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Effect of internal state variables in
thermoelasticity of microstretch bodies

Marin Marin and Sorin Vlase

Abstract

First, we formulate the mixed initial boundary value problem in
the theory of thermoelastic microstretch bodies having certain internal
state variables. Then by using some approachable computing techniques
and the known Gronwall’s inequality we will prove that the presence of
internal state variables do not influence the uniqueness of solution of the
mixed problem.

The purpose of the theory of thermo-microstretch elastic solids is to elim-
inate discrepancies between classical elasticity and experiments. This is a
theory of thermoelasticity with microstructure that include intrinsic rotations
and microstructural expansion and contractions.

The classical elasticity failed to present acceptable results when the effects
of material microstructure were known to contribute significantly to the body’s
overall deformations, for example, in the case of granular bodies with large
molecules (e.g. polymers), graphite or human bones.

These cases are becoming increasingly important in the design and man-
ufacture of modern day advanced materials, as small-scale effects become
paramount in the prediction of the overall mechanical behaviour of these ma-
terials.
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Other intended applications of this theory are to composite materials re-
inforced with chopped fibers and various porous materials.

We must outline that the theory of thermo-microstretch elastic solids was
first elaborated by Eringen, [4]. This theory can be useful in the applications
which deal with porous materials as geological materials, solid packed granular
materials and many others.

On the other hand, materials which operate at elevated temperatures will
invarianbly be subjected to heat flow at some time during normal use. Such
heat flow will involve a non-linear temperature distribution which will in-
evitable give rise to thermal stresses. For these reasons, the development,
design and selection of materials for high temperature applications requires
a great deal of care. The role of the pertinent material properties and other
variables which can affect the magnitude of thermal stress must be considered.

The main difficulty of the thermo-microstretch materials is the large num-
ber of the thermoelastic coefficients and, as such, the problem of their deter-
mination in the laboratory. Yet many authors consider that this problem will
be solved in future.

Already, in the isotropic case, when strongly decreases the number of co-
efficients, they are calculated as can be seen in many works due to Eringen [4]
or Iesan and Quintanilla [8].

The present paper must be considered as a first step to a better under-
standing of microstretch and thermal stress in the study of above ennumerated
materials.

Some considerations on the propagation of plane waves in a microstretch
thermoelastic diffusion solid of infinite extent can be find in the paper [9].
The Newton interpolating series proposed in [6] can be used successfully to
approximate the solution of boundary value problems. The impact of initial
mechanical deformation on the propagation of plane waves in a linear elastic
isotropic solid, is shown in [7], while the algorithm proposed in [5] may be
useful in addressing the solutions of mixed initial boundary value problem in
the context of microstretch bodies.

Different considerations are given to the solution of the mixed problem in
thermoelasticity of microstretch bodies as in papers [10]-[15].

Interest to consider the internal state variables as a means to estimate
mechanical properties has grown rapidly in recent years.

The theories of internal state variables in different kind of materials repre-
sent a material length scale and are quite sufficient for a large number of the
solid mechanics applications.

The internal state variables are the smallest possible subset of system vari-
ables that can represent the entire state of the system at any given time. The
minimum number of state variables required to represent a given system, n, is



EFFECT OF INTERNAL STATE VARIABLES IN THERMOELASTICITY OF
MICROSTRETCH BODIES 243

usually equal to the order of the system’s defining differential equation. If the
system is represented in transfer function form, the minimum number of state
variables is equal to the order of the transfer function’s denominator after it
has been reduced to a proper fraction. It is important to understand that
converting a state space realization to a transfer function form may lose some
internal information about the system, and may provide a description of a
system which is stable, when the state-space realization is unstable at certain
points.

The theory of bodies with internal state variables has been first formulated
for the thermo-viscoelastic materials (see, for instance Chirita [3]). Then the
internal state variables has been considered for different kind of materials.

The study [16] of Nachlinger and Nunziato is dedicated to the internal
state variables approach of finite deformations without heat conduction in the
one-dimensional case.

In the paper [17] the authors describe how the so-called Bammann inter-
nal state variable constitutive approach, which has proven highly successful in
modelling deformation processes in metals, can be applied with great benefit
to silicate rocks and other geological materials in modelling their deforma-
tion dynamics. In its essence, the internal state variables theory provides a
constitutive framework to account for changing history states that arise from
inelastic dissipative microstructural evolution of a polycrystalline solid.

A thermodynamically consistent framework is proposed for modeling the
hysteresis of capillarity in partially saturated porous media in the paper [19].

The paper [2] presents the formulation of a constitutive model for amor-
phous thermoplastics using a thermodynamic approach with physically moti-
vated internal state variables. The formulation follows current internal state
variable methodologies used for metals and departs from the spring-dashpot
representation generally used to characterize the mechanical behavior of poly-
mers.

Anand and Gurtin develop in the paper [1] a continuum theory for the
elastic-viscoplastic deformation of amorphous solids such as polymeric and
metallic glasses. Introducing an internal-state variable that represents the
local free-volume associated with certain metastable states, the authors are
able to capture the highly non-linear stress-strain behavior that precedes the
yield-peak and gives rise to post-yield strain softening.

In the study [18], is presented a formulation of state variable based gra-
dient theory to model damage evolution and alleviate numerical instability
associated within the post-bifurcation regime. This proposed theory is de-
veloped using basic microforce balance laws and appropriate state variables
within a consistent thermodynamic framework. The theory provides a strong
coupling and consistent framework to prescribe energy storage and dissipation



EFFECT OF INTERNAL STATE VARIABLES IN THERMOELASTICITY OF
MICROSTRETCH BODIES 244

associated with internal damage.

2. Basic equations

We consider thermoelastic microstretch body with internal state variables
which occupy an open region B of three-dimensional Euclidean space R3, at
time t = 0, in it’s reference configuration.

The boundary of the domain B, denoted by ∂B, is a closed, bounded and
piece-wise smooth surface which allows us the application of the divergence
theorem. A fixed system of rectangular Cartesian axes is used and we adopt the
Cartesian tensor notations. The points in B are denoted by (xi) or (x). The
variable t is the time and t ∈ [0, t0). We shall employ the usual summation over
repeated subscripts while subsripts preceded by a comma denote the partial
differentiation with respect to the spatial argument. Also, we use a superposed
dot to denote the partial differentiation with respect to t. The Latin indices
are understood to range over the integers (1, 2, 3), while the Greek subsripts
have the range 1, 2, ..., n.

In the following we designate by ni the components of the outward unit
normal to the surface ∂B. The closure of the domain B, denoted by B̄, means
B̄ = B ∪ ∂B.

Also, the spatial argument and the time argument of a function will be
ommited when there is no likelihood of confusion.

The behaviour of a thermoelastic microstretch body is characterized by
the following kinematic variables:

ui = ui(x, t), ϕi = ϕi(x, t), (x, t) ∈ B × [0, t0)

where ui are the components of the displacement field and ϕi - the components
of the microrotation vector.

The fundamental system of field equations, in the theory of microstretch
thermoelastic bodies with internal state variables, consists of:

- the equations of motion:

tij, j + %Fi = %üi,

mji, j + εijktjk + %Gi = Iijϕ̈j ; (1)

- the energy equation:

T0η̇ = qi, i + %r; (2)
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- the constitutive equations:

tij = Aijmn εmn +Bmnij γmn −Aij θ + aijα ωα,

mij = Bijmn εmn + Cijmn γmn −Bij θ + bijα ωα,

η = Aij εij +Bij γij − a θ − gα ωα, (3)

qi = Cijk εjk +Dijk γjk + di θ + fiα ωα +Kij θ, j ;

- the geometric equations:

εij = uj, i + εijkϕk, γij = ϕj, i. (4)

The internal state variables are denoted by ξα, α = 1, 2, ..., n, but in the
linear theory, we denote by ωα the internal state variables measured from the
internal state variables ξ0α of the initial state. Also, the temperature θ repre-
sents the difference between the absolute temperature T and the temperature
T0, T0 > 0, of the initial state. Thus we have:

ξα = ξ0α + ωα, T = T0 + θ. (5)

Within the linear approximation, from the entropy production inequality,
it follows (see, for instance, [1]):

ω̇α = fα, (6)

where

fα = gijαεij + hijαγij + pαθ + qαβωβ + riαθ, i. (7)

In the above relations we have used the following notations:
- % - the constant mass density;
- tij , maij - the components of the stress tensors;
- Iij - the coefficients of inertia;
- Fi - the components of body force per unit mass;
- Gi - the components of body couple per unit mass;
- r - the heat supply per unit mass and unit time;
- η - the entropy per unit mass;
- qi - the components of the heat flux;
- εij , γij - the kinematic characteristics of the strain tensors.
The above coefficients Aijmn, Bijmn, ..., Aij , ..., Cijk, ..., gijα, ..., riα are

functions of x and characterize the thermoelastic properties of the material
with internal state variable (the constitutive coefficients). Kij is the conduc-
tivity tensor.
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In the case of a homogeneous medium these quantities are constants. The
constitutive coefficients obey to the following symmetry relations

Aijmn = Amnij , Bijmn = Bmnij , Aij = Aji,

Cijmn = Cmnij , aijα = ajiα, Kij = Kji. (8)

We supplement the above equations with the following initial conditions

ui (xs, 0) = u0i (xs) , u̇i (xs, 0) = u1i (xs) ,

ϕi (xs, 0) = ϕ0
i (xs) , ϕ̇i (xs, 0) = ϕ1

i (xs) , (9)

θ (xs, 0) = θ0 (xs) , ωα (xs, 0) = ω0
α (xs) , (xs) ∈ B

and the prescribed boundary conditions

ui = ũi, on ∂B1 × [0, t0] , ti ≡ tijnj = t̃i, on ∂Bc1 × [0, t0] ,

ϕi = ϕ̃i, on ∂B2 × [0, t0] , mi ≡ mijnj = m̃i, on ∂Bc2 × [0, t0] , (10)

θ = θ̃, on ∂B3 × [0, t0] , q ≡ qini = q̃, on ∂Bc3 × [0, t0] .

In (10) the surfaces ∂B1, ∂B2, ∂B3 and respective complements ∂Bc1, ∂Bc2,
∂Bc3 are subsets of the boundary ∂B which satisfay the relations

∂B1 ∪ ∂Bc1 = ∂B2 ∪ ∂Bc2 = ∂B3 ∪ ∂Bc3 = ∂B

∂B1 ∩ ∂Bc=∂B2 ∩ ∂Bc2 = ∂B3 ∩ ∂Bc3 = ∅

The functions u0i , u
1
i , ϕ

0
i , ϕ

1
i , θ

0 ω0
α, ũi, t̃i, ϕ̃i, m̃i, θ̃ and q̃, used in the

above conditions (9) and (10), are assumed be prescribed in their domain of
definition.

In conclusion, the mixed initial boundary value problem of the thermoelas-
ticity of microstretch bodies with internal variables consists of the equations
(1), (2) and (6), the initial conditions (9) and the boundary conditions (10).

By a solution of this problem we mean an ordered array (ui, ϕi, θ, ωα)
satisfying the Eqns. (1), (2) and (6) and the conditions (9) and (10).

3. Main results

In this section we shall deduce some estimations and then, as a conse-
quence, we obtain in simple manner the uniqueness theorem of the solution of
the above problem.
In order to prove these results, we shall need the following assumptions

- (i) the mass density % is strictly positive, i.e.

% (xs) ≥ %0 > 0, on B;
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- (ii) there exists a positive constant λ1 such that

Iijξiξj ≥ λ1ξiξi, ∀ ξi;

- (iii) the specific heat a from (3)4 is strictly positive, i.e.

a (xs) ≥ a0 > 0, on B;

- (iv) the constitutive tensors Aijmn, Bijmn and Cijmn are positive definite,
in the following sense:∫

B

Aijmn ξij ξmn dv ≥ λ2
∫
B

ξij ξij dv, ∀ ξij∫
B

Bijmn ξij ξmn dv ≥ λ3
∫
B

ξij ξij dv, ∀ ξij∫
B

Cijmn ξij ξmn dv ≥ λ4
∫
B

ξij ξij dv, ∀ ξij

where λ2, λ3 and λ4 are positive constants;
- (v) the symmetric part K̃ij of the thermal conductivity tensor Kij is

positive definite, in the sense that there exists a positive constant µ such that∫
B

K̃ij ξi ξj dv ≥ µ
∫
B

ξi ξi dv, for all vectors ξi.

Consider that our mixed problem has two solutions(
u
(ν)
i , ϕ

(ν)
i , θ(ν), ω(ν)

α

)
, ν = 1, 2

two solutions of our initial boundary value problem.
Because of the linearity of the problem, their difference is also solution of

the problem. We denote by (vi, ψi, ϑ, wα) the differences,

vi = u
(2)
i − u

(1)
i , ψi = ϕ

(2)
i − ϕ

(1)
i , ϑ = θ(2) − θ(1), wα = ω(2)

α − ω(1)
α

In order to prove the desired uniquness theorem, it suffice to prove that
the above considered problem, consists of the equations (1), (2) and (6) and
the conditions (9) and (10), in which

Fi = Gi = r = 0

u0i = u1i = ϕ0
i = ϕ1

i = θ0 = ω0
α = 0

and
ũi = t̃i = ϕ̃i = m̃ij = θ̃ = q̃ = 0
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imply that
vi = ψi = ϑ = wα = 0,

in B × [0, t0], provided that the hypotheses (i) - (v) hold.
So, we have a new problem, let say P0, defined by the following equations

tij, j = %üi,

mij, j + εijktjk = Iijϕ̈j (11)

T0η̇ = qi, i (12)

ω̇α = fα, (13)

with the initial conditions

ui (xs, 0) = 0, u̇i (xs, 0) = 0, ϕi (xs, 0) = 0,

ϕ̇i (xs, 0) = 0, θ (xs, 0) = 0, ωα (xs, 0) = 0, (xs) ∈ B (14)

and the boundary conditions

ui = 0, on ∂B1 × [0, t0] , ti ≡ tijnj = 0, on ∂Bc1 × [0, t0] ,

ϕi = 0, on ∂B2 × [0, t0] , mi ≡ mijnj = 0, on ∂Bc2 × [0, t0] , (15)

θ = 0, on ∂B3 × [0, t0] , q ≡ qini = 0, on ∂Bc3 × [0, t0] .

Together with these equations and conditions we take into account the con-
stitutive relations (3) and (7). In order to prove that the problem P0 admits
the null solution, we will show that the function y(t) defined by

y(t) =

∫
B

(
u̇iu̇i + ϕ̇iϕ̇i + εijεij + γijγij + θ2 + ωαωα

)
dV

vanishes on [0, t0].
To this aim, we first prove some useful estimations.

Theorem 1. If the ordered array (ui, ϕi, θ, ωα) is a solution of the problem
P0, then the following relation holds

1

2

∫
B

(Aijmnεijεmn + 2Bijmnεijγmn +Bijmnγijγmn+

+2aijαεijωα + 2bijαγijωα + aθ2 + %u̇iu̇i + Iijϕ̇iϕ̇j
)
dV = (16)

=

∫ t

0

∫
B

(
aijαεijω̇α + bijαγijω̇α + gαθω̇α −

1

T0
qiθ, i

]
dV ds.
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Proof. In view of constitutive equations (3) and the symmetry relations (8),
we obtain

tij ε̇ij +mij γ̇ij + η̇θ =

+Aijmnε̇ijεmn +Bmnijεmnε̇ij −Aij ε̇ijθ + aijαε̇ijωα +

+Bijmnεmnγ̇ij + Cmnijγmnγ̇ij −Bij γ̇ijθ + bijαγ̇ijωα +

+Aij ε̇ijθ +Bij γ̇ijθ + aθ̇θ − gαω̇αθ = (17)

=
1

2

∂

∂t

(
Aijmnεijεmn + 2Bmnijεijγmn + Cijmnγijγmn + aθ2+

+2aijαεijωα + 2bijαγijωα

)
− aijαεijω̇α − bijαγijω̇α − gαθω̇α.

On the other hand, in view of equations (11), (12) and the geometric relations
(4), we are lead to the relation

tij ε̇ij +mij γ̇ij + η̇θ = tij (u̇j, i + εijkϕ̇k) +mijϕ̇j, i +
1

T0
qi, iθ =

= (tij u̇j), i − tij, iu̇j+εijkϕ̇ktij+(mijϕ̇j), i−mij, iϕ̇j+

(
1

T0
qiθ

)
, i

− 1

T0
qiθ, i (18)

=

(
tij u̇j +mijϕ̇j +

1

T0
qiθ

)
, i

− 1

2

∂

∂t

(
%u̇iu̇i + Iijϕ̇iϕ̇j

)
− 1

T0
qiθ, i

From the equalities (17) and (18) we obtain

1

2

∂

∂t
(Aijmnεijεmn + 2Bmnijεijγmn + Cijmnγijγmn+

+2aijαεijωα + 2bijαγijωα + aθ2 + %u̇iu̇i + Iijϕ̇iϕ̇j
)

= (19)

=

(
tij u̇j +mijϕ̇j +

1

T0
qiθ

)
, i

− 1

T0
qiθ, i +

+aijαεijω̇α + bijαγijω̇α + gαθω̇α

Now, we integrate relation (19) over the domain B. By using the divergence
theorem and the boundary conditions (15), we conclude that

1

2

∂

∂t

∫
B

(Aijmnεijεmn + 2Bmnijεijγmn + Cijmnγijγmn+

+2aijαεijωα + 2bijαγijωα + aθ2 + %u̇iu̇i + Iijϕ̇iϕ̇j
)
dV = (20)

=

∫
B

(
aijαεijω̇α + bijαγijω̇α + gαθω̇α −

1

T0
qiθ, i

)
dV.

Finally, we integrate the equality (20) on [0, t] and, by using the null initial
condition (14), we arrive at the desired result (16).
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Theorem 2. Let (ui, ϕi, θ, ωα) be a solution of the problem P0. Then there
exists the positive constants m1 and m2 such that the following relation hold∫

B

[
(aijαεij + bijαγij + gαθ) ω̇α −

1

T0
qiθ, i

]
dV ≤

≤ −m1

∫
B

θ, iθ, jdV +m2

∫
B

(
εijεij + γijγij + θ2 + ωαωα

)
dV. (21)

Proof. Taking into account the relations (6), (7) and (3)4, we can write:

aijαεijω̇α + bijαγijω̇α + gαθω̇α −
1

T0
qiθ, i =

=(aijαεij+bijαγij+gαθ) (gmnαεmn+hmnαγmn+pαθ+qαβωβ+rkαθ, k)

− 1

T0
(Ckijεij +Dkijγij + dkθ + fkαωα +Kkjθ, j) θ, k =

=
1

2
(aijαgmnα+amnαgijα) εijεmn+(aijαhmnα+bmnαgijα) εijγmn (22)

+
1

2
(bijαhmnα+bmnαhijα) γijγmn+(aijαpα+gijαgα) εijθ+aijαqαβεijωβ

+ (bijαpα + hijαgα) γijθ +

(
aijαrkα −

1

T0
Ckij

)
εijθ, k + gβqβαθωα +

+bijαqαβγijωβ +

(
bijαrkα −

1

T0
Dkij

)
γijθ, k + gαpαθ

2 +

+

(
gαriα −

1

T0
di

)
θθ, i −

1

T0
fiαωαθ, i −

1

T0
Kijθ, iθ, j

For the sake of simplicity we introduce the following notations

Aijmn =
1

2
(aijαgmnα + amnαgijα) , Bijmn = aijαhmnα + bmnαgijα,

Cijmn =
1

2
(bijαhmnα + bmnαhijα) , Dij = aijαpα + gijαgα,

Eij = bijαpα + hijαgα, Bijα = aijβqβα, Dijα = bijβqβα, (23)

Aijk = aijαrkα −
1

T0
Ckij , Bijk = bijαrkα −

1

T0
Dkij , M = gαpα,

Lα = Gβqβα, Di = gαriα −
1

T0
di, Fiα = − 1

T0
fiα

Now, we introduce (23) into (22), then we integrate over B so that we are lead
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to∫
B

[
(aijαεij + bijαγij + gαθ) ω̇α −

1

T0
qiθ, i

]
dV =

=

∫
B

(
Aijmnεijεmn + Bijmnεijγmn + Cijmnγijγmn + Dijεijθ+ (24)

+Eijγijθ + Bijαεijωα + Dijαγijωα + Aijkεijθ, k + Bijkγijθ, k +

+Mθ2+Lαθωα+Diθθ, i+Fiαωαθ, i

)
dV −

∫
B

1

T0
Kijθ,iθ,jdV.

On the terms in the right hand side of (24) we will use the Schwarz’s inequality
and the arithmetic - geometric mean inequality

ab ≤ 1

2

(
a2

p2
+ b2p2

)
(25)

through a convenient choice of the parameter p.
For instance, we can write

2

∫
B

Aijkεijθ, kdV ≤ p21
∫
B

θ, iθ, jdV +
M2

1

p21

∫
B

εijεijdV

and so on.
Thus we have, for arbitrary positive constants p1, p2, p3 and p4∫
B

∫
B

[
(aijαεij + bijαγij + gαθ) ω̇α −

1

T0
qiθ, i

]
dV ≤

≤
(
−2µ+ p21 + p22 + p23 + p24

) ∫
B

θ, i θ, idV +

+

(
M2

1

p21
+M2

5 +M2
7 +M2

8 +M2
10

)∫
B

εij εijdV + (26)

+

(
M2

2

p22
+M2

6 +M2
9 +M2

11 + 1

)∫
B

γij γijdV +

+

(
M2

3

p23
+M2

12 + 3

)∫
B

θ2dV +

(
M2

4

p24
+M2

13 + 2

)∫
B

ωα ωαdV

where p1, p2, p3 and p4 are arbitrary positive constants. Also, in the inequality
(26) we have used the notations

M2
1 =max (AijkAijk) (xs) , M

2
2 =max (BijkBijk) (xs) , M

2
3 =max (DiαDiα) (xs) ,

M2
4 = max (Fiα Fiα) (xs) , M

2
5 = 2 max [(AijmnAijmn) (xs)]

1/2
,

M2
6 = 2 max [(CijmnCijmn) (xs)]

1/2
, M2

7 = max (Bijmn Bijmn) (xs) ,

M2
8 =max (DijDij) (xs) , M

2
9 =max (EijEij) (xs) ,M

2
10 =max (BijαBijα) (xs) ,

M2
11 =max (DijαDijα) (xs) , M

2
12 =2 max |M (xs)| , M2

13 =max (LαLα) (xs) ,
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Since the parameters p1, p2, p3 and p4 are arbitrary, we can choose them such
that the number m1 defined by

m1 = µ− 1

2

(
p21 + p22 + p23 + p24

)
is strictly positive. Also, if we choose the constant m2 as follows

m2 =
1

2
max

{
M2

1

p21
+M2

5 +M2
7 +M2

8 +M2
10,

M2
2

p22
+M2

6 +M2
9 +M2

11 + 1,
M2

3

p23
+M2

12 + 3,

M2
4

π2
4

+M2
8 +M2

18 +M2
19 + 2,

M2
4

p24
+M2

13 + 2

}
then we arrive to the estimate (21) and this conclude the proof of Theorem 2.

Theorem 3. Let (ui, ϕi, θ, ωα) be a solution of the problem P0 and sup-
pose that the assumptions (i) - (v) are satisfied. Then there exists a positive
constant m3 such that we have the following inequality∫
B

(
u̇i u̇i + ϕ̇i ϕ̇i + εij εij + γiγi + θ2 + ωαωα

)
dV ≤

≤ m3

∫ t

0

∫
B

(
u̇i u̇i + ϕ̇i ϕ̇i + εij εij + γijγij + θ2 + ωαωα

)
dV ds (27)

for any t ∈ [0, t0].

Proof. First, taking into account the hypotheses (i) - (v), we have

m0

∫
B

(
u̇i u̇i + ϕ̇i ϕ̇i + εij εij + γijγij + θ2

)
dV ≤

≤
∫
B

(Aijmnεijεmn + 2Bijmnεijγmn + Cijmnγijγmn+

+2aijαεijωα + 2bijαγijωαaθ
2 + %u̇iu̇i + Iijϕ̇iϕ̇j

)
dV, (28)

where we have used the notation

m0 = min {%, a, λ1, λ2, λ3, λ4}

Next, we use the Schwarz’s inequality and the arithmetic - geometric mean
inequality (25) to the right hand side of the relation (28). For arbitrary positive
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constants p5, p6 and p7, we have

2

∫
B

BijmnεijγmndV ≤ p25
∫
B

εijεijdV +
N2

1

p25

∫
B

γijγijdV,

2

∫
B

aijαεijωαdV ≤ p26
∫
B

εijεijdV +
N2

2

p26

∫
B

ωαωαdV, (29)

2

∫
B

bijαγijωαdV ≤ p27
∫
B

γijγijdV +
N2

3

p27

∫
B

ωαωαdV,

where we have used the notations

N2
1 = max (Bijmn Bijmn) (xs) , N

2
2 = max (aijα aijα) (xs) , N

2
3 = max (bijα bijα) (xs)

So, from (16), (21), (28) and (29) we are lead to the inequality

m0

∫
B

(
u̇i u̇i + ϕ̇i ϕ̇i + εij εij + γijγij + θ2

)
dV ≤

≤
(
p25 + p26

) ∫
B

εijεijdV +

(
N2

1

p25
+ p27

)∫
B

γijγijdV +

+

(
N2

2

p26
+
N2

3

p27

)∫
B

ωαωαdV −m1

∫ t

0

∫
B

θ, iθ, idV ds+ (30)

+m2

∫ t

0

∫
B

(
εij εij + γijγij + θ2 + ωαωα

)
dV ds

where t ∈ [0, t0].
Now, by using the null initial conditions (15), the consitutive relation (7) and
the equation (13), we arrive to the conclusion that:∫

B

ωαωαdV =

∫ t

0

d

ds

(∫
B

ωαωαdV

)
ds = 2

∫ t

0

(∫
B

ωαω̇αdV

)
ds =

= 2

∫ t

0

∫
B

(gijαεij + hijαγij + pαθ + qαβωβ + riθ, i)ωαdV ds (31)

Now, by using, again, the Schwarz’s inequality and the arithmetic - geometric
mean inequality (25) to the right hand side of the relation (31). So, we deduce
that for an arbitrary positive constant p8 the following inequality hold:

2

∫
B

(gijαεijωα + hijαγijωα + pαθωα + qαβωβωα + riωαθ, i) dV ≤

≤ p28
∫
B

θ, i θ, i dV +

(
Q2

5

p28
+Q2

3 +Q2
4 + 2

)∫
B

ωα ωα dV + (32)

+Q2
1

∫
B

εij εij dV +Q2
2

∫
B

γij γij dV +

∫
B

θ2dV,
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where t ∈ [0, t0] and we have used the notations

Q2
1 = max (gijα gijα) (xs) , Q

2
2 = max (hijα hijα) (xs) , Q

2
3 = max (pα pα) (xs) ,

Q2
4 = 2 max [(qαβ qαβ) (xs)]

1/2
, Q2

5 = max (riα riα) (xs) , (xs) ∈ B

If we denote by m4 the quantity

m4 = max

{
Q2

5

p28
+Q2

3 +Q2
4 + 2, Q2

1, Q
2
2, 1

}
,

then, from (31) and (32) we obtain the following inequality∫
B

ωα ωα dV ≤ p28p29
∫ t

0

∫
B

θ, i θ, i dV ds+

+m4p
2
9

∫ t

0

∫
B

(
εijεij + γijγij + θ2 + ωα ωα

)
dV ds (33)

From (30) and (33) we obtain

m0

∫
B

(
u̇iu̇i + ϕ̇iϕ̇i + θ2

)
dV +

(
m0 − p25 − p26

) ∫
B

εij εij dV +

+

(
m0−

N2
1

p25
−p27

)∫
B

γij γij dV +

(
p29−

N2
2

p26
−N

2
3

p27

)∫
B

∫
B

ωαωαdV dV ≤ (34)

≤
(
m2 +m4p

2
9

) ∫ t

0

∫
B

(
εijεij + γijγij + θ2 + ωα ωα

)
dV ds−

−
(
m1 − p28p29

) ∫ t

0

∫
B

θ, iθ, idV ds

Because the constants p5, p6, p7, p8 and p9 are arbitrary, we can choose them
so that

m5 ≡ m0 − p25 − p26 > 0 m6 ≡ m0 −
N2

1

p25
− p27 > 0,

m7 ≡ p29 −
N2

2

π2
6

− N2
3

p27
> 0, m8 ≡ m1 − p28p29 > 0,
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and thus from (34) we are lead to

(
m2 +m4p

2
9

) ∫ t

0

∫
B

(
εijεij + γijγij + θ2 + ωα ωα

)
dV ds ≥

≥ m0

∫
B

(
u̇iu̇i + ϕ̇iϕ̇i + θ2

)
dV +m5

∫
B

εijεijdV +

+m6

∫
B

γijγijdV +m7

∫
B

ωα ωαdV +m8

∫
B

θ, iθ, idV ds ≥ (35)

≥ m9

∫
B

(
u̇iu̇i + ϕ̇iϕ̇i + εijεij + γijγij + θ2 + ωα ωα

)
dV,

where the semnification of the constant m9 is

m10 = min
{
m0, m5, m6, m7

}
.

Let us observe that∫ t

0

∫
B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εij εij + γij γij + θ2 + ωα ωα

)
dV ds ≥

≥
∫ t

0

∫
B

(
εij εij + γij γij + θ2 + ωα ωα

)
dV ds (36)

Finally, if we choose

m3 =

(
m2 +m4p

2
9

)
m9

then from (35) and (36) we arrive at the desired result (27) and Theorem 3 is
proved.

Theorem 1, Theorem 2 and Theorem 3 form the basis of the main result
of this study: the uniqueness of solution of mixed initial-boundary value prob-
lem for thermoelastic microstretch body with internal state variables.

Theorem 4. Assume that the hypotheses (i) - (v) hold. Then there exists
at most one solution of the problem defined by the equations (1), (2) and (6)
with the initial conditions (9) and the boundary conditions (10).

Proof. Suppose that the mixed problem has two solutions. Then the dif-
ference of these solutions is solution for the above mentioned problem P0. For
our aim it is suffice to show that the function y(t) defined by

y(t) =

∫
B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εijεij + γijγij + θ2 + ωαωα

)
dV
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vanishes on the interval [0, t0].
If we assume the contrary, i.e. y(t) 6= 0, this is absurdum because the

inequality (27) and Gronwall’s inequality imply that y(t) ≡ 0 on [0, t0] and
Theorem 4 is concluded.

Conclusion.

The presence of internal state variables do not affect the uniqueness of so-
lution of the mixed problem for microstretch thermoelastic materials.
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