal-Lucas polynomials

The h(x)−Jacobsthal-Lucas polynomials may also be computed through the
following Binet-style formula:

Theorem 3.5. (Generalized Binet’s formula)
For the sequence {jh,n(x)}n we have

jh,n(x) = αn(x) + βn(x), n ≥ 0, (26)

where α(x) and β(x) are defined as in (18).

Proof. Using again the characteristic equation of relation (10), which is the
same of the relation (7), we have:

jh,n(x) = Aαn(x) +Bβn(x),
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where α(x) and β(x) are the roots of the characteristic equation. From the
initial conditions (11): {

A+B = 2
Aα(x) +Bβ(x) = 1

,

we get A = B = 1 and then we obtain the required result.

Next, we obtain the usual identities.

Theorem 3.6. (Generalized Catalan’s Identity)
For n and r, nonnegative integer numbers, such that r ≤ n, we have

jh,n−r(x)jh,n+r(x)− j2h,n(x) = (−h(x))
n−r (

j2h,r(x)− 4 (−h(x))
r)
.

Proof. Using the generalized Binet-style formula (26), doing some calculations
and from the fact that α(x)β(x) = −h(x), we obtain:

jh,n−r(x)jh,n+r(x)− j2h,n(x) =
(
αn−r(x) + βn−r(x)

) (
αn+r(x) + βn+r(x)

)
− (αn(x) + βn(x))

2

= αn(x)βn(x)

(
βr(x)

αr(x)
+
αr(x)

βr(x)
− 2

)
= (−h(x))

n β
2r(x) + α2r(x)− 2αr(x)βr(x)

αr(x)βr(x)

= (−h(x))
n−r

(
(αr(x) + βr(x))

2 − 4 (−h(x))
r
)

= (−h(x))
n−r

(
(jh,r(x))

2 − 4 (−h(x))
r
)

In the case where r = 1, we obtain the generalized Cassini identity, which
in this case is given by:

Theorem 3.7. (Generalized Cassini’s identity)
For any natural number n, we have

jh,n−1(x)jh,n+1(x)− j2h,n(x) = (−1)
n−1

(h(x))
n−1

(1 + 4h(x)) .

Proof. This identity follows immediately by taking r = 1 in the generalized
Catalan identity and taking the second initial condition in (11) into account.
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Theorem 3.8. (Generalized d’Ocagne’s identity)
Suppose that n is a nonnegative integer number and m any natural number.
If m > n then

jh,m(x)jh,n+1(x)− jh,m+1(x)jh,n(x)

=
√

1 + 4h(x) (−h(x))
n

(
jh,m−n(x)− 2n−m+1

(
1 +

√
1 + 4h(x)

)m−n)
Proof.

jh,m(x)jh,n+1(x)− jh,m+1(x)jh,n(x) =

=(αm(x) + βm(x))
(
αn+1(x) + βn+1(x)

)
−
(
αm+1(x) + βm+1(x)

)
(αn(x) + βn(x))

= αm(x)βn(x) (β(x)− α(x)) + βm(x)αn(x) (α(x)− β(x))

= (α(x)− β(x)) (α(x)β(x))n
(
βm−n(x)− αm−n(x)

)
= (α(x)− β(x)) (α(x)β(x))n

(
βm−n(x) + αm−n(x)− 2αm−n(x)

)
=

√
1 + 4h(x) (−h(x))n

(
jh,m−n(x)− 2n−m+1

(
1 +

√
1 + 4h(x)

)m−n

(x)

)
.

4 The ordinary generating matrices

A recurrent method for the study of the recurrence sequences is to define the
so-called ordinary generating matrix. The h(x)−Jacobsthal polynomials and
the h(x)−Jacobsthal-Lucas polynomials are two (among others) of the special
case of a sequence which is defined recursively as a linear combination of the
preceding p terms:

an+p = c0an + c1an+1 + . . . cp−1an+p−1, (27)

where c0, c1, . . . , cp−1 are real constants. Using the matrix method, con-
sider a p × p matrix B, where the entries of the last row are the constants
c0, c1, . . . , cp−1, the entries bi,i+1 = 1 for i = 1, . . . , p − 1 and the remaining
entries are zero. Also define a matrix An = (an an+1 . . . an+p−1)T as-
sociated with (27), such that BAn = An+1 and An = BnA0, where A0 =
(a0 a1 . . . ap−1)T . Some results of Linear Algebra will be used in what
follows with the aim to provide alternative expressions for the general term of
the h(x)−Jacobsthal polynomials and the h(x)−Jacobsthal-Lucas polynomi-
als. We start with the h(x)−Jacobsthal polynomials.



GENERALIZED JACOBSTHAL AND JACOBSTHAL-LUCAS POLYNOMIALS 70

4.1 Generating matrix for the h(x)−Jacobsthal polynomials

Using (7), (8) and (27), we have p = 2, c0 = h(x) and c = 1. Hence, the
associated matrix B is, in this case, given by:

B = B(x) =

(
0 1

h(x) 1

)
with determinant |B(x)| = −h(x).

Proposition 4.1. For all n ≥ 1,

Bn(x) =

(
h(x)Jh,n−1(x) Jh,n(x)
h(x)Jh,n(x) Jh,n+1(x)

)
. (28)

Proof. By induction on n, we have:

• For n = 1, B1(x) =

(
h(x)Jh,0(x) Jh,1(x)
h(x)Jh,1(x) Jh,2(x)

)
=

(
0 1

h(x) 1

)
, and

(28) is verified.

• Suppose now that (28) is true for n and let us prove that it will be also
true for n+ 1.

Bn+1(x) =B(x)Bn(x) =

(
0 1

h(x) 1

)(
h(x)Jh,n−1(x) Jh,n(x)
h(x)Jh,n(x) Jh,n+1(x)

)
=

(
h(x)Jh,n(x) Jh,n+1(x)

h2(x)Jh,n−1(x) + h(x)Jh,n(x) h(x)Jh,n(x) + Jh,n+1(x)

)
=

(
h(x)Jh,n(x) Jh,n+1(x)

h(x) (h(x)Jh,n−1(x) + Jh,n(x)) h(x)Jh,n(x) + Jh,n+1(x)

)
=

(
h(x)Jh,n(x) Jh,n+1(x)
h(x)Jh,n+1(x) h(x)Jh,n(x) + Jh,n+2(x)

)
.

Using the properties of the determinants of the matrices B(x) and Bn(x),
we can deduce the Cassini identity in a different way than we have obtained
in the previous section (see (24)).
Indeed, we know that |B(x)| = −h(x) and |Bn(x)| = h(x)Jh,n−1(x)Jh,n+1(x)−
h(x)J2

h,n(x). Because |Bn(x)| = |B(x)|n, the result follows immediately.
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Considering the eigenvalues of B(x), it can be easily seen that two dis-
tinct eigenvalues can be determined: α(x) and β(x) defined as in (18). The
eigenvectors associated with α(x) and β(x) are(

a
α(x)a

)
,

(
a

β(x)a

)
,

respectively, with a 6= 0. In particular, if a = 1, we get the eigenvectors

u1 =

(
1

α(x)

)
, u2 =

(
1

β(x)

)
.

Writing

A0(x) =

(
Jh,0(x)
Jh,1(x)

)
=

(
0
1

)
= λ1u1 + λ2u2,

we obtain that λ1 = 1
α(x)−β(x) and λ2 = − 1

α(x)−β(x) . Finally, applying Bn(x),
we get

An(x) = Bn(x)A0(x) =

(
Jh,n(x)
Jh,n+1(x)

)
which provides us an alternative way to achieve the generalized Binet-style
formula for the generalized h(x)−Jacobsthal polynomials.

Following the ideas of [9], we know that the determinant of a special kind
of tridiagonal matrices is related to a special nth order polynomial. If we
consider the (n× n) tridiagonal matrices Mn, defined as:

a b
c d e

c d e
. . .

. . .
. . .

c d e
c d


, (29)

computing the sequence of determinants, we obtain:

|M1| = a

|M2| = d |M1| − bc
|M3| = d |M2| − ce |M1|
|M4| = d |M3| − ce |M2| (30)

...

|Mn+1| = d |Mn| − ce |Mn−1| ,
(31)
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and therefore we can easily obtain the following result:

Proposition 4.2. The (n× n) tridiagonal matrices

Jhn (x) =



1 −1− h(x)
1 1 −h(x)

1 1 −h(x)
. . .

. . .
. . .

1 1 −h(x)
1 1


satisfy ∣∣Jhn−1(x)

∣∣ = Jh,n(x),

that is, the nth h(x)−Jacobsthal polynomial may be obtained through the com-
putation of the the determinant of the ((n − 1) × (n − 1)) tridiagonal matrix
Jhn−1(x).

Proof. In the particular case where a = c = d = 1, b = −1 − h(x) and
e = −h(x) it is straightforward to see that the sequence of determinants (30)
becomes:

|M1| =
∣∣Jh1 (x)

∣∣ = 1 = Jh,2(x)

|M2| =
∣∣Jh2 (x)

∣∣ = 1 + h(x) = Jh,3(x)

|M3| =
∣∣Jh3 (x)

∣∣ = 1 + 2h(x) = Jh,4(x)

...

|Mn−1| =
∣∣Jhn−1(x)

∣∣ = Jh,n(x),

(32)

Another way of relating the nth order h(x)−Jacobsthal polynomial as the
computation of a tridiagonal matrix, may be obtained following the ideas of
[15], where the following result was presented:

Theorem 4.3. Let {xn} be any second order linear sequence, defined recur-
sively as:

xn+1 = Axn +Bxn−1, n ≥ 1,
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with x0 = C, x1 = D. Then, for all n ≥ 0:

xn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

C D 0 0 · · · 0 0
−1 0 B 0 · · · 0 0
0 −1 A B · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · A B
0 0 0 0 · · · −1 A

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

In the case of the h(x)−Jacobsthal polynomials sequence, we have A = 1,
B = h(x), C = 0 and D = 1, and then, a direct application of Theorem 4.3
leads to the following proposition:

Proposition 4.4. For n ≥ 0, we have

Jh,n(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 · · · 0 0
−1 0 h(x) 0 · · · 0 0
0 −1 1 h(x) · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · 1 h(x)
0 0 0 0 · · · −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

4.2 Generating matrix for the h(x)−Jacobsthal-Lucas polynomials

Following the same idea used for the h(x)−Jacobsthal polynomials, in the
case of the h(x)−Jacobsthal-Lucas polynomials, we have p = 2, c0 = h(x) and
c1 = 1 in (27). The associated matrix C(x) is given by:

C = C(x) =

(
0 1

h(x) 1

)
with |C(x)| = −h(x) and C(x) = B(x).
Before the statement of all powers of C(x), we present the following result
which provides us a way to obtain the nth h(x)−Jacobsthal polynomial in
terms of the (n+ 1)th and (n− 1)th h(x)−Jacobsthal-Lucas polynomials.

Lemma 4.5. For all n ≥ 1,

(1 + 4h(x))Jh,n(x) = jh,n+1(x) + h(x)jh,n−1(x). (33)
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Proof. Using the fact that 1 + 4h(x) = (α(x)−β(x))2, h(x) = −α(x)β(x) and
Binet-style formulas, we easily obtain:

(1 + 4h(x))Jh,n(x) = (α(x)− β(x))2
(
αn(x)− βn(x)

α(x)− β(x)

)
= (α(x)− β(x))(αn(x)− βn(x))

= (αn+1(x) + βn+1(x))− α(x)β(x)(αn−1(x) + βn−1(x))

= jh,n+1(x) + h(x)jh,n−1(x).

Using (33), (10) and (11) in the entries of (28), we can conclude the fol-
lowing result.

Proposition 4.6. For all n ≥ 1:

Cn(x) =

 h(x)
(

2jh,n(x)−jh,n−1(x)
1+4h(x)

)
2jh,n+1(x)−jh,n(x)

1+4h(x)

h(x)
(

2jh,n+1(x)−jh,n(x)
1+4h(x)

)
2jh,n+2(x)−jh,n+1(x)

1+4h(x)

 . (34)

Proof. By induction on n:

• Taking n = 1 in (34), straightforward calculations lead to:

C(x) =

 h(x)
(

2jh,1(x)−jh,0(x)
1+4h(x)

)
2jh,2(x)−jh,1(x)

1+4h(x)

h(x)
(

2jh,2(x)−jh,1(x)
1+4h(x)

)
2jh,3(x)−jh,2(x)

1+4h(x)


=

(
0 1

h(x) 1

)
.

Hence (34) holds for n = 1.

• Assume that (34) is true for n. We shall show that (34) will also be true
for (n+ 1).

Cn+1(x) = C(x)Cn(x)

=

(
0 1

h(x) 1

) h(x)
(

2jh,n(x)−jh,n−1(x)
1+4h(x)

)
2jh,n+1(x)−jh,n(x)

1+4h(x)

h(x)
(

2jh,n+1(x)−jh,n(x)
1+4h(x)

)
2jh,n+2(x)−jh,n+1(x)

1+4h(x)


=

 h(x)
(

2jh,n+1(x)−jh,n(x)
1+4h(x)

)
2jh,n+2(x)−jh,n+1(x)

1+4h(x)

h(x)
(

2jh,n+2(x)−jh,n+1(x)
1+4h(x)

)
2jh,n+3(x)−jh,n+2(x)

1+4h(x)

 ,

by (10), and therefore (34) is valid for (n+ 1).
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Using the properties involving the determinants of the matrices C(x) and
Cn(x) and doing some calculations we are able to obtain the generalized
Cassini identity. From |Cn(x)| = |C(x)|n = (−h(x))n we obtain:

(2jh,1(x)− jh,0(x)) (2jh,n+2(x)− jh,n+1(x))− (2jh,n+1(x)− jh,n(x))
2

(1 + 4h(x))2
=

= (−1)n(h(x))n−1

⇔ A

(1 + 4h(x))
= (−1)n(h(x))n−1(1 + 4h(x)),

where

A = (2jh,1(x)− jh,0(x)) (2jh,n+2(x)− jh,n+1(x))− (2jh,n+1(x)− jh,n(x))
2
.

Then it suffices to show that A = −jh,n−1(x)jh,n+1(x) + j2h,n(x). Indeed

A = (2jh,1(x)− jh,0(x)) ((1 + 2h(x))jh,n(x) + h(x)jh,n−1(x))− (2jh,n+1(x)− jh,n(x))
2

= (1 + 4h(x))
(
j2h,n(x)− jh,n(x)jh,n−1(x)− h(x)j2h,n−1(x)

)
= (1 + 4h(x))

(
j2h,n(x)− jh,n−1(x) (jh,n(x) + h(x)jh,n−1(x))

)
= (1 + 4h(x))

(
j2h,n(x)− jh,n−1(x)jh,n+1(x)

)
,

obtaining, in this way an alternative for the derivation of the generalized
Cassini identity.

As we have done in subsection 4.1, next we indicate how the nth order
h(x)−Jacobsthal-Lucas polynomial can be obtained as the determinant of spe-
cial tridiagonal matrices. Following the ideas of Proposition 4.2 it is easy to
obtain the following result whose proof is then omitted.

Proposition 4.7. The (n× n) tridiagonal matrices

jhn(x) =



1 + 2h(x) 1
−h(x) 1 1

−h(x) 1 1
. . .

. . .
. . .

−h(x) 1 1
−h(x) 1


,

satisfy ∣∣jhn−1(x)
∣∣ = jh,n(x),
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that is, the nth h(x)−Jacobsthal-Lucas polynomial may be obtained through the
computation of the determinant of the ((n − 1) × (n − 1)) tridiagonal matrix
jhn−1(x).

Alternatively, we can use Theorem 4.3 with A = 1, B = h(x), C = 2 and
D = 1, to obtain:

Proposition 4.8. For n ≥ 0, we have

jh,n(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 0 · · · 0 0
−1 0 h(x) 0 · · · 0 0
0 −1 1 h(x) · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · 1 h(x)
0 0 0 0 · · · −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

5 Conclusions

Several generalizations of Fibonacci, Lucas, Pell, Jacobsthal, etc., numbers
and polynomials can easily be found in the literature. Here we have con-
sidered an extension of the Jacobsthal and Jacobsthal-Lucas polynomials, by
introducing a general polynomial function h(x) which, in the case h(x) = 2x,
reduces to the classical Jacobsthal and Jacobsthal-Lucas polynomials. For
these classes of generalized polynomials we have provided their ordinary gen-
erating functions and matrices and we have also extended the usual known
identities, as Catalan’s, Cassini’s and d’Ocagne’s identities. As it can be eas-
ily observed, if we consider the particular case h(x) = 2x, all the ordinary
generating functions and matrices and all the usual identities known to be
valid for the classical Jacobsthal polynomials can be recovered.
In the future, we intend to study the circulant matrices associated with these
generalized polynomials.
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through FCT Fundação para a Ciȩncia e a Tecnologia, within the Project
UID/MAT/00013/2013.

References
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