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On the Kolmogorov forward equations within
Caputo and Riemann-Liouville fractions

derivatives

Mohsen Alipour and Dumitru Baleanu

Abstract

In this work, we focus on the fractional versions of the well-known
Kolmogorov forward equations. We consider the problem in two cases.
In case 1, we apply the left Caputo fractional derivatives for α ∈ (0 , 1]
and in case 2, we use the right Riemann-Liouville fractional derivatives
on R+, for α ∈ (1 , +∞). The exact solutions are obtained for the both
cases by Laplace transforms and stable subordinators.

1 Introduction and preliminaries

In the last decades, attention of scientists has been attracted to generaliza-
tions of classical processes and differential equations by the fractional order for
derivatives. For instance, existence and uniqueness of the fractional differen-
tial equations [1], the fractional integro-differential equations [2], the fractional
diffusions [3, 4, 5, 6], the fractional telegraph equation [7] and fractional Pois-
son processes [8, 9, 10, 11]. In this work we consider generalization of the
well-known Kolmogorov forward equations [12] in two cases: in the first case,
the left Caputo fractional derivative is applied and in the second case the right
fractional Riemann-Liouville derivative is used. These models in special cases
reduce to the well-known fractional relaxation equations [13] and discrete ver-
sion of the fractional master equation [14].
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We consider here the fractional Kolmogorov forward equations (FKFE):

dα

dtα
Bαk (t) =

{
−λBα1 (t), k = 1,

−λBαk (t) +
∑k−1
i=1 λbiB

α
k−i(t) , k ∈ {2, 3, . . .}, (1)

for t ≥ 0, α > 0, with initial conditions

Bαk (0) =

{
1 k = 1,
0 k ∈ {2, 3, . . .} , (2)

where λ ∈ R and bi , i ∈ {1, 2, . . .} are the distribution of some com-
pounding random variable with values in i ∈ {1, 2, . . .} and dα

dtα is fractional
derivativ. The exact solutions to (1)-(2) will be obtained for diferent values
of α ∈ (0 ,+∞).

The problem (1)-(2) is analyzed with two the different fractional derivative
operators that be defined as follows (refer [15, 16, 17, 18] to see these definitions
and properties of them):

1. The left Caputo fractional derivative of order α:

C
0 D

α
t f(t) :=

1

Γ (1− α)

∫ t

0

(t− τ)
−α

f ′(τ)dτ, t > 0, α ∈ (0 , 1] .

2. The right Riemann-Liouville fractional derivative on R+ of order α:

RL
t Dα

+∞ f(t) :=
1

Γ (n− α)

(
− d

dt

)n ∫ +∞

t

f(τ)

(τ − t)α−n+1 dτ, t > 0, α ∈ (1 , +∞)

where n = dαe.
Note that, for α = 1, we have C

0 D
α
t = d

dt and RL
t Dα

+∞ = − d
dt .

Remark 1.1. For α = 1, equation (1) reduces to the well-known Kolmogorov
forward equations [10]. For k = 1, the equation (1) coincides with the well-
known fractional relaxation equations [11]. For k > 1, they can be seen as a
discrete version of the fractional master equation [12].

2 Original results

In this section, we use some notations as follows:
i) L [f(t); s] :=

∫∞
0
e−s tf(t) dt.

ii)Eα,β(t) =
∑∞
j=0

tj

Γ(αj+β) , x ∈ R, α, β ∈ C, <(α), <(β) > 0 (The Mittag-

Leffler function).
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Theorem 2.1. The exact solution of the FKFE

C
0 D

α
t B

α
k (t) =

{
−λ1B

α
1 (t), k = 1,

−λBαk (t) +
∑k−1
i=1 λbiB

α
k−i(t) , k ∈ {2, 3, . . .}, (3)

for t > 0, 0 < α ≤ 1 and with initial conditions

Bαk (0) =

{
1 k = 1,
0 k ∈ {2, 3, . . .} , (4)

for λ ∈ R and bi (i = 1, 2, . . .)that are the distribution of some compounding
random variable with values in i ∈ {1, 2, . . .}, is given by

Bαk (t) =


Eα , 1(−λtα) , k = 1∑k−1
r=1

(∑
(i 1 , i 2 , ... , i r) ∈Wk−1

r

(
r

Π
j=1

b ij

))
(λtα)r

r!

(r)

Eα , 1 (−λ tα) ,

k = 2 , 3 , . . .
(5)

where

W k
r =

 (i 1, i 2, . . . , i r)

∣∣∣∣∣∣ ij ∈ {1, 2, . . . k − r + 1} and

r∑
j=1

ij = k

 . (6)

Proof. We use induction method to prove the result (5). We start by k = 1,
so we have

C
0 D

α
t B

α
1 (t) = −λBα1 (t) , Bα1 (0) = 1.

Then, from the Laplace transform

sαL[Bα1 (t); s]− sα−1Bα1 (0) = −λL[Bα1 (t); s] ⇒ L[Bα1 (t); s] =
sα−1

sα + λ
.

Since

L
[
tnαE

(n)
α , 1(−λtα); s

]
=

n!sα−1

(sα + λ)
n+1 , n = 0, 1, . . . , (7)
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we have

Bα1 (t) = Eα , 1(−λ tα) .

For k = 2, equation (3) becomes

C
0 D

α
t B

α
2 (t) = −λBα2 (t) + λb1B

α
1 (t), Bα2 (0) = 0.

The Laplace transform gives

sαL[Bα2 (t); s]− sα−1Bα2 (0) = −λL[Bα2 (t); s] + λb1
sα−1

sα + λ

⇒ L[Bα2 (t); s] =
λb1 s

α−1

(sα + λ)
2 .

So, the inverse Laplace’s Transform applied in (7) give

Bα2 (t) = b1λ t
αE

(1)
α , 1(−λ tα) .

Therefore, the equation (3) is satisfied for k = 2.
For k = 3, equation (3) becomes

C
0 D

α
t B

α
3 (t) = −λBα3 (t) + λb1B

α
2 (t) + λb2B

α
1 (t), Bα3 (0) = 0.

By the Laplace transform, we have

sαL [Bα3 (t); s]− sα−1Bα3 (0) = −λL[Bα3 (t); s] + λb1
λb1 s

α−1

(sα + λ)
2 + λb2

sα−1

(sα + λ)
.

So, we get

L [Bα3 (t); s] =
λ2b21 s

α−1

(sα + λ)
3 +

λb2s
α−1

(sα + λ)
2 .

Now, we apply the inverse Laplace’s Transform with (7), thus

Bα3 (t) = b2λt
αE

(1)
α , 1(−λ tα) + b21

(λtα)
2

2
E

(2)
α , 1(−λ tα) .

By the same way for k = 4, we can write

Bα4 (t) = b3λt
αE

(1)
α , 1(−λ tα)+2b1b2

(λtα)
2

2
E

(2)
α , 1(−λ tα)+b31

(λtα)
3

6
E

(3)
α , 1(−λ tα) .
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So, we have shown that (5) is satisfied for k = 1, 2, 3, 4.
Now, from supposition of induction, we assume the (5) is true for Bαi (t), i ∈
{1, . . . , k − 1} . Then we will prove that (5) holds for Bαk (t).
We apply the Laplace transform on (3) with k ≥ 2 , so we have

sαL[Bαk (t); s]− sα−1Bαk (0) = −λL[Bαk (t); s] + λ

k−1∑
i=1

bi L[Bαk−i(t); s] .

Therefore by (5) and (7) we have

(sα + λ)L [Bαk (t); s]

= λ
∑k−2
i=1 bi

(∑k−i−1
r=1

(∑
(i1, ... , ir)∈Wk−i−1

r

(
r

Π
j=1

bij

))
λrsα−1

(sα+λ)r+1

)
+λbk−1

sα−1

sα+λ .

and

L [Bαk (t); s]

=
∑k−2
i=1 bi

(∑k−i−1
r=1

(∑
(i1, ... , ir)∈Wk−i−1

r

(
r

Π
j=1

bij

))
λr+1sα−1

(sα+λ)r+2

)
+λbk−1

sα−1

(sα+λ)2
.

Now, by reversing of transform (7), the above equation is reduced to:

Bαk (t)

=
∑k−2
i=1 bi

(∑k−i−1
r=1

(∑
(i1, ... , ir)∈Wk−i−1

r

(
r

Π
j=1

bij

))
(λtα)r+1

(r+1)!
E

(r+1)
α , 1 (−λ tα)

)
+λtαbk−1E

(1)
α , 1(−λ tα).

By replacing the first sigma to the second sigma, we have

Bαk (t)

=
∑k−2
r=1

((∑k−r−1
i=1 bi

(∑
(i1, ... , ir)∈Wk−i−1

r

(
r

Π
j=1

bij

)))
(λtα)r+1

(r+1)!
E

(r+1)
α , 1 (−λ tα)

)
+λtαbk−1E

(1)
α , 1(−λ tα).

Note that for r = 1, 2, . . . , k − 2

k−r−1∑
i=1

bi

 ∑
(i1, ... , ir)∈Wk−i−1

r

(
r

Π
j=1

bij

) =
∑

(i1, ... , ir+1)∈Wk−1
r+1

(
r+1

Π
j=1

bij

)
.
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So,

Bαk (t) =
∑k−2
r=1

((∑
(i1, ... , ir+1)∈Wk−1

r+1

(
r+1

Π
j=1

bij

))
(λtα)r+1

(r+1)! E
(r+1)
α , 1 (−λ tα)

)
+λtαbk−1E

(1)
α , 1(−λ tα).

Now, by replacing r + 1 to r we have

Bαk (t) =
∑k−1
r=2

((∑
(i1, ... , ir)∈Wk−1

r

(
r

Π
j=1

bij

))
(λtα)r

r! E
(r)
α , 1(−λ tα)

)
+λtαbk−1E

(1)
α , 1(−λ tα).

Finally, we get the result (5) as follows

Bαk (t) =

k−1∑
r=1

 ∑
(i1, ... , ir)∈Wk−1

r

(
r

Π
j=1

bij

) (λtα)
r

r!
E

(r)
α , 1(−λ tα)

 .

Therefore, the proof is completed.�

Now, we consider bi = (1−ρ)ρi−1 as distribution of compounding random
variable with values in i ∈ {1, 2, . . .}. So, we can see the behaviors of exact
solutions Bαk (t) for the problem (3) and (4) for ρ = 0.5, λ = 0.5, k = 1, 2, 3
and α = 0.7, 0.8, 0.9, 1 in figures 1-3.

Remark 2.1. For α = 1 and by writing B1
k = Bk in Theorem 2.1, the

solution of the following equations

{ d
dtB1(t) = −λB1(t)
d
dtBk(t) = −λBk(t) + λ

∑k−1
i=1 biBk−i(t) , k ∈ {2, 3, . . .}, t > 0 ,

(8)
with

Bk(0) =

{
1 k = 1,
0 k ∈ {2, 3, . . .} , (9)

is given by
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Figure 1: Plot of Bα1 (t) for ρ = 0.5, λ = 0.5 and α = 0.7, 0.8, 0.9, 1.
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Figure 2: Plot of Bα2 (t) for ρ = 0.5, λ = 0.5 and α = 0.7, 0.8, 0.9, 1.
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Figure 3: Plot of Bα3 (t) for ρ = 0.5, λ = 0.5 and α = 0.7, 0.8, 0.9, 1.

Bk(t) =


e−λ t k = 1∑k−1
r=1

(∑
(i 1 , i 2 , ... , i r) ∈Wk−1

r

(
Πr
j=1 b ij

))
(λt)r

r! e−λ t

k ∈ {2, 3, . . .}
(10)

Using the notations of [19], we show the stable subordinator of index α by
Aα(t). Furthermore its inverse (or hitting time) process is defined as
Lα(t) = inf {z |z > 0, Aα(z) > t} for all t ≥ 0.

Theorem 2.2. Let Nα(t) be the process defined as N1 (Hα(t)) , t ≥ 0,

where Hα(t) =

{
Lα(t), α ∈ (0 , 1) ,

A
1
α (t), α ∈ (1 , +∞) ,

and Hα(t) = t for α = 1,

under the assumption that N1 and Hα are independent. Then the problem
(1)-(2) is satisfied by the distribution Bαk (t) = Pr {Nα(t) = k} , k ≥ 1, for any
α > 0.

Proof. By noting that the definitions lα(z, t) and h 1
α

(z, t) ar the densities of

Lα(t) and A
1
α (t), respectively, we have
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Bαk (t) =


∫ +∞

0
Bk(z) lα(z, t)dz, 0 < α ≤ 1,∫ +∞

0
Bk(z)h 1

α
(z, t)dz, α > 1 ,

.

Now, we do the proof in two cases α ∈ (0 , 1] and α ∈ (1 ,+∞ ]. In the first
case, for α ∈ (0 , 1] we define

akr =


1 k = 1, j = 1,(∑

(i 1 , i 2 , ... , i r) ∈Wk−1
r

(
Πr
j=1 b ij

))
λr

r! k ≥ 2,

j = 1, . . . , k,

so the (5) can be reduced Bαk (t) =
∑k
r=1 a

k
r t
αr E

(r)
α,1 (−λtα). Let Fα(ν, t) =∑∞

k=1 ν
kBαk (t) be the probability generating function, then we can write

∫ +∞
0

e−stFα(ν, t)dt =
∫ +∞

0
e−st

∑∞
k=1 ν

kBαk (t)dt

=
∫ +∞

0
e−st

∑∞
k=1 ν

k
∑k
r=1 a

k
r t
αr

(r)

E
α,1

(−λtα)dt

=
∑∞
k=1 ν

k
∑k
r=1 a

k
r

r!sα−1

(sα+λ)r+1 =
∑∞
k=1 ν

ksα−1
∑k
r=1 a

k
r

∫ +∞
0

e−µ(sα+λ)µr dµ

=
∫ +∞

0

(
sα−1e−µs

α∑∞
k=1 ν

k
∑k
r=1 a

k
re
−µλµr ds

)
=
∫ +∞

0
sα−1e−µs

α∑∞
k=1 ν

kB1
k(µ)dµ =

∫ +∞
0

sα−1e−µs
α

F1(ν, µ)dµ

=
∫ +∞

0
e−st

∫ +∞
0

F1(ν, µ)lα(µ, t)dµ dt,

since µα−1e−µs
α

=
∫ +∞

0
e−s tlα(µ, t)dt(see [20]). Thus, we get

Fα(ν, t) =

∫ +∞

0

F1(ν, µ) lα(µ, t)dµ ⇒ Bαk (t) =

∫ +∞

0

B1
k(µ) lα(µ, t)dµ.

In the second case for α ∈ (1 , +∞), we have

Bαk (t) =
∫ +∞

0
Bk(τ)h 1

α
(τ, t)dτ . So, we can write

RL
t Dα

+∞B
α
k (t) =

∫ +∞
0

Bk(τ)RLt Dα
+∞h 1

α
(τ, t)dτ =

∫ +∞
0

Bk(τ) ∂
∂τ h 1

α
(τ, t)dτ

=

[
Bk(τ)h 1

α
(τ, t)

]+∞

z=0

−
∫ +∞

0
d
dτBk(τ) h 1

α
(τ, t)dτ

= −
∫ +∞

0

(
−λBk(τ) + λ

∑k−1
i=1 biBk−i(τ)

)
h 1
α

(τ, t)dτ

= λ
∫ +∞

0
Bk(τ) h 1

α
(τ, t)dτ − λ

∑k−1
i=1

∫ +∞
0

biBk−i(τ)h 1
α

(τ, t)dτ

= λBαk (t)− λ
∑k−1
i=1 biBk−i(t).
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From [21], we have lim
τ→∞

h 1
α

(τ, t) = 0. Also the following equation govern on

the law of A
1
ν (t):

RL
t Dα

+∞h 1
α

(τ, t) =
∂

∂τ
h 1
α

(τ, t), τ, t > 0 , α ∈ (1 , +∞) ,

with 
h 1
α

(0, t) = 0,

h 1
α

(τ, 0) = δ(τ).

In [22] and [23], this result is proved for α = n ∈ N and α > 1, respectively.
So, since dα

dtα := −RLt Dα
+∞ for α ∈ (1 ,+∞), the proof is complete .�

Now, we focus on the exact solution to (1)-(2) for α ∈ (1 , +∞).

Theorem 2.3. The exact solution of FKFE (1)-(2) for α ∈ (1 , +∞) is

Bαk (t) =


e−tλ

1
α k = 1,∑k−1

r=1

(∑
(i 1 , i 2 , ... , i r) ∈Wk−1

r

(
r

Π
j=1

b ij

))
λr

r! (−1)r dr

dλr

(
e−tλ

1
α

)
k ≥ 2.

Proof. by Theorem 2.2 and (10) for α ∈ (1 , +∞), we obtain

Bαk (t) =
∫ +∞

0
B1
k(τ)h 1

α
(τ, t)dτ

=


∫ +∞

0
e−λ zh 1

α
(τ, t)dτ k = 1,∑k−1

r=1

(∑
(i 1 , i 2 , ... , i r) ∈Wk−1

r

(
r

Π
j=1

b ij

))
λr

r!

∫ +∞
0

e−λ ττ rh 1
α

(τ, t)dτ

k ≥ 2,

=


e−tλ

1
α k = 1,∑k−1

r=1

(∑
(i 1 , i 2 , ... , i r) ∈Wk−1

r

(
r

Π
j=1

b ij

))
λr

r! (−1)r dr

dλr

(
e−tλ

1
α

)
k ≥ 2,
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Figure 4: Plot of Bα1 (t) for ρ = 0.5, λ = 0.5 and α = 1, 1.3, 1.6, 1.9.

because from [8], we know
∫ +∞

0
e−λ τh 1

α
(τ, t) dτ = e−tλ

1
α .

Also since h 1
α

(z, 0) = δ(z), for the initial conditions in (2) we can write:

Bαk (0) =
∫ +∞

0
B1
k(τ)h 1

α
(τ, 0) dτ

= Bk1 (0) =

{
1, k = 1
0, k ∈ {2, 3, . . .} .

�
Similarly, let bi = (1 − ρ)ρi−1 . Then, we show plots of exact solutions

Bαk (t) for the problem (1) and (2) for ρ = 0.5, λ = 0.5, k = 1, 2, 3 and
α = 1, 1.3, 1.6, 1.9 in figures 4-6.

3 Conclusion

In this work, by Laplace transforms and stable subordinators, we have ob-
tained the analytical solutions of fractional Kolmogorov forward equations
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Figure 5: Plot of Bα2 (t) for ρ = 0.5, λ = 0.5 and α = 1, 1.3, 1.6, 1.9.

B3
Α HtL

Α = 1.3

Α = 1

Α = 1.6

Α = 1.9

0 5 10 15 20

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

t

Figure 6: Plot of Bα3 (t) for ρ = 0.5, λ = 0.5 and α = 1, 1.3, 1.6, 1.9.
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with the left Caputo fractional derivative for α ∈ (0 , 1] and the right Riemann-
Liouville fractional derivative on R+ for α ∈ (1 , +∞). These problems cover
the well-known Kolmogorov forward equations, fractional relaxation equations
and discrete version of the fractional master equation.
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