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Abstract
In this work, we focus on the fractional versions of the well-known
Kolmogorov forward equations. We consider the problem in two cases.
In case 1, we apply the left Caputo fractional derivatives for a € (0, 1]
and in case 2, we use the right Riemann-Liouville fractional derivatives
on Ry, for o € (1, +00). The exact solutions are obtained for the both
cases by Laplace transforms and stable subordinators.

1 Introduction and preliminaries

In the last decades, attention of scientists has been attracted to generaliza-
tions of classical processes and differential equations by the fractional order for
derivatives. For instance, existence and uniqueness of the fractional differen-
tial equations [1], the fractional integro-differential equations [2], the fractional
diffusions [3, 4, 5, 6], the fractional telegraph equation [7] and fractional Pois-
son processes [8, 9, 10, 11]. In this work we consider generalization of the
well-known Kolmogorov forward equations [12] in two cases: in the first case,
the left Caputo fractional derivative is applied and in the second case the right
fractional Riemann-Liouville derivative is used. These models in special cases
reduce to the well-known fractional relaxation equations [13] and discrete ver-
sion of the fractional master equation [14].
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We consider here the fractional Kolmogorov forward equations (FKFE):

e CABY(1), k=1,
L Bo) = - 1
gt Ok () { ABRO)+YEIABEL 0, kef2s.. ) W

for t > 0, a > 0, with initial conditions

B’?(O):{cl) fe (35, @)

where A € R and b;, i € {1,2,...} are the distribution of some com-
pounding random variable with values in ¢ € {1,2,...} and % is fractional
derivativ. The exact solutions to (1)-(2) will be obtained for diferent values
of v € (0,+00).

The problem (1)-(2) is analyzed with two the different fractional derivative
operators that be defined as follows (refer [15, 16, 17, 18] to see these definitions
and properties of them):

1. The left Caputo fractional derivative of order «:

ng‘ f@) = 1 /t (t—71)""f'(r)dr, t>0, a€(0,1].

'(l-a)/y

2. The right Riemann-Liouville fractional derivative on R, of order o:

a 1 d\" [T f(r)
fLD+°°f(t)'_F(noz)<_dt> /t Wdﬂt>0,a€(l,+oo)

where n = [a].
Note that, for a = 1, we have § D¢ = % and 'LDS = —%.

Remark 1.1. For a = 1, equation (1) reduces to the well-known Kolmogorov
forward equations [10]. For k = 1, the equation (1) coincides with the well-
known fractional relaxation equations [11]. For k > 1, they can be seen as a
discrete version of the fractional master equation [12].

2 Original results

In this section, we use some notations as follows:

i) L[f(t);s]:= [ e ' f(t)dt.

i) Ea,p(t) = 252 F(%‘JHJ)’ r€eR, a,feC, R(a), R(B) > 0 (The Mittag-
Leffler function).
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Theorem 2.1. The exact solution of the FKFE
—A\1 B (t) k=1
C Ha pa 101 ) 5
DB (t) = _ 3
0 Dy B (1) { “AB() + S AnBY (1), ke{2,3,...}, 3)
for t > 0, 0 < a <1 and with initial conditions

o ={y g5y g

for A € R and b; (i = 1,2,...)that are the distribution of some compounding
random variable with values in ¢ € {1,2,...}, is given by

Eq . 1(=At9), k=1
T ayr (7)
oy k—1 (At™)
Bk(t) Zr:l (Z(il,ig,...,ir)EWfl (]Elb“)) TEa,l(_)\tO‘)?
k=2,3,...
(5)
where
W =S (i1, i, ..., ip) |i; €{1,2,...k—=r+1} and » ij=k . (6)
j=1

Proof. We use induction method to prove the result (5). We start by k = 1,
so we have

§DFBY(t) = —AB{(t), B{(0)=1.

Then, from the Laplace transform

a—1
s*LIBY (1):s] = 5" BY(0) = ~AL[BY ():s] = LIBY(1):s] = o -
Since
!sa—l
LB (catv)s| = —25 __ p=o0,1,..., 7
[P B s = ™)
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we have
Bi(t) = Eq 1(—AtY).
For k = 2, equation (3) becomes
6 D B3 (t) = =AB3 (1) + M Bf'(t),  B3(0) =0.

The Laplace transform gives

Safl
SUL[B3 (1) s] = * 71 B3 (0) = —AL[B3 (t); s] + Ab1 7 Y
Aby se—1
= L[BS(t):s] = 22—
(B3 (t); 5] 1)

So, the inverse Laplace’s Transform applied in (7) give

By (t) = biAE (-2 t9).

Therefore, the equation (3) is satisfied for k = 2.
For k = 3, equation (3) becomes

SDXBS(t) = —ABS(t) + by B (t) + \by B(t), B$(0) = 0.

By the Laplace transform, we have

Aby s@71 sl

(s* 4+ X) Y+ N

s“L[BS(t); s] — s* 1 BS(0) = —AL[BS(t); ] + Aby

So, we get
NS Abgse Tt
(s2+ 07 (s A)7

Now, we apply the inverse Laplace’s Transform with (7), thus

L[Bg(t); s]

(A)?

Bg(t) = byMOEL (A1) + b2 ES) (A1),

By the same way for k = 4, we can write

(At)”
2

)3
BE(t) = byMOEL) | (— A 1%)+2b, by Ef}l(fua)wi’( 6) EY (—At%).



ON THE KOLMOGOROV FORWARD EQUATIONS WITHIN CAPUTO AND
RIEMANN-LIOUVILE FRACTIONAL DERIVATIVE 9

So, we have shown that (5) is satisfied for k =1, 2, 3, 4.

Now, from supposition of induction, we assume the (5) is true for B (t), i €
{1, ..., k—1}. Then we will prove that (5) holds for By (¢).

We apply the Laplace transform on (3) with k£ > 2, so we have

k—1
S*L[BR(t); 8] — s* ' B¥(0) = —AL[BZ(t); s] + )\Z b; L[By_;(t); s].

i=1
Therefore by (5) and (7) we have
(s +X) L[B(t); 8]
ARy (R Toh ) ) st
o (2 (B yewsees () )

+Abg— 1s:+;
and
LB (t); s]
=3 b <Zk o (Z(u Jiy) € Wh—iT1 (7-15[1 bif)) m>
b . |

Now, by reversing of transform (7), the above equation is reduced to:

By (1)

ko2 k—i—1 Y ()1 G o
=iy bi (Z <Z(11 Lir)ewkTiTl (J,l;[lbij)> T Ba 1 (AL ))
+At@bk,1Eg?l(—Ata).

By replacing the first sigma to the second sigma, we have

Bi(t)

k-2 k—r—1 T (At (1) a
=2 (20 (S e (f))) SR o)
b B (—A29).

Note that for r =1,2,...,k —2

k—r—1

Yol X (fw))- X (i)

(i1, i) EWFTTH (i1, o s ipp1) € WS
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So,

o k—2 r+1 Ayl ral o
BR(t) =3, ((Z(il,“.,irﬂ)ewﬁf (H bij)) ((:+)1)1 Ea,+1 )(_/\t ))

j=1
A B (A1),

Now, by replacing r 4+ 1 to r we have

Bg(t) = 25;21 ((E(il,..‘,ir)ewf‘l ( 1bij>) ()\i!) EEJ)l(—)\tOL)>

A B (A1),

?,’:l*s

Finally, we get the result (5) as follows

k

mo-> ([ = (

r=1 (i1, e sir) EWET!

1=

z%> A B0 (i)

r!

Therefore, the proof is completed.[]

Now, we consider b; = (1 —p)p‘~! as distribution of compounding random
variable with values in ¢ € {1,2,...}. So, we can see the behaviors of exact
solutions By (t) for the problem (3) and (4) for p = 0.5, A =05, k=1, 2,3
and a = 0.7, 0.8, 0.9, 1 in figures 1-3.

Remark 2.1. For « = 1 and by writing B = By in Theorem 2.1, the
solution of the following equations

{ FB1(t) = =By (1) -
c(litBk(t) = _)‘Bk(t) + )‘Zf;f bin_i(t) y ke {2, 3, .. .}, ’
(8)
with
Bﬁm:{é :;éjw}’ (9)

is given by
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Figure 2: Plot of B3 (¢t) for p = 0.5, A = 0.5 and o = 0.7, 0.8, 0.9, 1.
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Figure 3: Plot of BS (¢) for p = 0.5, A = 0.5 and o = 0.7, 0.8, 0.9, 1.

e At k=1
k-1 r )T
By, (t) = Dot (Z(il,ig,.‘.,i,.) ewpr? (szlbij>) %6 A (10)
ke{23,...}

Using the notations of [19], we show the stable subordinator of index a by
A%(t). Furthermore its inverse (or hitting time) process is defined as
Lo(t) =inf{z]z >0, A*(z) >t} for all t > 0.

Theorem 2.2. Let N, (t) be the process defined as Ny (H,(t)), ¢ >0,
Le(t), ae(0,1),

1
Aa(t), a€ (1, +00),
under the assumption that N; and H, are independent. Then the problem
(1)-(2) is satisfied by the distribution By (t) = Pr{N,(t) = k}, k > 1, for any
a>0.

where H,(t) = and H,(t) =t for a = 1,

Proof. By noting that the definitions [,(z,t) and h1 (z,t) ar the densities of

[e%

1
L2(t) and A« (t), respectively, we have
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0+O° By(2)lo(z,t)dz, 0<a< 1,

B ={
o DBr(z)hi(zt)dz, a>1,
Now, we do the proof in two cases o € (0, 1] and « € (1,4o00]. In the first
case, for a € (0, 1] we define

1 k=1, j:l

k _

ar = (Zm,z‘z,...,z‘r)ewf*l ( j=10i )) wook22
j=1,...k,

so the (5) can be reduced By (t) = Zf Lakter gy ( At%). Let Fy(v,t) =
> re, V¥ Bg(t) be the probability generating functlon, then we can write

fo*“’ SUFN (v t)dt = [ e ST VR B (bt

- 0 _StZ k=1 vk Zr 1 ftmj)(_)‘ta)dt

= h w’“Er 1 rﬁw D opey Vi 1Zr ,ay +Oo€ RGNy dy
= 0+OO arlemmst 3 1’/er pare rds)

= +oosa 1o—ns® Zk 1ka( dM:fo g0~ 1g—nus® Fy (v, p)dp

= e E (v D,

since ,u"_le_”sa 0+°° e %o (1, t)dt(see [20]). Thus, we get

+oo

o0
Fualvt) = /0 By ) o O = B = [ BRG Lo tdp

In the second case for o € (1, +00), we have
B (t) = 0+°o By(t)h1(1,t)dr. So, we can write

RLDY B (t) = [F° Bi(r) FE DS oha (r.t)dr = [7°° Byu(r) Zhy (7, t)dr

o0 *
= [Bk(T) h (T, t)} . — f0+°° %Bk(T hé(T, t)dr
=l ( AB,(7) + A YT biB () hiw)dT
—)\f h1(7 t)dT—/\E fooo b;B,,_;(T)h1 (7, t)dr

= ABp(t) - AZ’“ | 0By, (b).



ON THE KOLMOGOROV FORWARD EQUATIONS WITHIN CAPUTO AND
RIEMANN-LIOUVILE FRACTIONAL DERIVATIVE 14

From [21], we have lim hi(7,t) = 0. Also the following equation govern on

T—00 o
the law of Av ():
RLDa h _ 0 h
t +oo l(Tat)_aiT 1(7,1), t>0, a€(l, +oo),

with

h1(0,1) =0,

Q=

hi(1,0) =0(7).

In [22] and [23], this result is proved for « = n € N and « > 1, respectively.
So, since C‘l% = —fLDg  for a € (1,+00), the proof is complete .[J

Q=

Now, we focus on the exact solution to (1)-(2) for « € (1, +00).

Theorem 2.3. The exact solution of FKFE (1)-(2) for a € (1, +00) is

1

e—the k=1,
1
X)) = k—1 s " rd" —tAa
Bi(®) pI (Z(il,ig,...,ir) cewp1 (J.l_leij)) %(—1) dcf\r (e ” )
k> 2.

Proof. by Theorem 2.2 and (10) for a € (1, +00), we obtain

B(t) = [ BL(r) by (1, t)dr

1
Jo ™ e ha (rtydr k=1,
= k— L rortoo _ar g
Zr:ll (Z(il,izﬁ...,ir) ewk? (jH1b”>> )\Tr o ¢ ATT ha(r,t)dr
- e

k>2,

1
e"the k=1,

1
= k—1 i " r_d" - E
ZT:1 (Z(il ims i) eWE <jl;[1bij>) )7\7!(_1) ddA'r (e tA )

k> 2,
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Figure 4: Plot of B{(¢) for p=0.5, A=0.5 and « =1, 1.3, 1.6, 1.9.

1
because from [8], we know f0+°o e AThy(r,t)dr = e .

Also since h 1 (z,0) = d(z), for the initial conditions in (2) we can write:

B(0) = [7° Bi(r)h1 (1,0) dr

O
Similarly, let b; = (1 — p)p'~!. Then, we show plots of exact solutions
By (t) for the problem (1) and (2) for p = 0.5, A = 0.5, k = 1, 2, 3 and

a=1,1.3,1.6, 1.9 in figures 4-6.

3 Conclusion

In this work, by Laplace transforms and stable subordinators, we have ob-
tained the analytical solutions of fractional Kolmogorov forward equations
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Figure 5: Plot of BS(t) for p=0.5, A=0.5 and « =1, 1.3, 1.6, 1.9.
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Figure 6: Plot of B (t) for p=0.5, A=0.5 and « =1, 1.3, 1.6, 1.9.
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with the left Caputo fractional derivative for & € (0, 1] and the right Riemann-
Liouville fractional derivative on R, for a € (1, 4+00). These problems cover
the well-known Kolmogorov forward equations, fractional relaxation equations
and discrete version of the fractional master equation.
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