Effect of internal state variables in thermoelasticity of microstretch bodies

Open access


First, we formulate the mixed initial boundary value problem in the theory of thermoelastic microstretch bodies having certain internal state variables. Then by using some approachable computing techniques and the known Gronwall's inequality we will prove that the presence of internal state variables do not influence the uniqueness of solution of the mixed problem.

[1] L. Anand, M.E. Gurtin, A theory of amorphous solids undergoing large deformations I nt. J. Solids Struct., Vol. 40(2003), 1465-1487

[2] J.L. Bouvard, D.K. Ward, D. Hossain, E.B. Marin, D.J. Bammann, M.F. Horstemeyer, A general inelastic internal state variable model for amorphous glassy polymers, Acta Mechanica, Vol. 213, 1-2(2010), 71-96

[3] S. Chirita, On the linear theory of thermo-viscoelastic materials with internal state variables, Arch. Mech., Vol. 33(1982), 455-464

[4] A.C. Eringen, Theory of thermo-microstretch elastic solids, Int. J. Engng. Sci., Vol. 28(1990), 1291-1301

[5] C. Flaut, D. Savin, Some examples of division symbol algebras of degree 3 and 5, Carpathian Journal of Mathematics, 31(2): 197- 204, 2015.

[6] G. Groza, M. Jianu, N. Pop, Infinitely differentiable functions represented into Newton interpolating series, Carpathian Journal of Mathematics, 30(3): 309-316, 2014.

[7] L. Harabagiu, O. Simionescu-Panait, Propagation of inhomogeneous plane waves in isotropic solid crystals, Ann. Sci. Univ. Ovidius Constanta, 23 (3): 55-64, 2015

[8] D. Iesan, R. Quintanilla, Some theorems in the theory of microstretch thermopiezo-electricity, Int. J. Engng. Sci., Vol. 45, 1(2007), 1-16

[9] R. Kumar, Wave propagation in a microstretch thermoelastic diffusion solid, Ann. Sci. Univ. Ovidius Constanta, 23 (1): 127-169, 2015.

[10] M. Marin, On existence and uniqueness in thermoelasticity of micropolar bodies, Comptes Rendus, Acad. Sci. Paris, Serie II, vol. 321 (12), 475-480, 1995

[11] M. Marin, Some basic theorems in elastostatics of micropolar materials with voids, J. Comp. Appl. Math., Vol. 70(1), 115-126, 1996

[12] M. Marin, C. Marinescu, Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies, Int. J. Eng. Sci., vol. 36 (1), 73-86, 1998

[13] M. Marin, A domain of inuence theorem for microstretch elastic materials, Nonlinear Analysis: R.W.A., vol. 11(5), 3446-3452, 2010

[14] M. Marin, Lagrange identity method for microstretch thermoelastic materials, J. Math. Analysis and Applications, vol. 363 (1), pp. 275-286, 2010

[15] K. Sharma, M. Marin, Reection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids, Ann. Sci. Univ. Ovidius Constanta, vol. 22 (2) (2014), 151-175

[16] R.R. Nachlinger, J.W. Nunziato, Wave propagation and uniqueness theorem for elastic materials with ISV, Int. J. Engng. Sci., Vol. 14(1976), 31-38

[17] J.A. Sherburn , M.F. Horstemeyer, D.J. Bammann, J.R. Baumgardner, Application of the Bammann inelasticity internal state variable constitutive model to geological materials, Geophysical J. Int., Vol. 184, 3(2011), 1023-1036

[18] K.N. Solanki, D.J. Bammann, A thermodynamic framework for a gradient theory of continuum damage, American Acad. Mech. Conf., New Orleans, 2008

[19] C.Wei, M.M. Dewoolkar, Formulation of capillary hysteresis with internal state variables, Water resources research, Vol. 42(2006), 1-16.

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Journal Information

IMPACT FACTOR 2018: 0.638
5-year IMPACT FACTOR: 0.58

CiteScore 2018: 0.55

SCImago Journal Rank (SJR) 2018: 0.254
Source Normalized Impact per Paper (SNIP) 2018: 0.583

Mathematical Citation Quotient (MCQ) 2016: 0.10

Target Group

researchers in all fields of pure and applied mathematics

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 150 97 14
PDF Downloads 71 50 5