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A Liouville type theorem for a class of
anisotropic equations

L. Barbu and C. Enache

Abstract

In this paper we are dealing with entire solutions of a general class
of anisotropic equations. Under some appropriate conditions on the
data, we show that the corresponding equations cannot have non-trivial
positive solutions bounded from above.

1 Introduction

The classical Liouville Theorem states that any harmonic function on the
whole Euclidian space RN , N ≥ 2, which is bounded from one side, must
be identically constant. Nowadays, it is well known that this property is
not a prerogative of harmonic functions, since it is also shared by bounded
(from below and/or above) entire solutions to more general elliptic partial
differential equations (we refer the reader to the survey paper of A. Farina
[7]). Some of these Liouville type results are obtained by using the maximum
principle, which is the best tool employed to get a priori pointwise estimates
on the gradient of the solutions (see, for instance, the seminal papers of L.A.
Peletier and J. Serrin [13], B. Gidas and J. Spruck [10], L. Modica [12] and the
extensions known to these results). In this paper, adapting an idea from the
works of L. Modica [12] and L.A. Caffarelli, N. Garofalo and F. Segala [1], we
are going to employ again the maximum principle to establish a new Liouville
type theorem for entire solutions of a general class of anisotropic equations.
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Let p > 1 be a real constant and F : RN → [0,∞), N ≥ 2, be a homoge-
neous function of degree 1, with the following properties:

F ∈ C3,α
loc

(
RN� {0}

)
, with α ∈ (0, 1) ,

F (ξ) > 0 for all ξ ∈ RN� {0} ,

Hess (F p) is positive definite in RN� {0} .

(1.1)

Obviously, we also have F (0) = 0, since F is homogeneous and defined at the
origin. Let us introduce the anisotropic p-Laplace operator, defined as follows:

Qu :=

N∑
i=1

∂

∂xi

[
F p−1(∇u)Fξi(∇u)

]
. (1.2)

We immediately remark the followings: when F (ξ) = |ξ|, Q is the classical p-
Laplace operator (see P. Lindqvist [11]), while when p = 2, Q is the anisotropic
operator, also known as the Finsler-Laplace operator (see V. Ferone and B.
Kawohl [9]). In this paper we investigate the following class of anisotropic
equations:

Qu+ f(u) = 0 in RN , (1.3)

where the nonlinearity f is a real differentiable function which satisfies

f ′ (t) ≤


(p− 1)

N + 1

N − p
f(t)

t
when 1 < p < N,

L
f(t)

t
when p ≥ N,

for any t > 0, (1.4)

while L is a nonnegative real constant.

The main result of this paper states:

Theorem 1.1. Assume that u (x) ∈ L∞(RN )
⋂
W 1,p
loc (RN ) is a weak solution

of equation (1.3), such that inf
RN

u (x) > 0. Then u (x) must be identically

constant. As a consequence, if f (t) has no positive root, then (1.3) has no
weak solution u (x) ∈ L∞(RN ) ∩W 1,p

loc (RN ), with inf
RN

u (x) > 0.

We note here that L. D’Ambrosio and E. Mitidieri have also investigated
recently in [3], [4] and [5] some interesting links between Liouville type the-
orems and the existence of uniform bounds of solutions of some nonlinear
elliptic pde’s. The operator studied in our paper and their generalizations are
not explicitly studied in their papers, but their approach may be employed to
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get a similar Liouville type result under the following condition, which looks
different than (1.4):

lim sup
t→0+

f (t)

t
N(p−1)
N−p

> 0 (possibly ∞), when N > p. (f0)

However, since the solution is assumed to be bounded away from 0, their
results still may be employed to get a result similar to Theorem 1 (see Section
4, for more details).

The main ingredients of the proof are a maximum principle for an appro-
priate functional combination of u (x) and ∇u (x), i.e. a kind of P -function
in the sense of L.E. Payne (see the book of R. Sperb [15]), the translation
invariance of equation (1.3) and some well-known C1,α a priori estimates.

The outline of the paper is as follows. In Section 2 we establish a strong
maximum principle for a P -function of the form F p(∇u(x))/u (x)

β
, with β

to be appropriately chosen, while in Section 3 this new maximum principle is
employed to prove Theorem 1.

For convenience, notice that throughout this paper the comma is used
to indicate differentiation and the summation from 1 to N is understood on
repeated indices. Moreover, we adopt the following notations:

F := F (∇u),

Fi := Fξi =
∂F

∂ξi
for i ∈ {1, ..., N} ,

aij(∇u)(x) :=
∂2

∂ξi∂ξj

(
1

p
F p(∇u)

)
(x)

= F p−1Fij + (p− 1)F p−2FiFj ,

aijk(∇u)(x) :=
∂3

∂ξi∂ξj∂ξk

(
1

p
F p(∇u)

)
(x) for i, j, k ∈ {1, ..., N} .

(1.5)

2 A maximum principle for an appropriate P-function

In this section we are going to establish a strong maximum principle (see the
book of M. H. Protter and H.F. Weinberger [14]) for the following appropriate
P-function

P (u;x) :=
F p(∇u(x))

uβ(x)
, (2.1)
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where u (x) ∈W 1,p
loc (RN ) is a weak solution to equation (1.3), while

β :=


p
N − 1

N − p
when 1 < p < N,

L
p

p− 1

N − 1

N + 1
when p ≥ N.

(2.2)

We have:

Theorem 2.1. Suppose that the assumptions of Theorem 1.1 are satisfied.
Let Ω ⊂ RN , N ≥ 2, be a bounded domain and assume in addition that
inf
Ω
|∇u (x)| > 0. If there exists x0 ∈ Ω such that

P (u;x0) = sup
x∈Ω

P (u;x), (2.3)

then P (u; ·) is identically constant in Ω.

For the proof of Theorem 2.1, the following two lemmas will be very useful:

Lemma 2.2. If F ∈ C3
(
RN� {0}

)
is a positive homegenous function of

degree 1, then we have

Fξi(ξ)ξi = F (ξ),

Fξiξj (ξ)ξi = 0,

Fijk (ξ) ξi = −Fjk (ξ) ,

for any ξ ∈ RN� {0} . (2.4)

For the proof of Lemma 2.2 we refer the reader to A. Farina and E.
Valdinoci [8] (Lemma 3, Appendix).

Lemma 2.3. Assume that u (x) is of class C2 at the points where ∇u 6= 0.
Then, at such points, we have

aijakluikujl ≥
(aijuij)

2

N
+

N

N − 1

[aijuij
N

− (p− 1)F p−2FiFjuij

]2
. (2.5)

For a proof of Lemma 2.3, in the case p = 2, we refer the reader to G. Wang
and C. Xia [16]. Using similar arguments one may easily prove inequality (2.5)
for an arbitrary p.

We are now going to prove Theorem 2.1. The main idea of the proof is the
construction of an elliptic second order differential inequality for the auxiliary
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function P , introduced in (2.1). The conclusion of the theorem will then follow
immediately, as a direct consequence of Hopf’s first maximum principle (see
R. Sperbce [15]).

First of all, let us remark that, since Hess (F p) is positive definite on
RN� {0}, the anisotropic p-Laplace operator Q is uniformly elliptic on RN \C,
where C := {x ∈ RN | ∇u(x) = 0}. Moreover, since F ∈ C3,α

loc

(
RN� {0}

)
,

Proposition 3.2 from M. Cozzi-A.Farina-E.Valdinoci [2] implies that a weak
solution u ∈W 1,p

loc (RN ) to equation (1.3) is of class C3 on RN \ C . Therefore,
the partial derivatives of u (x), up to third order, are well defined on RN \ C.

We now compute successively

Pi = pF p−1Fkukiu
−β − βF puiu−β−1, (2.6)

Pij = p(p− 1)F p−2FlFkukiulju
−β + pF p−1Fkluljukiu

−β

+pF p−1Fkukiju
−β − βpF p−1Fkukiuju

−β−1

−βpF p−1Fkukjuiu
−β−1 + β(β + 1)F puiuju

−β−2

−βF puiju−β−1.

(2.7)

Next, making use of notations (1.5), we note that equation (1.3) may be
rewritten as follows

aijuij = [F p−1Fij + (p− 1)F p−2FiFj ]uij = −f. (2.8)

From Lemma 2.2 we also have

Fiui = F,

Fijuj = 0,

Fijkui = −Fjk.

(2.9)

Therefore, making use of (2.7), (2.8) and (2.9), we evaluate

aijPij = p(p− 1)F 2p−3FlFkFijukiulju
−β

+p(p− 1)2F 2p−4FlFkFiFjukiulju
−β

+pF 2p−2FijFkluljukiu
−β

+p(p− 1)F 2p−3FiFjFkluljukiu
−β + pF p−1Fkaijukiju

−β

−2βpF 2p−2FijFkukiu
−β−1uj − 2βp(p− 1)F 2p−3FiFjFkukiu

−β−1uj

+β(β + 1)F 2p−1Fiju
−β−2uiuj

+β(β + 1)(p− 1)F 2p−2FiFju
−β−2uiuj

+βF pu−β−1f.
(2.10)
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On the other hand, from (2.6) one may easily derive the following identities

Fkuki =
Pi

pF p−1
uβ + βF

ui
pu

= βF
ui
pu

+ terms containing Pk, (2.11)

FiFkuki =
PiFi
pF p−1

uβ + β
F 2

pu
= β

F 2

pu
+ terms containing Pk. (2.12)

Moreover, making use of (2.12) in (2.8), we obtain

F p−1Fijuij = −f − β p− 1

p

F p

u
+ terms containing Pk. (2.13)

Differentiating (2.8), we also have

−f ′uk = 2(p− 1)F p−2FilFjulkuij

+(p− 1)F p−2FlFijulkuij + F p−1Fijlulkuij

+(p− 1)(p− 2)F p−3FiFlFjulkuij + aijuijk.

(2.14)

Inserting now aijuijk from (2.14) into (2.10) and making use of (2.11)-(2.12)
we obtain

aijPij = p(p− 1)F 2p−3FlFkFijukiulju
−β

+p(p− 1)2F 2p−4

(
βF 2

pu
+ terms containing Pk

)2

u−β

+pF 2p−2FijFkluljukiu
−β

+p(p− 1)F 2p−3FiFjFkluljukiu
−β − pF pf ′u−β

−p(p− 1)(p− 2)F 2p−4

(
βF 2

pu
+ terms containing Pk

)2

u−β

−p(p− 1)F 2p−3FlFkFijulkuiju
−β

−2p(p− 1)F 2p−3FjFkFilulkuiju
−β

−pF 2p−2

(
βul

F

pu
+ terms containing Pk

)
Fijluiju

−β

−2βp(p− 1)F 2p−2

(
β
F 2

pu
+ terms containing Pk

)
u−β−1

+β(β + 1)(p− 1)F 2pu−β−2 + βF pfu−β−1.
(2.15)
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Moreover, using (2.9) and (2.13) in (2.15), after some simplifications we get

aijPij = pF 2p−2FijFkluljukiu
−β + β2 p− 1

p
F 2pu−β−2

−pF pf ′u−β − (p− 1)βF p
[
−f − β p− 1

p

F p

u

]
u−β−1

+ βF p
[
−f − β p− 1

p

F p

u

]
u−β−1 − 2β2(p− 1)F 2pu−β−2

+β(β + 1)(p− 1)F 2pu−β−2

+βF pfu−β−1 + terms containing Pk

= pF 2p−2FijFkluljukiu
−β + β(p− 1)F 2pu−β−2

[
β
p− 1

p
− β + 1

]
+F pu−β

[
−pf ′ + β (p− 1)

f

u

]
+ terms containing Pk.

(2.16)
Next, making use of (2.8), (2.11) and (2.12), we evaluate separately the term
F 2p−2FijFkluljuki, as follows:

F 2p−2FijFkluljuki =
[
aij − (p− 1)F p−2FiFj

]
×
[
akl − (p− 1)F p−2FkFl

]
uljuki

= aijakluljuki + (p− 1)2F 2p−4

(
β
F 2

pu
+ terms containing Pk

)2

− 2(p− 1)F 2p−4 [FFkl + (p− 1)FkFl]

×
(
β
Ful
pu

+ terms containing Pk

)(
β
Fuk
pu

+ terms containing Pk

)
= aijakluljuki − β2

(
p− 1

p

)2
F 2p

u2
+ terms containing Pk.

(2.17)
Inserting now (2.17) into (2.16), we obtain

aijPij = pu−βaijakluljuki + β(1− β)(p− 1)F 2pu−β−2

+F pu−β
[
−pf ′ + β(p− 1)

f

u

]
+ terms containing Pk.

(2.18)

Next, to evaluate the term aijakluljuki in (2.18), we make use of Lemma 2.3
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and identity (2.12). We thus obtain

aijakluljuki ≥
f2

N
+

N

N − 1

[
f

N
+ β

p− 1

p

F p

u
+ terms containing Pk

]2

=
f2

N − 1
+ 2β

1

N − 1

p− 1

p
F p

f

u

+β2 N

N − 1

(
p− 1

p

)2
F 2p

u2
+ terms containing Pk.

(2.19)
Therefore, inserting (2.19) into (2.18), we obtain

aijPij ≥ p

N − 1

f2

uβ
+
F p

uβ

[
β(p− 1)

N + 1

N − 1

f

u
− pf ′

]
+β2(p− 1)

F 2p

uβ+2

[
1− β N − p

p(N − 1)

]
+ terms containing Pk.

(2.20)

Finally, we analyze separately the case when 1 < p < N , respectively the
case when p ≥ N.

I. The case 1 < p < N :

In this case β = p
N − 1

N − p
, so that we have

1− β N − p
p(N − 1)

= 0. (2.21)

On the other hand, condition (1.4) implies in this case

β(p− 1)
N + 1

N − 1

f

u
− pf ′ ≥ 0. (2.22)

Therefore, making use of (2.21) and (2.22) in (2.20), we are lead to the follow-
ing elliptic second order differential inequality

aijPij + terms containing Pk ≥ 0 in Ω. (2.23)

The conclusion of Theorem 2.1 follows now as a direct consequence of Hopf’s
first maximum principle (see R. Sperb [15]).

II. The case p ≥ N :

In this case β = Lp(N − 1)/(p− 1)(N + 1) ≥ 0, so that we have

1− β N − p
p(N − 1)

≥ 1. (2.24)
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Also, condition (1.4) implies (2.22).
Using (2.24) and (2.22) in (2.20), we see again that P satisfies an elliptic

differential inequality of type (2.23), therefore the proof of Theorem 2.1 is thus
achieved. �

3 The proof of Theorem 1.1

For the proof we adapt an idea employed by L.A. Caffarelli, N. Garofalo and
F. Segala [1] to obtain a different Liouville type theorem (see, also, the recent
works of A. Farina and E. Valdinoci [8], respectively M. Cozzi, A. Farina and
E. Valdinoci [2]).

We first note that u ∈ C1,α
loc (RN ), α ∈ (0, 1) and u ∈ C3 ({∇u 6= 0}) (for

clear proofs of these statements, see Proposition 3.1, Proposition 3.2 and Ap-
pendix A in M. Cozzi-A. Farina-E. Valdinoci [2]). Then we introduce the
following set

Su :=

{
v satisfies (1.3); inf

RN
u (x) ≤ v(x) ≤ sup

RN
u (x)∀x ∈ RN

}
, (3.1)

and remark thus that it is compact in the topology of C1,α
loc (RN ). Now, let us

define
P0 := sup

v ∈ Su
x ∈ RN

P (v;x) <∞. (3.2)

We claim that P0 ≡ 0. From this, Theorem 1.1 follows immediately. To this
end, we argue by contradiction and assume contrariwise that

P0 > 0. (3.3)

By (3.2), there exist two sequences, (vk)k∈N ⊂ Su and (xk)k∈N ⊂ RN , such
that

lim
k→∞

P (vk,xk) = P0 > 0. (3.4)

Let us introduce the following functions

wk(x) := vk(x + xk), k ∈ N. (3.5)

Then, we obviously have

wk ∈ Su, P (vk,xk) = P (wk,0), lim
k→∞

P (vk,xk) = lim
k→∞

P (wk,0) = P0. (3.6)
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Moreover, up to a subsequence, we can suppose that there exists w which
belongs to C1,α

loc (RN )
⋂
Su, such that

lim
k→∞

wk = w and lim
k→∞

P (wk,0) = P (w,0) = P0 > 0. (3.7)

In particular, we have that F (∇w(0)) 6= 0, so that ∇w(0) 6= 0. By continuity,
there exists ρ > 0 such that

inf
Bρ(0)

|∇w (x)| > 0. (3.8)

On the other hand, from the definition of P0, we know that

P (w;x) ≤ P0 = P (w,0) for all x ∈ Bρ(0), (3.9)

so that 0 is a local maximum for P (w, ·) in Bρ(0). Theorem 2.1 then implies
that P (w; ·) is identically constant in Bρ(0). By the continuity of P (w; ·) and
connectedness arguments, we deduce that P (w; ·) is identically constant on
the whole of RN , i.e.

P (w;x) :=
F p(∇w(x))

wβ(x)
≡ P0 > 0 for all x ∈ RN . (3.10)

Now, by the boundedness of w on RN , we must have

inf
RN
|∇w (x)| = 0. (3.11)

Let (yk)k∈N ⊂ RN be a sequence such that |∇w (yk)| → 0 as k → ∞. By
(3.10), we have

F p(∇w(yk))

wβ(yk)
= P0 > 0. (3.12)

Letting k →∞ in (3.12) and taking into account that inf
RN

w (x) > 0, we get

P0 = 0, (3.13)

which contradicts our assumption. Consequently, P0 ≡ 0 on RN , which implies
that

∇u (x) ≡ 0 for all x ∈ RN . (3.14)

The proof of Theorem 1.1 is thus achieved. �
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4 Some final remarks. An alternative approach

Writing Q (u) as div (A (∇u)), one may easily check that Q is a S-p-C operator
(see [3], p. 971) and has the weak Harnack property (see Lemma A.2 in [5]).
Moreover, since we have assumed that the solution is bounded away from 0,
that is 0 < c < u(x) < d < +∞, for some constants c and d, then the only
thing that has a role is the expression of f on the interval [c, d]. Outside this
interval, one may modify the function f so that it satisfies our condition (1.4).
Therefore, results from some recent results of L. D’Ambrosio and E. Mitidieri
(see [3], [4] and [5]) also apply to our problem. More precisely, let us rewrite
condition (1.4) of f as

f ′ (t) ≤ l f(t)

t
for any t ∈ R, (4.1)

where l := (p − 1)(N + 1)/(N − p), when 1 < p < N , and l is a nonnegative
real constant, when p ≥ N . Let us also consider the following three sets

P := {t : f(t) > 0} , Z := {t : f(t) = 0} , N := {t : f(t) < 0} . (4.2)

Then, each of these sets, if not empty, is an interval and

P = (0, β) , Z = [β, γ] , N = (γ,+∞) , (4.3)

with 0 < β ≤ γ ≤ +∞. Indeed, let us assume that f(t0) > 0 and let I be the
maximal interval such that t0 ∈ I and f > 0 on I. We will show that inf I = 0;
in such a case, P would be an interval of the form (0, β). To this end, let us
assume that α := inf I > 0 and let us consider s < τ in I. Integrating (4.1)
from s to τ we get f (τ) ≤ f(s)τ l/sl. Letting s → α, since f (s) → 0 (f is
continuous and I is maximal), we have f (τ) ≤ 0 for all τ ∈ I, contradicting
thus the fact that f(t0) > 0. Analogously, one may prove that N = (γ,+∞),
if N 6= ∅.

Therefore, if u is a weak solution of (1.3), from L. D’Ambrosio and E.
Mitidieri’s works [3], [4], [5] we get that u ≤ γ. On the other hand, since
inf u > 0, from [3] we have u ≥ β so that weak Harnack inequality implies
that u is constant a.e. in RN and u ∈ Z.
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