Analysis of the energy decay of a viscoelasticity type equation

Open access

Abstract

In this paper, we study the evolution of the energy density of a sequence of solutions of a problem related to a viscoelasticity model where the viscosity term is a pseudo-differential operator of order 2α with α ∈ (0, 1). We calculate the weak limit of the energy density in terms of microlocal defect measures and under special assumption we prove that the viscosity term prevents propagation of concentration and oscillation effects contrary to what happens in the wave equation.

[1] S. Alinhac, P. Gérard, Opérateurs pseudo-differentiels et théoréme de Nash-Moser, Inter Éditions du CNRS, Meudon, France, 1991.

[2] A. Atallah-Baraket, C. Fermanian Kammerer, High frequency analysis of solutions to the equation of viscoelasticity of Kelvin-Voight, J. Hyperbolic. Differ. Equ. 1 (2004), 789-812.

[3] M.A. Ayadi, A. Bchatnia, M. Hamouda, S. Messaoudi, General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal. 4 (2015), 263-284.

[4] D. Blanchard, O. Guib, Existence of a solution for a nonlinear system in thermo-viscoelasticity, Adv. Differential Equations 5 (2000), 1221-1252.

[5] B. Bougherara, J. Giacomoni, Existence of mild solutions for a singular parabolic equation and stabilization, Adv. Nonlinear Anal. 4 (2015), 123-134.

[6] D. Brandon, I. Fonseca and P. Swart, Dynamics and oscillatory microstructure in a model of displacive phase transformations, Progress in partial differential equations: the Metz surveys, 3, 130144, Pitman Res. Notes Math. Ser., 314, Longman Sci. Tech., Harlow, 1994.

[7] N. Burq, Mesures semi-classique et mesures de défaut, Sminaire N. Bourbaki, (1996-1997), exp. no 826, 167-195.

[8] N. Burq, G. Lebeau, Mesures de défaut de compacité, application au systéme de Lamé, Ann. Scient. Ec. Norm. Sup. 34 (2001), 817-870.

[9] E. Cordero, F. Nicola and L. Rodino, Microlocal analysis and applications, Advances in pseudo-differential operators, 117, Oper. Theory Adv. Appl., 155, Birkhuser, Basel, 2004.

[10] C. Do, On the Dynamic Deformation of a Bar against an Obstacle. Variational Methods in the Mechanics of Solids, ed. S. Nemat Nasser, Northwestern University, USA ( Pergamon Press, 1978), 237-241.

[11] G. Francfort, Introduction to H-Measures and their applications, Progress in Nonlinear Differential Equations and Their Applications, Vol. 68, 85-110, Birkhuser Verlag Basel = Switzerland.

[12] G. Francfort, P. Gérard, The wave equation on a thin domain : Energy Density and observability, Journal of Hyperbolic Differential Equation 1 (2004), 351-366.

[13] G. Francfort, F. Murat, Oscillations and energy densities in the wave equation, Comm. Partial Differential Equations 17 (1992), 1785-1865.

[14] P. Gérard, Microlocal defect measures, Commun. Partial Differential Equations, 16 (1991), 1761-1794.

[15] P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations, J. Funct. Anal. 133 (1996), 50-68.

[16] M. Ghergu, V. R_adulescu, Nonlinear PDEs. Mathematical models in biology, chemistry and population genetics, Springer Monographs in Mathematics, Springer, Heidelberg, 2012.

[17] M. S. Joshi, Introduction to Pseudo-Differential operators, arXiv: 9906155v1, (1999).

[18] J. U. Kim, On the local regularity of solutions in linear viscoelasticity of several space dimensions, Trans. Amer . Math. Soc. 346 (1994), 359-398.

[19] G. Lebeau, Equations des ondes amorties, Séminaire de l'école polytechnique, Expos XV (1994).

[20] J. Le Rousseau, Analyse microlocale et semi classique. Applications au prolongement unique, et au contrôle des ondes et de la chaleur, unpublished manuscript.

[21] A. Petrov, M. Schatzman, Viscolastodynamique monodimensionnelle avec conditions de Signorini, C.R. Acad. Sci. Paris Ser. I 334 (2002), 983-988.

[22] M. Petrini, Behaviour of the energy density associated to a Kelvin-Voight model in viscoelasticity, Asymptot. Anal 34 (2003), 261-273.

[23] V. Rădulescu, D. Repovš, Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.

[24] L. Tartar, H-measures, a new approach for studying Homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc, Edinburgh Sect. A 115 (1990), 193-230.

[25] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1934), 742-759.

Analele Universitatii "Ovidius" Constanta - Seria Matematica

The Journal of "Ovidius" University of Constanta

Journal Information


IMPACT FACTOR 2018: 0.638
5-year IMPACT FACTOR: 0.58


CiteScore 2018: 0.55

SCImago Journal Rank (SJR) 2018: 0.254
Source Normalized Impact per Paper (SNIP) 2018: 0.583

Mathematical Citation Quotient (MCQ) 2016: 0.10

Target Group

researchers in all fields of pure and applied mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 92 4
PDF Downloads 79 59 9