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Operations on hyperideals in ordered Krasner
hyperrings

S. Omidi, B. Davvaz and P. Corsini

Abstract

In the present paper, we will concentrate our efforts on ordered Kras-
ner hyperrings and investigate some of their related properties. More-
over, we introduce and analyze the notion of interior hyperideal in or-
dered Krasner hyperrings. We also characterize intra-regular ordered
Krasner hyperrings by the properties of these interior hyperideals. Fi-
nally, we give some results on ordered Krasner hyperrings.

1 Introduction

Algebraic hyperstructures are a generalization of classical algebraic structures.
In a classical algebraic structure, the composition of two elements of a set is
again an element of the same set, while in an algebraic hyperstructure, the
composition of two elements is a non-empty subset of the same set. The the-
ory of hyperstructures has been initiated in 1934 by a French mathematician,
Marty [24], during the 8th Congress of Scandinavian Mathematicians. Marty
introduced hypergroups as a generalization of groups. The hyperstructure the-
ory and its applications have been investigated by the contribution of many
mathematicians. The principal notions of hyperstructure theory can be found
in [9, 10, 11, 12, 14, 29].

A semigroup is an algebraic structure consisting of a non-empty set S to-
gether with an associative binary operation. A semigroup (S, ·) is called an
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ordered semigroup [5] if there is a partial order ≤ on S such that a ≤ b implies
x ·a ≤ x ·b and a ·x ≤ b ·x for any a, b, x ∈ S. The notion of interior ideal of an
ordered semigroup has been introduced by Kehayopulu in [20]. Let (S, ·,≤)
be an ordered semigroup. A subsemigroup A of S is called an interior ideal of
S if (1) SAS ⊆ A and (2) If x ∈ A, y ∈ S and y ≤ x, then y ∈ A. In regular
and intra-regular ordered semigroups the concepts of ideals and interior ideals
coincide. Let (S, ·,≤) be an ordered semigroup. A non-empty subset A of S
is called a left (resp. right) ideal of S if (1) SA ⊆ A (resp. AS ⊆ A) and
(2) If x ∈ A and y ∈ S such that y ≤ x, then y ∈ A. Good and Hughes [16]
introduced the notion of bi-ideals of a semigroup as a generalization of left
(right) ideals. We mean by a bi-ideal is a subsemigroup A of a semigroup (S, ·)
such that ASA ⊆ A. Prime bi-ideals, strongly prime bi-ideals and semiprime
bi-ideals in a semigroup were discussed by Shabir and Kanwal in [27]. Kehay-
opulu et al. [21] characterized the intra-regular ordered semigroups in terms
of right ideals and left ideals of ordered semigroups.

The concept of a semihypergroup is a generalization of the concept of a
semigroup. Many authors studied different aspects of semihypergroups. In
[17], Heidari and Davvaz studied a semihypergroup (H, ◦) besides a binary
relation ≤, where ≤ is a partial order relation such that satisfies the mono-
tone conditin. An ordered semihypergroup (S, ◦,≤) is a semihypergroup (S, ◦)
together with a partial order ≤ that is compatible with the hyperoperation,
meaning that for any x, y, z in S,

x ≤ y ⇒ z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z.

Here, z ◦ x ≤ z ◦ y means for any a ∈ z ◦ x there exists b ∈ z ◦ y such that
a ≤ b. The case x ◦ z ≤ y ◦ z is defined similarly. In [6], Changphas and
Davvaz studied some properties of hyperideals in ordered semihypergroups.
Ordered polygroups was introduced in a paper of Bakhshi and Borzooei [4].
The concept of ordering hypergroups introduced by Chvalina [7] as a special
class of hypergroups and studied by many authors, for example, Chvalina [7],
Chvalina and Moucka [8], Davvaz et al. [15], Hoskova [18, 19].

The aim of this paper is to give some results on ordered Krasner hyper-
rings. The structure of the paper is organized as follows: In Section 2, we
discuss some basic concepts of Krasner hyperrings. We recall some elemen-
tary definitions and results concerning Krasner hyperrings, which we need for
development of our paper. The reader is referred to [14] for the notions and
notations of hyperring theory. Section 3 is devoted to characterize the sev-
eral properties of ordered Krasner hyperrings. In Section 4 of this paper, we
introduce interior hyperideals in ordered Krasner hyperrings and investigate
some related properties. Moreover, we consider characterizations of ordered
Krasner hyperrings which are intra-regular. In Section 5, we give some results
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on ordered Krasner hyperrings.

2 Terminology and basic properties

In this section, we provide all the background notations and definitions will
be used throughout this paper.

Definition 2.1. [25] A canonical hypergroup is a non-empty set H endowed
with an additive hyperoperation + : H ×H → P∗(H), satisfying the following
properties:

(1) for any x, y, z ∈ H, x+ (y + z) = (x+ y) + z,

(2) for any x, y ∈ H, x+ y = y + x,

(3) there exists 0 ∈ H such that 0 + x = x, for any x ∈ H,

(4) for every x ∈ H, there exists a unique element x′ ∈ H such that 0 ∈ x+x′

(we shall write −x for x′ and we call it the opposite of x),

(5) z ∈ x + y implies that y ∈ −x + z and x ∈ z − y, that is (H,+) is
reversible.

The following equalities follow easily from the axioms: (i) −(−a) = a; (ii)
a+H = H for all a ∈ H; and (iii) −(a+ b) = −a− b for all a, b ∈ H.

Krasner has studied the notion of hyperfields and hyperring in [22]. Some
authors, namely, Davvaz [13], Nakassis [26], Spartalis [28] and others followed
him. Hyperrings are essentially rings, with approximately modified axioms in
which addition is a hyperoperation. Let us survey some definitions and results
on Krasner hyperrings such that we will apply in the next sections.

Definition 2.2. [22] A Krasner hyperring is an algebraic hyperstructure
(R,+, ·) which satisfies the following axioms:

(1) (R,+) is a canonical hypergroup,

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e.,
x · 0 = 0 · x = 0,

(3) The multiplication is distributive with respect to the hyperoperation +.

We call 0 the zero of the Krasner hyperring (R,+, ·). For x ∈ R, let −x
denote the unique inverse of x in (R,+). Then −(−x) = x, for all x ∈ R. In
addition, (x+y)·(z+w) ⊆ x·z+x·w+y ·z+y ·w, (−x)·y = x·(−y) = −(x·y),
for every x, y, z, w ∈ R.
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A Krasner hyperring R is called commutative (with unit element) if (R, ·)
is a commutative semigroup (with unit element). A Krasner hyperfield is a
Krasner hyperring for which (R − {0}, ·) is a group. A non-empty subset A
of a canonical hypergroup H is called a subcanonical hypergroup of H if A
is a canonical hypergroup under the hyperoperation of H. Let (H,+) be a
canonical hypergroup and A ⊆ H . Then A is a subcanonical hypergroup of
H if and only if x−y ⊆ A for all x, y ∈ A. A subhyperring of a Krasner hyper-
ring (R,+, ·) is a non-empty subset A of R which forms a Krasner hyperring
containing 0 under the hyperoperation + and the operation · on R, that is,
A is a canonical subhypergroup of (R,+) and A · A ⊆ A. Then a non-empty
subset A of R is a subhyperring of (R,+, ·) if and only if, for all x, y ∈ A,
x + y ⊆ A, −x ∈ A and x · y ∈ A. So, a non-empty subset A of R is called a
subhyperring of R if x− y ⊆ A and x · y ∈ A for all x, y ∈ A.

Definition 2.3. [9] A non-empty subset I of a Krasner hyperring (R,+, ·) is
called a left (resp. right) hyperideal of R if (I,+) is a canonical subhypergroup
of (R,+) and for every a ∈ I and r ∈ R, r ·a ∈ I (resp. a ·r ∈ I). A hyperideal
of (R,+, ·) is one which is a left as well as a right hyperideal of R. That is,
x + y ⊆ I and −x ∈ I, for all x, y ∈ I and x · y, y · x ∈ I, for all x ∈ I and
y ∈ R. Every hyperideal (whether left, right, two-sided) is a subhyperring of
R but the converse is not true in general.

Lemma 2.4. [14] A non-empty subset A of a Krasner hyperring R is a left
(resp. right) hyperideal if and only if

(1) a, b ∈ A implies a− b ⊆ A.

(2) a ∈ A, r ∈ R imply r · a ∈ A (resp. a · r ∈ A).

Definition 2.5. [1] A partially ordered ring is a ring (R,+, ·) together with a
partial order ≤ in which ≤ is compatible with the addition and multiplication
of R in the following sense

(1) For all a, b, x ∈ R, a ≤ b implies that a+ x ≤ b+ x,

(2) If a, b, r ∈ R with a ≤ b and 0 ≤ r, then a · r ≤ b · r and r · a ≤ r · b.

3 Operations on hyperideals

In this section, we deal with ordered Krasner hyperrings. Moreover, we study
some aspects of hyperideals of ordered Krasner hyperrings.

Definition 3.1. A hypersructure (R,+, ·,≤) is called an ordered Krasner
hyperring if the following conditions hold:



Operations on hyperideals in ordered Krasner hyperrings 279

(1) (R,+, ·) is a Krasner hyperring.

(2) (R,≤) is a partially ordered set.

(3) For any a, b, c ∈ R, a ≤ b implies a + c ≤ b + c, meaning that for any
x ∈ a+ c, there exists y ∈ b+ c such that x ≤ y.

(4) For any a, b, c ∈ R, a ≤ b and 0 ≤ c implies a · c ≤ b · c and c · a ≤ c · b.

In what follows, we provide some examples of ordered Krasner hyperrings.

Example 1. Every Krasner hyperring induces an ordered Krasner hyperring.
Indeed: Let (R,+, ·) be a Krasner hyperring. Define the order on R by ≤:=
{(x, y) : x = y}. Then (R,+, ·,≤) is an ordered Krasner hyperring.

Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be two ordered Krasner hyperrings.
Then, the direct product of ordered Krasner hyperrings R1 and R2, is an
ordered Krasner hyperring where for all (s1, s2) and (t1, t2) in R1 × R2 we
define

(1) (s1, s2) + (t1, t2) = {(x, y) : x ∈ s1 +1 t1, y ∈ s2 +2 t2},

(2) (s1, s2) · (t1, t2) = (s1 ·1 t1, s2 ·2 t2),

(3) (s1, s2) ≤ (t1, t2) if and only if s1 ≤1 t1 and s2 ≤2 t2.

In the following, we give another example in more detail.

Example 2. A preorder on an arbitrary non-empty set X is a binary relation
on X which is reflexive and transitive. An antisymmetric preorder is said to
be an order. Let ρ be a preorder relation on a Krasner hyperring (R,+, ·). We
say that ρ is stable if for every a, b, x ∈ R, aρb implies a+ xρb+ x, x · aρx · b
and a · xρb · x. Let ρ be a stable preorder on a Krasner hyperring R. We
construct an ordered Krasner hyperring R/ρ = (R/ ∼ρ,⊕,�,≤). We define a
binary relation ∼ρ on R as follows: for every a, b ∈ R, a ∼ρ b⇔ aρb and bρa.
Then, ∼ρ is a congruence relation on R. It can be shown easily that ∼ρ is an
equivalence relation on R. Let x, y, u, v ∈ R such that x ∼ρ y and u ∼ρ v.
Then xρy, yρx, uρv and vρu. Since ρ is a stable preorder on R, it follows that
x ·uρx ·v and x ·vρy ·v. Since ρ is transitive, it follows that x ·uρy ·v. Similarly,
we obtain y ·vρx·u. Thus we have x·u ∼ρ y ·v. Similarly, we get x+u ∼ρ y+v.
Hence ∼ρ is a congruence relation on R. We write [a] for the congruence class
containing a specified element a. Now, let R/ ∼ρ=

{
[a] : a ∈ R

}
be the set

of equivalence classes. The congruence ∼ρ determines a Krasner hyperring
(R/ ∼ρ,⊕,�) with the hyperoperation ⊕ and the binary operation � defined
as follows:

[a]⊕ [b] =
{

[z] : z ∈ a+ b
}
,
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[a]� [b] = [a · b].

The definition of a congruence ensures that ⊕ and � are well-defined. We
define an order relation ≤ on R/ ∼ρ as follows: for any a, b ∈ R, [a] ≤ [b] ⇔
aρb. It is easy to see that (R/ ∼ρ,⊕,�,≤) is an ordered Krasner hyperring.

Definition 3.2. Let (R,+, ·,≤) be an ordered Krasner hyperring. A non-
empty subset I of R is called a hyperideal of R if it satisfies the following
conditions:

(1) (I,+) is a canonical subhypergroup of (R,+);

(2) x · y ∈ I and y · x ∈ I for all x ∈ I and y ∈ R;

(3) When x ∈ I and y ∈ R such that y ≤ x, imply that y ∈ I.

Example 3. Let R = {0, a, b, c} be a set with the hyperaddition ⊕ and the
multiplication � defined as follows:

⊕ 0 a b c
0 0 a b c
a a {0, b} {a, c} b
b b {a, c} {0, b} a
c c b a 0

� 0 a b c
0 0 0 0 0
a 0 a b c
b 0 b b 0
c 0 c 0 c

Then, (R,⊕,�) is a Krasner hyperring [2]. We have (R,⊕,�,≤) is an ordered
Krasner hyperring where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (c, c), (0, b), (c, a)}.

The covering relation and the figure of R are given by:

≺= {(0, b), (c, a)}.

b
c

b
0

babb

It is easy to see that I1 = {0}, I2 = {0, b}, I3 = {0, c}, I4 = {0, b, c} and
I5 = {0, a, b, c} are hyperideals of R.

Lemma 3.3. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then,
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(1) If {Ak : k ∈ Λ} is a family of hyperideals of R, then
⋃
k∈Λ

Ak is a hyper-

ideal of R.

(2) If {Ak : k ∈ Λ} is a family of hyperideals of R, then
⋂
k∈Λ

Ak is a hyper-

ideal of R.

Proof. (1): Since 0 ∈
⋃
k∈Λ

Ak, it follows that
⋃
k∈Λ

Ak 6= ∅. Let a, b ∈
⋃
k∈Λ

Ak.

Then a, b ∈ Ak for some k ∈ Λ. Since Ak is a hyperideal of R, we obtain
a− b ⊆ Ak for some k ∈ Λ. Thus a− b ⊆

⋃
k∈Λ

Ak. Also we have (
⋃
k∈Λ

Ak) ·R =⋃
k∈Λ

Ak · R ⊆
⋃
k∈Λ

Ak and R · (
⋃
k∈Λ

Ak) =
⋃
k∈Λ

R · Ak ⊆
⋃
k∈Λ

Ak. So, for each

a ∈
⋃
k∈Λ

Ak and r ∈ R, a · r ∈
⋃
k∈Λ

Ak. Similarly, r · a ∈
⋃
k∈Λ

Ak. Now, let

x ∈
⋃
k∈Λ

Ak, y ∈ R and y ≤ x. Then x ∈ Ak for some k ∈ Λ. Since Ak is

a hyperideal of R, it follows that y ∈ Ak ⊆
⋃
k∈Λ

Ak. Therefore,
⋃
k∈Λ

Ak is a

hyperideal of R, as desired.
(2): Since 0 ∈

⋂
k∈Λ

Ak, it follows that
⋂
k∈Λ

Ak 6= ∅. Let a, b ∈
⋂
k∈Λ

Ak and

r ∈ R. Then a, b ∈ Ak for each k ∈ Λ. By assumption, we obtain a− b ⊆ Ak
for each k ∈ Λ. Thus a− b ⊆

⋂
k∈Λ

Ak. Similarly r · a, a · r ∈
⋂
k∈Λ

Ak. Now, let

x ∈
⋂
k∈Λ

Ak and y ∈ R such that y ≤ x. Then for every k ∈ Λ, y ∈ Ak. Hence

y ∈
⋂
k∈Λ

Ak. Therefore,
⋂
k∈Λ

Ak is a hyperideal of R.

We say that a preorder relation is a relation which satisfies conditions re-
flexivity and transitivity. We continue this section with the following theorem.

Theorem 3.4. Let (R,+, ·,≤) be a preordered Krasner hyperring and ρ be a
strongly regular relation on R. Then, (R/ρ,⊕,�,�) is a preordered ring with
respect to the following hyperoperations on the quotient set R/ρ:

a⊕ b = {c | c ∈ a+ b},

a� b = a · b,

where for all a, b ∈ R/ρ a preorder relation � is defined by:

a � b⇔ ∀a1 ∈ a∃b1 ∈ b such that a1 ≤ b1.

Proof. Since ρ is a strongly regular relation on R, it follows that (R/ρ,⊕,�)
is a ring. First, we show that the binary relation � is a preorder relation
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on R/ρ. Since ≤ is reflexive, it follows that (a, a) ∈≤. So, a � a for every
a ∈ R/ρ. Thus � is reflexive. Now, let a � b and b � c. Then for every
a1 ∈ a there exists b1 ∈ b such that a1 ≤ b1. Since b1 ∈ b � c, there exists
c1 ∈ c such that b1 ≤ c1. So, a � c. Hence � is transitive. Therefore, the
binary relation � is a preorder relation on R/ρ. Now, let a, b, x ∈ R/ρ such
that a � b. If u = x⊕ a, then for every u1 ∈ u there exist x1 ∈ x and a1 ∈ a
such that u1 ∈ x1 +a1. Since a1 ∈ a � b, there exists b1 ∈ b such that a1 ≤ b1.
Hence x1 + a1 ≤ x1 + b1. Thus there exists v1 ∈ x1 + b1 such that u1 ≤ v1.
Hence u = u1 � v1 = x ⊕ b. So, we have x ⊕ a � x ⊕ b. If s = x � a, then
for every s1 ∈ s there exist x1 ∈ x and a1 ∈ a such that s1 = x1 · a1. Since
a1 ∈ a � b, there exists b1 ∈ b such that a1 ≤ b1. Hence x1 · a1 ≤ x1 · b1.
Thus for t1 = x1 · b1, we have s1 ≤ t1. Hence s = s1 � t1 = x� b. Therefore,
(R/ρ,⊕,�,�) is a preordered ring.

Definition 3.5. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be two ordered Kras-
ner hyperrings. The map ϕ : R1 → R2 is called a homomorphism if for all
a, b ∈ R1, the followinging conditions hold:

(1) ϕ(a+1 b) ⊆ ϕ(a) +2 ϕ(b),

(2) ϕ(a ·1 b) = ϕ(a) ·2 ϕ(b),

(3) a ≤1 b implies that ϕ(a) ≤2 ϕ(b).

Also ϕ is called a good (strong) homomorphism if in the previous con-
dition (1), the equality is valid. An isomorphism from (R1,+1, ·1,≤1) into
(R2,+2, ·2,≤2) is a bijective good homomophism from (R1,+1, ·1,≤1) onto
(R2,+2, ·2,≤2). The kernel of ϕ, kerϕ, is defined by kerϕ = {x ∈ R1 | ϕ(x) =
02}, where 02 is the zero of R2.

Theorem 3.6. Let ϕ be a homomorphism from an ordered Krasner hyperring
(R,+, ·,≤) into an ordered Krasner hyperring (T,⊕,�,�). If I is a hyperideal
of T , then ϕ−1(I) = {a ∈ R : ϕ(a) ∈ I} is a hyperideal of R containing kerϕ.

Proof. Since 0 ∈ ϕ−1(I), it follows that ϕ−1(I) 6= ∅. Let x ∈ R. Since ϕ is a
homomorphism and 0 ∈ x− x, we have 0 = ϕ(0) ∈ ϕ(x− x) ⊆ ϕ(x)⊕ ϕ(−x).
So 0 ∈ ϕ(x) ⊕ ϕ(−x). Thus, ϕ(−x) is the inverse of ϕ(x) in the canonical
hypergroup (T,⊕). Since 0 ∈ ϕ(x) ⊕ ϕ(−x), it follows that ϕ(−x) = −ϕ(x).
Now, let a1, a2 ∈ ϕ−1(I). Then ϕ(a1), ϕ(a2) ∈ I. Since I is a hyperideal of T ,
we have ϕ(a1 − a2) ⊆ ϕ(a1)	 ϕ(a2) ⊆ I. Hence a1 − a2 ⊆ ϕ−1(I). Let x ∈ R
and a ∈ ϕ−1(I). Then ϕ(a) ∈ I. Since ϕ is a homomorphism, it follows that
ϕ(x · a) = ϕ(x) � ϕ(a) ∈ I. Thus x · a ∈ ϕ−1(I). Similarly, a · x ∈ ϕ−1(I).
Now, let a ∈ ϕ−1(I) and b ∈ R such that b ≤ a. Then ϕ(a) ∈ I. Since b ≤ a
and ϕ is a homomorphism, we have ϕ(b) � ϕ(a). Since I is a hyperideal of
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T , it follows that ϕ(b) ∈ I. So b ∈ ϕ−1(I). This proves that ϕ−1(I) is a
hyperideal of R, as desired. Moreover, if x ∈ kerϕ, then ϕ(x) = 0 ∈ I. Hence
x ∈ ϕ−1(I). Therefore, kerϕ ⊆ ϕ−1(I).

We continue this section with the following definition.

Definition 3.7. Let I and J be two hyperideals of an ordered Krasner hy-
perring (R,+, ·,≤). The hyperideal quotient is (I : J) = {x ∈ R : x · J ⊆ I}.
The hyperideal quotient (0 : J) is called the annihilator of J and denoted by
Ann(J). The set Annl(x) = {a ∈ R : a · x = 0} is called the left annihilator
of x in R. Similarly, the set Annr(x) = {a ∈ R : x · a = 0} is called the
right annihilator of x in R. In a commutative ordered Krasner hyperring R,
we have Annl(x) = Annr(x). In this case, we denote it by Ann(x).

Lemma 3.8. In Definition 3.7, Ann(x) is a hyperideal of R.

Proof. Since 0 ∈ Ann(x), it follows that Ann(x) 6= ∅. Let a, b ∈ Ann(x).
Then a · x = 0 and b · x = 0. So, we have (a+ b) · x = a · x+ b · x = 0 + 0 = 0.
Thus c · x = 0 fo all c ∈ a + b. Hence a + b ⊆ Ann(x). Also, we have
(−a) · x = −(a · x) = −0 = 0. So, −a ∈ Ann(x). Now, let a ∈ Ann(x) and
r ∈ R. Since a · x = 0, it follows that (r · a) · x = r · (a · x) = r · 0 = 0. So,
we have r · a ∈ Ann(x). Let a ∈ Ann(x), b ∈ R and b ≤ a. Then, we have
b · x ≤ a · x. Since a · x = 0 and {0} is a hyperideal of R, we obtain b · x = 0.
So, b ∈ Ann(x). Therfore, Ann(x) is a hyperideal of R, as desired.

Example 4. In Example 3, Ann(0) = {0, a, b, c}, Ann(a) = {0}, Ann(b) =
{0, c} and Ann(c) = {0, b} which are hyperideals of R.

Theorem 3.9. In Definition 3.7, (I : J) is a hyperideal of R.

Proof. This proof is straightforward.

Definition 3.10. Let (R,+, ·,≤) be an ordered Krasner hyperring (resp.
Krasner hyperring). R is said to be a reduced ordered Krasner hyperring (resp.
reduced Krasner hyperring) if it has no nilpotent elements, i.e., if an = 0 for
a ∈ R and a natural number n, then a = 0. In a reduced ordered Kras-
ner hyperring R, If a · b = 0 for all a, b ∈ R, then b · a = 0. So, we have
Annl(x) = Annr(x). In this case, we denote it by Ann(x).

Remark 1. In Definition 3.7, we can replace the commutative ordered Krasner
hyperring with the reduced ordered Krasner hyperring.
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4 Properties of interior hyperideals in ordered Krasner
hyperrings

In this section, we introduce the notion of interior hyperideals in ordered Kras-
ner hyperrings and investigate some related results. We provide conditions for
an interior hyperideal to be a hyperideal. In particular, we prove that the
concepts of interior hyperideals and hyperideals coincide in the case of regular
(resp. intra-regular) ordered Krasner hyperrings.

Definition 4.1. A non-empty subset A of an ordered Krasner hyperring
(R,+, ·,≤) is called an interior hyperideal of R if the following conditions
hold:

(1) (A,+) is a canonical subhypergroup of (R,+) and A ·A ⊆ A;

(2) R ·A ·R ⊆ A;

(3) When x ∈ A and y ∈ R such that y ≤ x, imply that y ∈ A.

Example 5. Let R = {a, b, c, d, e, f, g, h} be a set with the hyperaddition ⊕
and the multiplication � defined as follows:

⊕ a b c d e f g h
a a b c d e f g h
b b b {a, b, c, d} b f f {e, f, g, h} f
c c {a, b, c, d} c c g {e, f, g, h} g g
d d b c a h f g e
e e f g h {a, e} {b, f} {c, g} {d, h}
f f f {e, f, g, h} f {b, f} {b, f} R {b, f}
g g {e, f, g, h} g g {c, g} R {c, g} {c, g}
h h f g e {d, h} {b, f} {c, g} {a, e}

and
� a b c d e f g h
a a a a a a a a a
b a b c d a b c d
c a c b d a c b d
d a a a a a a a a
e a a a a e e e e
f a b c d e f g h
g a c b d e g f h
h a a a a e e e e
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Then, (R,⊕,�) is a Krasner hyperring. We have (R,⊕,�,≤) is an ordered
Krasner hyperring where the order relation ≤ is defined by:

≤ := {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g),
(h, h), (a, e), (b, f), (c, g), (d, h)}.

The covering relation and the figure of R are given by:

≺ = {(a, e), (b, f), (c, g), (d, h)}.

b a
b e

b b
b f

b c
b g

b d
b h

It is easy to see that {a}, {a, d}, {a, e} {a, b, c, d}, {a, d, e, h} and R are interior
hyperideals of R.

Obviously, every hyperideal of an ordered Krasner hyperring R is an in-
terior hyperideal, but the converse is not true in general, that is, an interior
hyperideal may not be a hyperideal of R.

Example 6. Let R be the set

{(
a 0
b c

)
: a, b, c ∈ Z

}
. We define the binary

hyperoperation ⊕ as: A ⊕ B = {A + B}. Consider the operation � as usual
matrix multiplication. Then, (R,⊕,�) is a Krasner hyperring. Moreover,
(R,⊕,�,≤) is an ordered Krasner hyperring, where A = (aij) ≤ B = (bij)⇔

aij = bij for all 1 6 i, j 6 2. Let A =

{(
a 0
b 0

)
: a, b ∈ Z

}
. It is easy to check

that A is an interior hyperideal of R. Since

(
1 0
0 0

)
�
(

0 1
0 0

)
=

(
0 1
0 0

)
/∈ A,

it follows that A is not a right hyperideal of R. Thus A is not a hyperideal of
R.

Lemma 4.2. Let (R,+, ·,≤) be an ordered Krasner hyperring. If Ak is an
interior hyperideal of R for all k ∈ Λ, then

⋂
k∈Λ

Ak is an interior hyperideal of

R.

Proof. Let {Ak : k ∈ Λ} be a family of interior hyperideals of R and A =⋂
k∈Λ

Ak. Since 0 ∈
⋂
k∈Λ

Ak, it follows that
⋂
k∈Λ

Ak 6= ∅. It is easy to check
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that (A,+) is a canonical subhypergroup of (R,+) and A · A ⊆ A. Now, let
x ∈ R · A · R. Then x = r1 · a · r2 for some r1, r2 ∈ R and a ∈ A. Since each
Ak is an interior hyperideal of R, it follows that x ∈ R · Ak · R ⊆ Ak for all
k ∈ Λ. Thus x ∈ Ak for all k ∈ Λ. Hence x ∈

⋂
k∈Λ

Ak = A. Since x was chosen

arbitrarily, it follows that R ·A ·R ⊆ A. If x ∈ A and y ∈ R such that y ≤ x,
then x ∈ Ak for all k ∈ Λ. Since each Ak is an interior hyperideal of R, it
follows that y ∈ Ak for all k ∈ Λ. Thus we have y ∈

⋂
k∈Λ

Ak = A. Therefore,

A is an interior hyperideal of R.

Theorem 4.3. Let (R,+, ·,≤) and (T,⊕,�,�) be two ordered Krasner hy-
perrings. If ϕ : R→ T is a homomorphism and A is an interior hyperideal of
T , then ϕ−1(A) = {r ∈ R : ϕ(r) ∈ A} is an interior hyperideal of R.

Proof. Since 0 ∈ ϕ−1(A), it follows that ϕ−1(A) 6= ∅. Now, let r1, r2 ∈
ϕ−1(A). Then ϕ(r1), ϕ(r2) ∈ A. Since A is an interior hyperideal of T , we
have ϕ(r1 + r2) ⊆ ϕ(r1) ⊕ ϕ(r2) ⊆ A and ϕ(r1 · r2) = ϕ(r1) � ϕ(r2) ∈ A.
Thus r1 + r2 ⊆ ϕ−1(A) and r1 · r2 ∈ ϕ−1(A). obviously, other properties of
a hyperring hold for ϕ−1(A), since ϕ−1(A) is a subset of R. Let r1, r2 ∈ R
and a ∈ ϕ−1(A). Then ϕ(r1), ϕ(r2) ∈ T and ϕ(a) ∈ A. Since A is an interior
hyperideal of T , it follows that ϕ(r1 · a · r2) = ϕ(r1) � ϕ(a) � ϕ(r2) ∈ A.
So, we have r1 · a · r2 ∈ ϕ−1(A). Hence R · ϕ−1(A) · R ⊆ ϕ−1(A). Now, let
a ∈ ϕ−1(A) and r ∈ R such that r ≤ a. Since ϕ is a homomorphism, it follows
that ϕ(r) � ϕ(a). Since ϕ(a) ∈ A and A is an interior hyperideal of T , we
obtain ϕ(r) ∈ A. So, we have r ∈ ϕ−1(A). Therefore, ϕ−1(A) is an interior
hyperideal of R.

In the following, we provide conditions for an interior hyperideal to be a
hyperideal.

Theorem 4.4. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then,

(1) If R is a regular ordered Krasner hyperring, then every interior hyper-
ideal of R is a hyperideal of R.

(2) If R is an intra-regular ordered Krasner hyperring, then every interior
hyperideal of R is a hyperideal of R.

Proof. (1): Let A be an interior hyperideal of R and a ∈ A. Since R is regular,
there exists x ∈ R such that a ≤ a ·x ·a. Now, let r ∈ R. Since A is an interior
hyperideal of R, it follows that a·r ≤ (a·x·a)·r = (a·x)·a·r ∈ A·A ⊆ A. Since
r was chosen arbitrarily, we have A ·R ⊆ A. Hence A is a right hyperideal of
R. Similarly, we can prove that A is a left hyperideal of R. Therefore, A is a
hyperideal of R.
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(2): Let A be an interior hyperideal of R. Let r ∈ R and a ∈ A. Since R is
intra-regular, there exist x, y ∈ R such that a ≤ x ·a2 ·y. Since A is an interior
hyperideal of R, it follows that a ·r ≤ (x ·a2 ·y) ·r = (x ·a) ·a · (y ·r) ∈ A. Since
r was chosen arbitrarily, we have A ·R ⊆ A. Hence A is a right hyperideal of
R. Similarly, we can prove that A is a left hyperideal of R. Therefore, A is a
hyperideal of R.

As a consequence we obtain the following corollary.

Corollary 4.5. Let (R,+, ·,≤) be a regular (resp. intra-regular) ordered
Krasner hyperring. Then, the following assertions are equivalent:

(1) A is a hyperideal of R.

(2) A is an interior hyperideal of R.

The concepts of regular (resp. intra-regular) ordered Krasner hyperrings
generalize the corresponding concepts of regular (resp. intra-regular) Krasner
hyperrings as each regular (resp. intra-regular) Krasner hyperring endowed
with the order ≤:= {(a, b) : a = b} is a regular (resp. intra-regular) ordered
Krasner hyperring. Let (R,+, ·,≤) be an ordered Krasner hyperring and ∅ 6=
A ⊆ R. Then, (A] is the subset of R defined as follows: (A] = {x ∈ R : x ≤ a
for some a ∈ A}. Let A,B ⊆ R. Then A ⊆ (A], (A](B] ⊆ (AB] and ((A]] =
(A]. An element a of an ordered Krasner hyperring (R,+, ·,≤) is said to be
regular if there exists an element x ∈ R such that a ≤ (a ·x) ·a, i.e., a ∈ (aRa]
for all a ∈ R or A ⊆ (ARA] for all A ⊆ R. An ordered Krasner hyperring
(R,+, ·,≤) is said to be regular if every element of R is regular. An element
a of an ordered Krasner hyperring (R,+, ·,≤) is said to be intra-regular if
there exist x, y ∈ R such that a ≤ x · a2 · y, i.e., a ∈ (Ra2R] for all a ∈ R or
A ⊆ (RA2R] for all A ⊆ R. An ordered Krasner hyperring (R,+, ·,≤) is said
to be intra-regular if every element of R is intra-regular. An ordered Krasner
hyperring (R,+, ·,≤) is called left (resp. right) regular if for every a ∈ R there
exists an element x ∈ R such that a ≤ x · a2 (resp. a ≤ a2 · x). An ordered
Krasner hyperring R is called left (resp. right) regular if all elements of R
are left (resp. right) regular, i.e., a ∈ (Ra2], (resp. a ∈ (a2R]) ∀a ∈ R. or
A ⊆ (RA2], (resp. A ⊆ (A2R]) ∀A ⊆ R. An ordered Krasner hyperring is
called completely regular if it is regular, left regular and right regular.

Asokkumar [3] studied the idempotent elements of Krasner hyperrings.

Definition 4.6. Let (R,+, ·,≤) be an ordered Krasner hyperring (resp. Kras-
ner hyperring). An element x of R is said to be idempotent if {x} = x ·x = x2.
An ordered Krasner hyperring (resp. Krasner hyperring) is called idempo-
tent if every element x of R is an idempotent. An ordered Krasner hyperring
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(resp. Krasner hyperring) is called a Boolean ordered Krasner hyperring (resp.
Boolean Krasner hyperring) if every element x of R is an idempotent.

The following theorem were motivated by the Corollary 4.5.

Theorem 4.7. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then, the
following assertions hold:

(1) If R is a Boolean ordered Krasner hyperring, then every interior hyper-
ideal of R is a hyperideal of R.

(2) If R is left (resp. right) regular, then every interior hyperideal of R is a
hyperideal of R.

Proof. (1): Let R be a Boolean ordered Krasner hyperring and x ∈ R. Then
{x} = x2 = x · x = x2 · x2 = x · x2 · x. Since ≤ is reflexive, it follows that
(x, x) ∈≤. So, (x, x · x2 · x) ∈≤. Thus x ≤ x · x2 · x for every x ∈ R. Hence
R is intra-regular. Hence by Corollary 4.5, every interior hyperideal of R is a
hyperideal of R.

(2): Let R be a left regular ordered Krasner hyperring and x ∈ R. Then
there exists an element y ∈ R such that x ≤ y · x2 ≤ y · (y · x2) · x ∈ Rx2R.
So, R is intra-regular. Hence by Corollary 4.5, every interior hyperideal of R
is a hyperideal of R. Similarly, we can prove that in a right regular ordered
Krasner hyperring R, every interior hyperideal of R is a hyperideal of R.

5 Main results

The concepts of hyperideals, prime hyperideals and semiprime hyperideals of
ordered Krasner hyperrings generalize the corresponding concepts of Krasner
hyperrings. Let (R,+, ·,≤) be an ordered Krasner hyperring. A hyperideal A
of R is called a prime hyperideal of R if for any hyperideals A1, A2 of R such
that A1 ·A2 ⊆ A, we have A1 ⊆ A or A2 ⊆ A. Note that if a hyperideal A of R
is prime, then A 6= R. A hyperideal A of R is called a semiprime hyperideal of
R if for any hyperideal B of R such that B2 ⊆ A, we have B ⊆ A. Note that
every prime hyperideal of R is a semiprime hyperideal of R, but the converse
is not true in general, that is, a semiprime hyperideal may not be a prime
hyperideal of R.

Example 7. (1) In Example 5, {a, b, c, d} and {a, d, e, h} are prime hyper-
ideals of R, but {a}, {a, d} and {a, e} are not prime hyperideals of R.

(2) In Example 3, {0} is not a prime hyperideal of R. Indeed, {0, b}�{0, c} =
{0}, but {0, b} * {0} and {0, c} * {0}.
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(3) In Example 3, {0} is a semiprime hyperideal of R, but is not a prime
hyperideal of R.

(4) In Example 5, {a, d} is a semiprime hyperideal of R, but is not a
prime hyperideal of R. Indeed, {a, b, c, d} � {a, d, e, h} = {a, d}, but
{a, b, c, d} * {a, d} and {a, d, e, h} * {a, d}.

Theorem 5.1. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then, the
following statements are equivalent:

(1) R is intra-regular.

(2) Every interior hyperideal of R is semiprime.

(3) Every hyperideal of R is semiprime.

Proof. (1) ⇒ (2): Assume that (1) holds. Let A be an interior hyperideal
of R and B ⊆ R such that B2 ⊆ A. Since R is intra-regular, we obtain
B ⊆ (RB2R] ⊆ (RAR] ⊆ (A] = A. So, A is semiprime.

(2)⇒ (3): This proof is straightforward.
(3) ⇒ (1): Assume that (3) holds. Let A ⊆ R. It is easy to see that

(RA2R] is a hyperideal of R. By assumption, (RA2R] is semiprime. Since
A4 ⊆ (RA2R], we have A ⊆ (RA2R]. So, R is intra-regular.

Definition 5.2. Let (R,+, ·,≤) be an ordered Krasner hyperring. A subhy-
perring A of R is called a bi-hyperideal of R if A · R · A ⊆ A and (A] ⊆ A.
For every left hyperideal, right hyperideal, hyperideal and bi-hyperideal A of
R, we have (A] = A. A non-zero bi-hyperideal A of R is said to be a min-
imal bi-hyperideal if A does not properly contain any non-zero bi-hyperideal
contained in A.

Theorem 5.3. Let (R,+, ·,≤) and (T,⊕,�,�) be two ordered Krasner hy-
perrings. If ϕ : R→ T is a homomorphism and A is a bi-hyperideal of T , then
ϕ−1(A) = {r ∈ R : ϕ(r) ∈ A} is a bi-hyperideal of R.

Proof. Since 0 ∈ ϕ−1(A), it follows that ϕ−1(A) 6= ∅. Now, let r1, r2 ∈
ϕ−1(A). Then ϕ(r1), ϕ(r2) ∈ A. Since A is a bi-hyperideal of T , we have
ϕ(r1 + r2) ⊆ ϕ(r1) ⊕ ϕ(r2) ⊆ A and ϕ(r1 · r2) = ϕ(r1) � ϕ(r2) ∈ A. Thus
r1 + r2 ⊆ ϕ−1(A) and r1 · r2 ∈ ϕ−1(A). obviously, other properties of a
hyperring hold for ϕ−1(A), since ϕ−1(A) is a subset of R. Let a1, a2 ∈ ϕ−1(A)
and x ∈ R. Then ϕ(a1), ϕ(a2) ∈ A and ϕ(x) ∈ T . Since A is a bi-hyperideal
of T , it follows that ϕ(a1 · x · a2) = ϕ(a1) � ϕ(x) � ϕ(a2) ∈ A. So, we
have a1 · x · a2 ∈ ϕ−1(A). Hence ϕ−1(A) · R · ϕ−1(A) ⊆ ϕ−1(A). Now, let
a ∈ ϕ−1(A) and x ∈ R such that x ≤ a. Since ϕ is a homomorphism, it follows
that ϕ(x) � ϕ(a). Since ϕ(a) ∈ A and A is a bi-hyperideal of T , we obtain
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ϕ(x) ∈ A. Thus we have x ∈ ϕ−1(A). Therefore, ϕ−1(A) is a bi-hyperideal of
R.

Theorem 5.4. Let (R,+, ·,≤) be an ordered Krasner hyperring, having a
non-zero proper bi-hyperideal. Then, every non-zero proper bi-hyperideal of R
is minimal if and only if the intersection of any two distinct non-zero proper
bi-hyperideals is {0}.

Proof. Assume that every non-zero proper bi-hyperideal of R is minimal. Let
A1 and A2 be two distinct non-zero proper bi-hyperideals of R and A1 ∩A2 6=
{0}. It is easy to see that A1 ∩A2 is a bi-hyperideal of R. By hypothesis, A1

and A2 are minimal. Since {0} 6= A1 ∩A2 ⊆ A1 and {0} 6= A1 ∩A2 ⊆ A1, we
obtain A1 = A2; a contradiction. So A1 ∩A2 = {0}, as desired.

Theorem 5.5. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then,

(1) If R is left regular, then the left hyperideals of R are semiprime.

(2) If R is completely regular, then every bi-hyperideal of R is semiprime.

Proof. (1): Let A be a left hyperideal of R and T ⊆ R such that T 2 ⊆ A.
Since R is left regular, we have T ⊆ (RT 2] ⊆ (RA] ⊆ (A] = A. So, A is
semiprime.

(2): Let A be a bi-hyperideal of R. Let T be a bi-hyperideal of R such
that T 2 ⊆ A. Since R is completely regular, we have

T ⊆ (TRT ] ⊆ ((T 2R]R(RT 2]] = ((T 2R](R](RT 2]]
⊆ ((T 2R)R(RT 2)] ⊆ (T 2RT 2].

So, T ⊆ (T 2RT 2] ⊆ (ARA] ⊆ (A] = A. Hence A is a semiprime bi-hyperideal
of R.

Theorem 5.6. Let (R,+, ·,≤) be a regular ordered Krasner hyperring. Then,
the following statements hold:

(1) A ∩K1 ∩K2 ⊆ AK1K2 for every left hyperideals K1,K2 and right hy-
perideal A of R.

(2) B ∩ K1 ∩ K2 ⊆ BK1K2 for every left hyperideals K1,K2 and interior
hyperideal B of R.

(3) C∩K1∩K2 ⊆ CK1K2 for every left hyperideals K1,K2 and bi-hyperideal
C of R.

(4) D∩E ∩K ⊆ DEK for every bi-hyperideal D, interior hyperideal E and
left hyperideal K of R.



Operations on hyperideals in ordered Krasner hyperrings 291

Proof. (1): Let a ∈ A ∩K1 ∩K2. Since R is regular, there exists x ∈ R such
that a ≤ axa. Thus we have a ≤ axa ≤ ax(axa) ∈ (AR)K1RK2 ⊆ AK1K2.
Therefore, we have A ∩K1 ∩K2 ⊆ AK1K2.

(2): Let B be an interior hyperideal of R. By Corollarly 4.5, B is a
hyperideal of R. The rest of this proof is similar to the proof of (1).

(3): Let a ∈ C ∩ K1 ∩ K2. Since R is regular, there exists x ∈ R such
that a ≤ axa. Since C is a bi-hyperideal of R, it follows that a ≤ axa ≤
ax(axa) ≤ axax(axa) ∈ (CRC)RK1RK2 ⊆ CK1K2. Therefore, we have
C ∩K1 ∩K2 ⊆ CK1K2.

(4): By Corollarly 4.5, E is a hyperideal of R. The rest of this proof is
similar to the proof of (3).

At the end of the paper, we prove the following theorem.

Theorem 5.7. Let P be a prime left hyperideal of an ordered Krasner hyper-
ring (R,+, ·,≤). Then, the set (P : a) = {x ∈ R : x · a ∈ P} is a prime left
hyperideal of R, for any a ∈ R \ P .

Proof. Since 0 ∈ (P : a), it follows that (P : a) 6= ∅. Let x, y ∈ (P : a). Then
x · a ∈ P , y · a ∈ P . Thus we have (x+ y) · a = x · a+ y · a ⊆ P and (−x) · a =
−(x · a) ∈ P . So, x + y ⊆ (P : a) and −x ∈ (P : a). Now, let x ∈ (P : a)
and r ∈ R. Since x · a ∈ P , it follows that (r · x) · a = r · (x · a) ∈ R · P ⊆ P .
So, r · x ⊆ (P : a). Let x ∈ (P : a), y ∈ R and y ≤ x. Then x · a ∈ P and
y · a ≤ x · a. Since P is a left hyperideal of R, it follows that y · a ∈ P . So,
y ∈ (P : a). Hence (P : a) is a left hyperideal of R.

Finally, let A and B be any left hyperideals of R such that AB ⊆ (P : a).
Then (AB)a ⊆ P . Since P is a left hyperideal of R, it follows that (P ] = P .
It is easy to see that (Aa] and (Ba] are left hyperideals of R. Thus we have
(Aa] · (Ba] ⊆ (A(aB)a] ⊆ ((AB)a] ⊆ (P ] = P . Since P is a prime left
hyperideal of R, it follows that (Aa] ⊆ P or (Ba] ⊆ P . Thus Aa ⊆ P or
Ba ⊆ P . So, we have A ⊆ (P : a) or B ⊆ (P : a). Therefore, (P : a) is a
prime left hyperideal of R.
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