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Analysis of the energy decay of a viscoelasticity
type equation

Amel Atallah-Baraket and Maryem Trabelsi

Abstract

In this paper, we study the evolution of the energy density of a
sequence of solutions of a problem related to a viscoelasticity model
where the viscosity term is a pseudo-differential operator of order 2α
with α ∈ (0, 1). We calculate the weak limit of the energy density in
terms of microlocal defect measures and under special assumption we
prove that the viscosity term prevents propagation of concentration and
oscillation effects contrary to what happens in the wave equation.

1 Introduction

We consider the equation of viscoelasticity given by
∂2
t u−∇.(C(x)∇u) + q(x,D)∗q(x,D)∂tu = 0, (t, x) ∈ R+ × Ω,
u|t=0 = u0,
∂tu|t=0 = u1,
u|∂Ω = 0,

(1)
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where Ω is an open subset of Rd, u a scalar real-valued function, C(x) is a
symmetric positive matrix and is supposed to depend smoothly on the variable
x ∈ Ω. Moreover we suppose that there exists C1, C2 > 0 such that

∀x ∈ Ω,∀ξ ∈ Rd, C1|ξ|2 ≤ C(x)ξ.ξ ≤ C2|ξ|2, (2)

q(x,D) is a pseudo-differential operator defined by

q(x,D)f(x) =

∫
Ω×Rd

q(x, ξ)eiξ.(x−y)f(y)dydξ, ∀f ∈ S(Rd)

such as his symbol q(x, ξ) is a classical symbol of order α, with α ∈ (0, 1) and
q(x,D)∗ his adjoint operator. This equation has an energy given by

E(t) :=

∫
Ω

|∂tu(t, x)|2dx+

∫
Ω

C(x)∇u(t, x).∇u(t, x)dx, (3)

which decreases in time according to

E(t)− E(0) = −2

∫ t

0

‖q(., D)∂tu(s, .)‖2L2(Ω)ds ≤ 0. (4)

Equation (4) gives a priori estimates for initial data u0 ∈ H1(Ω) and u1 ∈
L2(Ω) and yields by classical arguments the existence of a unique solution
u ∈ C0(R+, Ḣ

1(Ω)) ∩ C1
(
R+, L

2(Ω)
)
.

We consider sequences (un)n of solutions to (1) with initial data (un0 )n,
(un1 )n which are uniformly bounded in H1(Ω) and L2(Ω) respectively. Then,
because of (2) and (4), for all T ≥ 0, the families (∇un(T ))n and (∂tu

n(T ))n
are uniformly bounded in L2(Ω) and (q(x,D)∂tu

n)n is uniformly bounded in
L2([0, T ], L2(Ω)).

Our aim is to describe the evolution of the weak limit in the set of measures
of the energy density en(t, .)

∀t ∈ R+, e
n(t, x) =

[
|∂tun(t, x)|2 + C(x)∇un(t, x).∇un(t, x)

]
dx.

Without loss of generality, we suppose that (un0 )n and (un1 )n goes to 0 weakly
in H1(Ω) and L2(Ω) respectively.

In the case where Ω = Rd, q(x, ξ) = |ξ|α, |ξ| ≥ 1, and C = cId, c > 0, where
Id is the identity matrix of order d, using the Fourier transform of a family of
solutions of (1), we get a differential linear equation of order 2 in the variable
t. Solving this equation gives that for t > 0 and for α ∈ (1/2, 1),
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ûn(t, ξ) −→
|ξ|→+∞

0.

Our aim is to generalize this result to the case where C depend on the variable
x and q is a classical symbol of order α with α ∈ (0, 1).

The description of the energy decay has been the subject of several contri-
butions. In particular in [13], Francfort and Murat, have proved that for the
wave equation, there is a propagation of the energy density in the phase space
(see also [8]). Our aim is close to that of Atallah and Fermanian who studied
in [2] the case of α = 1. Specifically they studied the evolution of the energy
density of a family of solutions to the Kelvin-Voigt viscoelasticity equation
given by

∂2
t u−∇.(C(x)∇u)−∇.(B(x)∇∂tu) = 0, (t, x) ∈ R+ × Ω,
u|t=0 = u0 ∈ H1

0 (Ω),
∂tu|t=0 = u1 ∈ L2(Ω),
u|∂Ω = 0

(5)

where Ω is an open subset of Rd and u a scalar real-valued function. Matri-
ces C(x) and B(x) are symmetric, non-negative and are supposed to depend
smoothly on the variable x ∈ Ω. Moreover, they supposed that C(x) is a
positive matrix for which there exists C1, C2 > 0 such that

∀x ∈ Ω,∀ξ ∈ Rd, C1|ξ|2 ≤ C(x)ξ.ξ ≤ C2|ξ|2. (6)

The matrix B is also assumed to be positive and satisfies

∀x ∈ Ω,∀ξ ∈ Rd, 0 ≤ B(x)ξ.ξ ≤ C3|ξ|2, C3 > 0. (7)

They proved under special assumptions that the oscillation or concentration
effects do not propagate but are damped in time. Also G. Lebeau has studied
in [19] the case α = 0, more precisely he considered the equation of damped
waves given by 

(
∂2
t −∆ + 2a(x)∂t

)
u = 0,

u|Rt×∂M ≡ 0
u|t=0 = u0 ∈ H1

0 (M),
∂tu|t=0 = u1 ∈ L2(M),

(8)

where M is a compact riemannian manifold.
This equation has an energy given by

E(u, t) :=
1

2

∫
M

|∂tu(t, x)|2dx+

∫
M

|∇xu|2. (9)
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He proved that for all u0 ∈ H1
0 (M) and u1 ∈ L2(M), we have

E(u, t) −→
t→∞

0.

Moreover he also proved that under some geometrical conditions on the man-
ifold we have exponential decay of the energy.

For more results on the viscoelasticity equations, the reader can refers to
[3, 5, 10, 18, 21]. To calculate the weak limit of the energy density, we need
to express the limit of quadratic products of weakly oscillating quantities. For
this purpose, we use the formalism of microlocal defect measures also called
H-measures introduced independently by P. Grard and L. Tartar (see [14] and
[24]). We also refer to the books [16] and [23] for related abstract results and
applications.

2 Main Results

In this section, we present our results which crucially rely on the use of mi-
crolocal defect measures that we define in the first subsection. In the second
subsection we discuss the evolution of the energy density which is a corollary
of the analysis of the behavior of microlocal defect measures associated to the
sequences (∂tu

n)n and (∇un)n.

2.1 Microlocal defect measures

Microlocal defect measures allow to treat quadratic quantities like energy den-
sity by taking into account microlocal effects. They describe up to a subse-
quence the limit of quantities of the form (a(x,D)un, un)n where a(x,D) is a
pseudo-differential operator and (un)n a uniformly bounded family of Hs(Ω).
We denote by Σm(Ω) the set of symbols of order m, m ∈ R on Ω×Rd, i.e. of
smooth functions a ∈ C∞(Ω × Rd) compactly supported in the variable x in
Ω and satisfying for all multi-indices α = (α1, ..., αd), β = (β1, ..., βd)∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ ≤ Cα,β 〈ξ〉m−|β| ,
where ∂αx = ∂α1

x1
· · · ∂αdxd , ∂βξ = ∂β1

ξ1
· · · ∂βdξd and 〈ξ〉 = (1 + |ξ|2)1/2. Let

a ∈ Σm(Ω), the symbol a is said to be a classical symbol if there exists a
sequence of functions (am−j)j∈N homogeneous of degree m − j for |ξ| ≥ 1,
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such that for all k ∈ N,

(
a−

k∑
j=0

am−j

)
∈ Σm−k−1(Ω).

We write a ∈ Σmc (Ω), a ∼
+∞∑
j=0

am−j and am is called the principal symbol of

a.

Then the operator a(x,D) is defined by

a(x,D)u(x) =

∫
Ω×Rd

a(x, ξ)eiξ.(x−y)u(y)dydξ.

The operator a(x,D) maps Hs into Hs−m for all s ∈ R (see[1]). Observe that
even though the symbol a is positive, the operator a(x,D) is not a positive
operator. We recall here an inequality of G̊arding called ” Low Inequality of
G̊arding” which connect the positivity of a symbol to that of the operator:

Lemma 1. If a ∈ Σ2m+1(Ω), Rea ≥ 0, then there exist C > 0 such that

Re (a(x,D)u, u)) ≥ −C ‖ u ‖2Hm .

Let (un) a uniformly bounded sequence in Hm(Ω) which converges weakly
to 0 in Hm. Then there exists a subsequence nk, nk −→

k→∞
+∞, and a positive

Radon measure µ on Ω× Sd−1 such that

∀a ∈ Σ2m
c (Ω), (a(x,D)unk , unk) −→

k→∞
〈a2m, µ〉 .

Such a measure µ is called a Hm-microlocal defect measure of the family (un)n.
One can observe that the positivity of the defect measure is a consequence of
the G̊arding inequality above. In the following, we denote by M+(Ω× Sd−1)
the set of positive Radon measures on Ω× Sd−1.

2.2 Evolution of the energy density

Let µ0 be a H1-microlocal defect of (un0 )n and λ0 a L2-microlocal defect mea-
sure of (un1 )n. For simplicity, we suppose that(un0 )n (respectively. (un1 )n) have
only one microlocal defect measure. Then, for a ∈ Σ2

c (respectively a ∈ Σ0
c) all
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the limit points of (a(x,D)un0 |un0 ) (respectively (a(x,D)un1 |un1 ) ) are the same.
Therefore we have for t = 0, ∀φ ∈ C∞0 (Ω)∫

Ω

φ(x)en(0, x)dx −→
n→+∞

∫
Ω×Sd−1

φ(x) C(x)ω.ωµ0(dx, dω)

+

∫
Ω×Sd−1

φ(x)λ0(dx, dω).

(10)

Notations:

1. We will use the abbreviation ”u.b.” for uniformly bounded.

2. We denote by Λ the subset of Ω× Sd−1 defined by

Λ :=
{

(x, ω) ∈ Ω× Sd−1, qα(x, ω) = 0
}
,

where qα is the principal symbol of q and we suppose that Λ 6= Ω×Sd−1.

3. We will use special symbols which will satisfy the two following proper-
ties:

(i) a ∈ Σm(Ω).
(ii) there exists a neighborhood V of Λ such that

a(x, ξ) = 0,∀
(
x,

ξ

|ξ|

)
∈ V.

We will denote by ΣmΛ the class of such symbols.

By the analysis of microlocal defect measures of (∇un(t))n and (∂tu
n(t))n ,

we will prove the following result for the densities en.

Theorem 1. Suppose that C is smooth and satisfies (2). Suppose moreover
that µ0(Λ) = λ0(Λ) = 0 and that Λ is bounded, then for any φ ∈ C∞0 (Ω) and
for every t > 0 ∫

Ω

φ(x)en(t, x)dx −→
n→+∞

0. (11)

Remark 1.
1) If λ0 6= 0 or µ0 6= 0 and if we denote by e(t, x) the weak limit of the density
en(t, x), the map t 7→ e(t, .) is discontinuous in t = 0.
2) The oscillation or concentration effects do not propagate. We recall that in
the case of the wave equation there is propagation of microlocal defect measures
in the phase space (see [8, 13]). Then the viscoelastic term q(x,D)∗q(x,D)∂tu
is predominant in (1) against the wave type term ∇.(C(x)∇u).
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Since our purpose is to calculate the weak limit of the energy density, we
get using microlocal defect measures that for any φ ∈ C∞0 (Ω) and for every
t > 0, there exist a subsequence nk(t) such that∫

Ω

φ(x)enk(t)(t, x)dx −→
k→+∞

∫
Ω×Sd−1

φ(x)
(
λ̃(t, dx, dω)+C(x)ω.ωµ̃(t, dx, dω)

)
,

(12)
where λ̃ (respectively µ̃) is a L2-microlocal defect measure of the family
(∂tu

nk(t))k (respectively µ̃ is a H1-microlocal defect measure of the family
(unk(t))k). Then the dependence on t of the extracted subsequence of the
result (12) is an issue. To overcome this difficulty, we use other measures.
Indeed, since

un ∈ L2
loc(R, H1(Ω)) and ∂tu

n ∈ L2
loc(R, L2(Ω)),

then for any T > 0, there exists a subsequence mk(T ) and two measures
µ(t, x, ω) and λ(t, x, ω) in L∞

(
[0, T ],M+(Ω× Sd−1)

)
, such that ∀a ∈ Σ0

c(Ω),
∀ψ ∈ C∞0 ([0, T ]),∀i, j ∈ {1, ..., d},∫ T

0

ψ(t)
(
a(x,D)∂xiu

mk(T )(t)|∂xjumk(T )(t)
)
dt

−→
k→+∞

∫
[0,T ]×Ω×Sd−1

ψ(t)a0(x, ω)ωiωjµ(t, dx, dω)dt,

(13)

and ∫ T

0

ψ(t)
(
a(x,D)∂tu

mk(T )(t)|∂tumk(T )(t)
)
dt

−→
k→+∞

∫
[0,T ]×Ω×Sd−1

ψ(t)a0(x, ω)λ(t, dx, dω)dt.

(14)

Then for any T > 0, there exists a subsequence mk(T ) such that ∀φ ∈ C∞0 (Ω)
and ∀ψ ∈ C∞0 ([0, T ])∫

[0,T ]×Ω

ψ(t)φ(x)emk(T )(t, x)dxdt

−→
n→+∞

∫
[0,T ]×Ω×Sd−1

ψ(t)φ(x)
(
λ(dx, dω) + C(x)ω.ωµ(dx, dω)dt

)
,

(15)

One can observe that the dependence on t of the extracted subsequence in
(12) implies that if λ̃(t)

(
respectively µ̃(t)

)
is a L2-microlocal defect measure

of the family (∂tu
n(t))n

(
respectively is a H1-microlocal defect measure of

the family (un(t))n
)
, then the measures λ(t)

(
respectively µ(t)

)
and λ̃(t)

(
respectively µ̃(t)

)
are not necessary the same.
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Proposition 1. If µ0(Λ) = λ0(Λ) = 0 and if Λ is bounded, then for t > 0 the
sequence (∂tu

n(t))n (resp.(un(t))n) goes to 0 strongly in L2
loc(Ω)

(
resp.H1

loc(Ω)
)
.

If we suppose that Proposition 1 holds then by (12), we get Theorem 1. This
Proposition will be proved in Section 3.

On the other hand, since (q(x,D)∂tu
n)n is u.b. in L2([0, T ], L2(Ω)) then the

microlocal defect measure of this sequence describes the limit of the quantity∫
R+×Ω

χ(t)φ(x)(q(x,D)∂tu
n)2dtdx,

for any χ ∈ C∞0 (R∗+) and φ ∈ C∞0 (Ω). In Proposition 2 below we prove that
the knowledge of µ and λ is enough to calculate such a limit.

Proposition 2. Let χ ∈ C∞0 (R∗+) and φ ∈ C∞0 (Ω),∫
R+×Ω

χ(t)φ(x)(q(x,D)∂tu
n)2dtdx −→

n→+∞
0.

This result is proved in the end of Section 3.

3 Proof of the main results

3.1 Preliminaries.

We state technical results that we will use in the next subsections.

Proposition 3. ∀T > 0 , ∀a ∈ Σ0
Λ, (a(x,D)∂tu

n)nis uniformly bounded in
L2
(
[0, T ], Hα(Ω)

)
.

Proof. Let a ∈ Σ0
Λ and ψ a cut-off function compactly supported in Rd ,

0 ≤ ψ ≤ 1, and ψ = 1 near 0. We write

a(x, ξ) = ψ
( ξ
R

)
a(x, ξ) +

(
1− ψ

( ξ
R

))
a(x, ξ).

We set

ã(x, ξ) =

(
1− ψ

(
ξ
R

))
a(x, ξ)

qα(x, ξ)
.
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If (x, ξ) ∈ supp
((

1− ψ
(
ξ
R

))
a(x, ξ)

)
then we have qα(x, ξ) 6= 0.

Therefore
ã(x, ξ) ∈ Σ−αΛ .

This gives

(
1− ψ

( ξ
R

))
a(x, ξ) =

(
1− ψ

(
ξ
R

))
a(x, ξ)

qα(x, ξ)
q(x, ξ) + r(x, ξ),

with r ∈ Σ−1(Ω).

So, we obtain the following decomposition

a(x,D) = ã(x,D)q(x,D) + k(x,D) + r(x,D),

with k(x,D) a compact operator of L2(Ω). Since (q(x,D)∂tu
n)n is u.b. in

L2
(
[0, T ], L2(Ω)

)
and ã(x, ξ) ∈ Σ−αΛ , then (ã(x,D)q(x,D)∂tu

n)n is u.b in

L2
(
[0, T ], Hα(Ω)

)
. Besides, since (∂tu

n)n is u.b. in L2
(
[0, T ], L2(Ω)

)
then

(r(x,D)∂tu
n)n is u.b in L2

(
[0, T ], H1(Ω)

)
, which gives Proposition 3.

We will often make use of the following Rellich Lemma.

Lemma 2. Let (fn)n and (gn)n be two sequences which are uniformly bounded
in Hp and Hq respectively and tending weakly to 0 in these spaces.
Let a ∈ Σm(Ω), with m < p+ q, then

(
a(x,D)fn, gn

)
n

goes to 0 as n goes to
+∞.

Let t > 0, in the remainder of this paper, µ̃(t) is a H1-microlocal defect
measure of (un(t))n, λ̃(t) is a L2-microlocal defect measure of (∂tu

n(t))n,
µ(t, x, ω) and λ(t, x, ω) are in L∞

(
[0, T ],M+(Ω× Sd−1)

)
and satisfy (13) and

(14). We will prove using the measures µ and λ that the measures µ̃(t) and
λ̃(t) does not depend on the extracted subsequence and they are equal to 0 on
Ω× Sd−1, which gives Proposition 1.

3.2 Calculus of the measures on Λ

Proposition 4. If µ0(Λ) = λ0(Λ) = 0 and Λ is bounded, then for all t ≥ 0
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µ̃(t,Λ) = λ̃(t,Λ) = 0, (16)

and
µ(t,Λ) = λ(t,Λ) = 0. (17)

Remark 2. This proposition crucially uses the assumptions Λ is bounded and
µ0(Λ) = λ0(Λ) = 0. It will be interesting to study the situations where one of
the previous assumptions is not fulfilled.

Proof. First we will prove that if µ0(Λ) = λ0(Λ) = 0 and Λ is bounded, then
for all t ≥ 0

µ̃(t,Λ) = λ̃(t,Λ) = 0, (18)

then we use the dominated convergence Theorem to prove the same result for
the measures λ and µ.
Since Λ is bounded, it is a compact subset of Ω×Sd−1. Therefore, there exists
a family of smooth compactly supported functions ψε(x, ω) such that

0 ≤ ψε(x, ω) ≤ 1.

ψε(x, ω) = 1 in a neighborhood of Λ.

ψε −→
ε→0

1Λ.

Let χ ∈ C∞0 (R) such that
χ(u) = 0 for |u| > 1.

χ(u) = 1 for |u| < 1

2
.

0 ≤ χ ≤ 1.

and aε defined by

aε(x, ξ) = (1− χ(ξ))ψε

(
x,

ξ

|ξ|

)
.

Then aε ∈ Σ0
c and

∇xaε(x, ξ) ∈ Σ0
Λ, ∇ξaε(x, ξ) = b(x, ξ) + k(x, ξ), (19)

where b ∈ Σ−1
Λ and k is compactly supported in the variable ξ, then k(x,D)

is a compact operator of L2(Ω). We define

Inε (t) =
(
aε(x,D)∂tu

n(t)|∂tun(t)
)

+
(
aε(x,D)C(x)∇un(t)|∇un(t)

)
. (20)
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We have for all t ≥ 0

lim sup
ε→0

lim sup
n→+∞

Inε (t)

= lim sup
ε→0

∫
Ω×Sd−1

ψε(x, ω)
[
λ̃(t, dx, dω) + C(x)ω.ωµ̃(t, dx, dω)

]
=

∫
Λ

[
λ̃(t, x, ω) + C(x)ω.ωµ̃(t, dx, dω)

]
.

Moreover if we derive (20) with respect to t we obtain

d

dt
Inε (t) = In1,ε(t) + In2,ε(t) + In3,ε(t), (21)

with

In1,ε(t) = −
(
aε(x,D)q(x,D)∗q(x,D)∂tu

n(t)|∂tun(t)
)

−
(
aε(x,D)∂tu

n(t)|q(x,D)∗q(x,D)∂tu
n(t)

)
.

In2,ε(t) =
(
aε(x,D)∇.(C(x)∇un(t))|∂tun(t)

)
+
(
aε(x,D)C(x)∇un(t)|∇∂tun(t)

)
.

In3,ε(t) =
(
aε(x,D)∂tu

n(t)|∇.(C(x)∇un(t))
)

+
(
aε(x,D)C(x)∇∂tun(t))|∇un(t)

)
.

We claim that for all T > 0

lim sup
ε→0

lim sup
n→+∞

∫ T

0

Inj,ε(t)dt = 0, ∀j ∈ {2, 3}. (22)

Indeed, we have :

In2,ε(t) =
(

[aε(x,D),∇].(C(x)∇un(t))|∂tun(t)
)
.

Since [aε(x,D),∇] = r(x,D), with r ∈ Σ0
Λ, then

In2,ε(t) =
(
C(x)∇un(t)|r∗(x,D)∂tu

n(t)
)
.
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Let R > 0, we write(
C(x)∇un(t)|r∗(x,D)∂tu

n(t)
)

=

(
C(x)∇un(t)|ψ

(
|D|
R

)
r∗(x,D)∂tu

n(t)

)
+

(
C(x)∇un(t)|

(
1− ψ

(
|D|
R

))
r∗(x,D)∂tu

n(t)

)
(23)

where ψ is a cut-off function on Rd satisfying
0 ≤ ψ ≤ 1.

ψ(x) = 0, |x| ≥ 1.

ψ(x) = 1, |x| ≤ 1/2.

(24)

Since (∂tu
n(t))n goes weakly to 0 in L2(Ω) and ψ

(
|D|
R

)
r∗(x,D) is a compact

operator from L2(Ω) into itself then

ψ

(
|D|
R

)
r∗(x,D)∂tu

n(t) −→
n→+∞

0 in L2(Ω).

Therefore, since (∇un(t))n is u.b. in L2(Ω), we get

∀t ∈ R+,

(
C(x)∇un(t)|ψ

(
|D|
R

)
r∗(x,D)∂tu

n(t)

)
−→

n→+∞
0. (25)

On the other hand, since r ∈ Σ0
Λ by (19), then by Proposition 3, (r(x,D)∗∂tu

n)
is u.b. in L2([0, T ], Hα(Ω)). Which gives∥∥∥∥(1− ψ

(
|D|
R

)
r∗(x,D)∂tu

n(t)

)∥∥∥∥2

L2(Ω)

= C

∫
|ξ|>R

2

(
1− ψ

(
|ξ|
R

))
| ̂r∗(x,D)∂tun(t)(ξ) |2 dξ

= C
(∫

R≥|ξ|>R
2

(
1− ψ

(
|ξ|
R

))
| ̂r∗(x,D)∂tun(t)(ξ) |2 dξ

+

∫
|ξ|>R

〈ξ〉α | ̂r∗(x,D)∂tun(t)(ξ) |2 1

〈ξ〉α
dξ
)

≤ C ′

Rα
‖r∗(x,D)∂tu

n(t)‖2Hα(Ω)
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then (
C(x)∇un(t)|

(
1− ψ

(
|D|
R

))
r∗(x,D)∂tu

n(t)

)
≤ C ′

Rα
‖∇un(t)‖L2(Ω) ‖r

∗(x,D)∂tu
n(t)‖Hα(Ω) .

So ∫ T

0

(
C(x)∇un(t)|

(
1− ψ

(
|D|
R

))
r∗(x,D)∂tu

n(t)

)
dt ≤ C ′′

Rα
. (26)

By letting R go to +∞ we get∫ T

0

(
C(x)∇un(t)|

(
1− ψ

(
|D|
R

))
r∗(x,D)∂tu

n(t)

)
dt −→

n→+∞
0. (27)

We conclude using (23),(25) and (27) that∫ T

0

In2,ε(t)dt −→
n→+∞

0. (28)

Moreover
In3,ε(t) =

(
[aε(x,D), C(x)∇].∇un(t)|∂tun(t)

)
.

Since [aε(x,D), C(x)∇] = r(x,D) + k(x,D) with r ∈ Σ0
Λ and k(x,D) is a

compact operator, then arguing as above we obtain∫ T

0

In3,ε(t)dt −→
n→+∞

0. (29)

Now it remains to study the term In1,ε(t). Since

aε(x,D)q(x,D)∗ = q(x,D)∗aε(x,D) + r1(x,D),

with r1 ∈ Σα−1
Λ , and

q(x,D)aε(x,D) = aε(x,D)q(x,D) + r2(x,D),

with r2 ∈ Σα−1
Λ , then we get

In1,ε(t) =−
(
aε(x,D)q(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
−
(
q(x,D)∂tu

n(t)|r∗1(x,D)∂tu
n(t)

)
−
(
aε(x,D)q(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
−
(
r2(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
.
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Since r1 ∈ Σα−1
Λ , then by Proposition 3, the family (r∗1(x,D)∂tu

n(t))n is
u.b. in L2([0, T ], H1(Ω)). In view of the fact that (q(x,D)∂tu

n(t))n is u.b in
L2([0, T ], L2(Ω)), we get∫ T

0

(
q(x,D)∂tu

n(t)|r∗1(x,D)∂tu
n(t)

)
dt −→

n→+∞
0. (30)

For the same reasons, we obtain∫ T

0

(
r2(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
dt −→

n→+∞
0. (31)

Which gives∫ T

0

In1,ε(t)dt = −2

∫ T

0

(
aε(x,D)q(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
dt+ o(1).

(32)
Besides, since (q(x,D)∂tu

n)n is u.b in L2([0, T ], L2(Ω)) and aε is a positive
symbol, then thanks to the G̊arding inequality, the limit of the family(∫ T

0

(aε(x,D)q(x,D)∂tu
n(t)|q(x,D)∂tu

n(t))
)
n

is positive. Therefore we get as n goes to +∞ and for all ε > 0

lim
n→+∞

∫ T

0

In1,ε(t)dt

= −2 lim
n→+∞

∫ T

0

(
aε(x,D)q(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
dt ≤ 0.

(33)

On the other hand by (21),

lim
n→+∞

(
Inε (T )− Inε (0)

)
= lim
n→+∞

(
3∑
i=1

∫ T

0

Ini,ε(t)dt

)
.

Then by (28), (29) and (33) we get

lim
n→+∞

(
Inε (T )− Inε (0)

)
= lim
n→+∞

∫ T

0

In1,ε(t)dt ≤ 0.

Using the definition of µ̃ and λ̃, we obtain[∫
ψε(x, ω)

[
C(x)ω.ωµ̃(t, dx, dω) + λ̃(t, dx, dω)

]]T
0

≤ 0.



ANALYSIS OF THE ENERGY DECAY OF A VISCOELASTICITY TYPE
EQUATION 35

As ε goes to 0, since µ0 and λ0 are supported outside Λ, we obtain

∫
Λ

[
C(x)ω.ωµ̃(T, dx, dω) + λ̃(T, dx, dω)

]
≤ 0.

then by the positivity of the measures and of the matrix C(x) this gives that
µ̃(t) and λ̃(t) are equal to 0 on Λ for all t ≥ 0.

On the other hand for all T > 0 and for all φ ∈ C∞0 ([0, T ]) we have

lim sup
ε→0

lim sup
n→+∞

∫ T

0

∫
Λ

φ(t)Inε (t)dt

= lim sup
ε→0

lim sup
n→+∞

∫ T

0

∫
Λ

φ(t)
(
aε(x,D)∂tu

n(t)|∂tun(t)
)
dt

+ lim sup
ε→0

lim sup
n→+∞

∫ T

0

∫
Λ

φ(t)
(
aε(x,D)C(x)∇un(t)|∇un(t)

)
dt

=

∫ T

0

∫
Λ

φ(t) [C(x)ω.ωµ(t, dx, dω) + λ(t, dx, dω)] dt.

Since
lim sup
ε→0

lim sup
n→+∞

Inε (t) = 0,

then using the dominated convergence theorem, we get for all T > 0 and for
all φ ∈ C∞0 ([0, T ])∫ T

0

∫
Λ

φ(t) [C(x)ω.ωµ(t, dx, dω) + λ(t, dx, dω)] dt = 0.

Using again by the positivity of the measures µ and λ and of the matrix C(x),
this gives that µ and λ are equal to 0 on Λ and this complete the proof of
Proposition 4.

3.3 Calculus of the measures µ and λ outside Λ

Proposition 5. In {t > 0}, we have

λ = 0 and µ = 0 outside Λ. (34)

Proof. The result λ = 0 on Λc is a consequence of Proposition 3. Indeed,
since for all T > 0 and for all a ∈ Σ0

Λ, (a(x,D)∂tu
n)nis u.b. in L2 ([0, T ], Hα(Ω))
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then by the Rellich Lemma(
a(x,D)∂tu

n(t)|∂tun(t)
)
−→

n→+∞
0. (35)

Therefore using the dominated convergence theorem, we get that λ = 0 on
Λc.
Let us prove that µ = 0 on Λc. Let φ ∈ C∞0 (R∗+), a ∈ Σ0

Λ be a real-valued
symbol and (Ln)n the sequence defined by :

Ln =

∫
φ(t)

(
a(x,D)un(t)|∂2

t u
n(t)

)
dt.

By integration by parts, we obtain

Ln = −
∫
φ
′
(t) (a(x,D)un(t)|∂tun(t)) dt−

∫
φ(t) (a(x,D)∂tu

n(t)|∂tun(t)) dt.

By Rellich Lemma, we have

(a(x,D)un(t)|∂tun(t)) −→
n→+∞

0,

then

Ln −→
n→+∞

−
∫ ∫

φ(t)a0(x, ω)λ(t, dx, dω)dt.

Since λ = 0 on Λc , we obtain

Ln −→
n→+∞

0.

Besides, we write
Ln = Ln1 + Ln2 ,

with

Ln1 =

∫
φ(t) (a(x,D)un(t)|∇.(C(x)∇un(t))) dt.

Ln2 = −
∫
φ(t) (a(x,D)un(t)|q(x,D)∗q(x,D)∂tu

n(t))) dt.

By the definition of µ we have

Ln1 −→
n→+∞

−
∫
φ(t)C(x)ω.ωa0(x, ω)µ(t, dx, dω)dt.

Using symbolic calculus, we get
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(
q(x,D)∗q(x,D) ◦ a(x,D)

)∗
= q(x,D)∗q(x,D) ◦ a(x,D)) + r(x,D),

with r(x,D) ∈ Σ2α−1
Λ . Therefore, the same argument as the one developed in

the proof of Proposition 4, gives for T > 0

∫
φ(t)

(
r(x,D)∂tu

n(t)|un(t)
)
dt −→

n→+∞
0,

so we have

Ln2 = −
∫
φ(t)

(
q(x,D)∗q(x,D)a(x,D)un(t) | ∂tun(t)

)
dt+ o(1).

On the other hand (
q(x,D)∗q(x,D)a(x,D)un(t)|∂tun(t)

)
=
(
q(x,D)a(x,D)un(t)|q(x,D)∂tu

n(t)
)
,

since q(x,D)a(x,D)un(t) is u.b. in L2([0, T ], L2(Ω)) and (q(x,D)∂tu
n(t))n is

u.b. in L2([0, T ], Hα(Ω)), we get

Ln2 −→
n→+∞

0,

and ∫
φ(t)C(x)ω.ωa0(x, ω)µ(t, dx, dω)dt = 0,

which gives Proposition 5.

3.4 Calculus of the measures µ̃ and λ̃ outside Λ

Proposition 6. Let T > 0, there exist a subsequence nk and a map t 7→ ν̃(t)
from [0, T ] into the set of positive Radon measures on Ω×Sd−1, such that for
all t ∈ [0, T ] and for all a ∈ Σ0

Λ, we have(
a(x,D)∂tu

nk(t)|∂tunk(t)
)

+
(
a(x,D)C(x)∇unk(t)|∇unk(t)

)
−→
k→+∞

∫
Ω×Sd−1

a0(x, ω)ν̃(t, dx, dω)
(36)

where the convergence is uniform on [0, T ] and

ν̃(t, x, ω) = λ̃(t, x, ω) + C(x)ωωµ̃(t, x, ω).
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Proof. Let a ∈ Σ0
Λ, we denote by

Jn(t) =
(
a(x,D)∂tu

n(t)|∂tun(t)
)

+
(
a(x,D)C(x)∇un(t)|∇un(t)

)
. (37)

We have

d

dt
Jn(t) = Jn1 (t) + Jn2 (t) + Jn3 (t), (38)

with

Jn1 (t) =−
(
a(x,D)q(x,D)∗q(x,D)∂tu

n(t)|∂tun(t)
)

−
(
a(x,D)∂tu

n(t)|q(x,D)∗q(x,D)∂tu
n(t)

)
.

(39)

Jn2 (t) =
(
a(x,D)∇.(C(x)∇un(t))|∂tun(t)

)
+
(
a(x,D)C(x)∇un(t)|∇∂tun(t)

)
.

Jn3 (t) =
(
a(x,D)∂tu

n(t)|∇.(C(x)∇un(t))
)

+
(
a(x,D)C(x)∇∂tun(t))|∇un(t)

)
.

We claim that for all 0 ≤ T ≤ T ′,

lim
n→+∞

∫ T
′

T

Jnj (t)dt = 0, ∀j ∈ {2, 3}. (40)

Indeed, we have :

Jn2 (t) =
(

[a(x,D),∇].(C(x)∇un(t))|∂tun(t)
)
.

Since [a(x,D),∇] = r(x,D), with r ∈ Σ0
Λ, the sequence (r(x,D)∗∂tu

n)n is u.b.

in L2([T, T
′
], H1(Ω)). Besides, using that (∇un)n is u.b. in L2([T, T

′
], L2(Ω)),

we get ∫ T
′

T

Jn2 (t)dt −→
n→+∞

0.

Moreover
Jn3 (t) =

(
[a(x,D), C(x)∇].(∇un(t)|∂tun(t)

)
.

Since [a(x,D), C(x)∇] = r̃(x,D) with r̃ ∈ Σ0
Λ , then arguing as above, we

obtain ∫ T
′

T

Jn3 (t)dt −→
n→+∞

0.
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On the other hand,∫ T
′

T

Jn1 (t)dt =−
∫ T

′

T

(
a(x,D)q(x,D)∗q(x,D)∂tu

n(t)|∂tun(t)
)
dt

−
∫ T

′

T

(
a(x,D)∂tu

n(t)|q(x,D)∗q(x,D)∂tu
n(t)

)
dt.

(41)

By symbolic calculus,

a(x,D)q(x,D)∗ = q(x,D)∗a(x,D) + ã(x,D),

with ã ∈ Σα−1
Λ . Then

(
a(x,D)q(x,D)∗q(x,D)∂tu

n(t)|∂tun(t)
)

=
(
a(x,D)q(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
+
(
ã(x,D)q(x,D)∂tu

n(t)|∂tun(t)
)
.

(42)

Since
(
q(x,D)∂tu

n(t)
)
n

is u.b. in L2
(
[T, T

′
], L2(Ω)

)
, then(

(ã(x,D)q(x,D)∂tu
n(t)

)
n

is u.b. in L2
(
[T, T

′
], H1−α(Ω)

)
which gives ,

∫ T
′

T

(
ã(x,D)q(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
dt −→

n→+∞
0.

Then ∫ T
′

T

(
a(x,D)q(x,D)∗q(x,D)∂tu

n(t)|∂tun(t)
)
dt

=

∫ T
′

T

(
a(x,D)q(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
dt+ o(1).

(43)
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Similarly, we prove that∫ T
′

T

(
a(x,D)∂tu

n(t)|q(x,D)∗q(x,D)∂tu
n(t)

)
dt

=

∫ T
′

T

(
a(x,D)q(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
dt+ o(1).

(44)

Hence∫ T
′

T

Jn1 (t)dt = −2

∫ T
′

T

(
a(x,D)q(x,D)∂tu

n(t)|q(x,D)∂tu
n(t)

)
dt+ o(1).

Since
(
q(x,D)∂tu

n(t)
)
n

is u.b. in L2
(
[0, T

′
], L2(Ω)

)
, there exists a positive

constant Ca(T
′
) which depends on T

′
and on the operator a(x,D) such that

∣∣∣ ∫ T
′

T

Jn1 (t)dt
∣∣∣ ≤ Ca(T

′
) | T − T

′
| +o(1)

≤ C
′

a(T
′
) | T − T

′
| .

(45)

By (38), (40) and (45) we conclude that

| Jn(T )− Jn(T
′
) | ≤ C”

a(T
′
) | T − T

′
| . (46)

Therefore the sequence (Jn)n of C
(
[0, T

′
],C
)

is equicontinuous, and since for all

fixed t of [0, T
′
], (Jn(t))n is bounded, then Ascoli Theorem yields the existence

of a subsequence (Jnk)k which converges uniformly on [0, T
′
]. Hence if µ̃(t) is

a H1-microlocal defect measure of (un(t))n and λ̃(t) is a L2-microlocal defect
measure of (∂tu

n(t))n, we get(
a(x,D)∂tu

nk(t)|∂tunk(t)
)

+
(
a(x,D)C(x)∇unk(t)|∇unk(t)

)
−→
k→+∞

∫
Ω×Sd−1

a0(x, ω)ν̃(t, dx, dω)
(47)

where the convergence is uniform on [0, T
′
] and

ν̃(t, x, ω) = λ̃(t, x, ω) + C(x)ωωµ̃(t, x, ω).

By considering a dense countable subset of Σ0
Λ and by diagonal extraction, we

may assume that the subsequence (Jnk)k is the same for any a ∈ Σ0
Λ, which

gives Proposition 6.



ANALYSIS OF THE ENERGY DECAY OF A VISCOELASTICITY TYPE
EQUATION 41

Proposition 7. In {t > 0}, we have

λ̃ = 0 and µ̃ = 0 on Λc. (48)

Proof. Let a ∈ Σ0
Λ, T > 0 and φ ∈ C∞0 ([0, T ]), by Proposition 6, there exists

a subsequence nk and a map t 7→ ν̃(t) from [0, T ] into the set of the positive
Radon measures on Ω× Sd−1 such that for all t ∈ [0, T ], we have∫ T

0

φ(t)
[(
a(x,D)∂tu

nk(t)|∂tunk(t)
)

+
(
a(x,D)C(x)∇unk(t)|∇unk(t)

)]
dt

−→
k→+∞

∫ T

0

∫
Ω×Sd−1

a0(x, ω)ν̃(t, dx, dω)dt

(49)
where

ν̃(t, x, ω) = λ̃(t, x, ω) + C(x)ω.ωµ̃(t, x, ω).

On the other hand, we have by the definition of µ and λ,∫ T

0

φ(t)
[
(a(x,D)∂tu

nk(t)|∂tunk(t)) + (a(x,D)C(x)∇unk(t)|∇unk(t))
]
dt

−→
k→+∞

∫ T

0

∫
Λc
φ(t)a0(x, ω)ν(dt, dx, dω)

(50)
where

ν(t, x, ω) = λ(t, x, ω) + C(x)ω.ωµ(t, x, ω).

Since in {t > 0}
λ = 0 and µ = 0 on Λc, (51)

then by ( 49), we obtain in {t > 0}

ν̃(t, x, ω) = 0.

By the positivity of the measures and of the matrix C(x), this gives that in
{t > 0}, λ̃(t) and µ̃(t) are equal to 0 on Λc and this completes the proof of
Proposition 7.

3.5 Proof of Proposition 2

Let χ ∈ C∞0 (R∗+) and φ ∈ C∞0 (Ω) . By Theorem 1, we obtain∫
R+×Ω

χ′(t)φ(x)en(t, x)dtdx −→
n→+∞

0 (52)
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and in the other hand, by integration by parts we get :∫
R+×Ω

χ′(t)φ(x)en(t, x)dtdx = −
∫
R+×Ω

χ(t)φ(x)
d

dt
(en(t, x))dtdx. (53)

Since C is symmetric, we have

d

dt
en(t, x) = 2∂2

t u
n∂tu

n + 2C(x)∇∂tun.∇un.

Using equation (1), we obtain

d

dt
en(t, x) = 2∇.

(
C(x)∇un∂tun

)
− 2q(x,D)∗q(x,D)∂tu

n∂tu
n.

Therefore∫
R+×Ω

χ′(t)φ(x)en(t, x)dtdx = 2

∫
R+×Ω

χ(t)∇φ(x).C(x)∇un(t, x)∂tu
n(t, x)dtdx

+ 2

∫
R+×Ω

χ(t)φ(x)q(x,D)∗q(x,D)∂tu
n∂tu

ndtdx.

Using Proposition 1, we have (∂tu
n(t))n goes to 0 strongly in L2

loc(Ω), so

lim
n→+∞

[∫
R+×Ω

χ′(t)φ(x)en(t, x)dtdx

]

= lim
n→+∞

[
2

∫
R+×Ω

χ(t)φ(x)q(x,D)∗q(x,D)∂tu
n∂tu

ndtdx

]
.

(54)

By (52) and using the fact that

lim
n→+∞

[
2

∫
R+×Ω

χ(t)φ(x)q(x,D)∗q(x,D)∂tu
n∂tu

ndtdx

]
=

lim
n→+∞

[
2

∫
R+×Ω

χ(t)φ(x)q(x,D)∂tu
nq(x,D)∂tu

ndtdx

]
,

we get Proposition 2.

�
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Nash-Moser, Inter Éditions du CNRS, Meudon, France, 1991.

[2] A. Atallah-Baraket, C. Fermanian Kammerer, High frequency analysis
of solutions to the equation of viscoelasticity of Kelvin-Voight, J. Hyper-
bolic. Differ. Equ. 1 (2004), 789-812.

[3] M.A. Ayadi, A. Bchatnia, M. Hamouda, S. Messaoudi, General decay
in a Timoshenko-type system with thermoelasticity with second sound,
Adv. Nonlinear Anal. 4 (2015), 263-284.

[4] D. Blanchard, O. Guib, Existence of a solution for a nonlinear system in
thermo-viscoelasticity, Adv. Differential Equations 5 (2000), 1221-1252.

[5] B. Bougherara, J. Giacomoni, Existence of mild solutions for a singular
parabolic equation and stabilization, Adv. Nonlinear Anal. 4 (2015), 123-
134.

[6] D. Brandon, I. Fonseca and P. Swart, Dynamics and oscillatory mi-
crostructure in a model of displacive phase transformations, Progress in
partial differential equations: the Metz surveys, 3, 130144, Pitman Res.
Notes Math. Ser., 314, Longman Sci. Tech., Harlow, 1994.

[7] N. Burq, Mesures semi-classique et mesures de défaut, Sminaire N.
Bourbaki, (1996-1997), exp. no 826, 167-195.

[8] N. Burq, G. Lebeau, Mesures de défaut de compacité, application au
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