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On the Consimilarity of Split Quaternions and
Split Quaternion Matrices

Hidayet Hüda Kösal, Mahmut Akyig̃it and Murat Tosun

Abstract

In this paper, we introduce the concept of consimilarity of split
quaternions and split quaternion matrices. In this regard, we examine
the solvability conditions and general solutions of the equations ax̃ = xb
and AX̃ = XB in split quaternions and split quaternion matrices, re-
spectively. Moreover, coneigenvalue and coneigenvector are defined for
split quaternion matrices. Some consequences are also presented.

1 Introduction

Hamilton introduced real quaternions that can be represented as [9]

H = {q = q0 + q1i+ q2j + q3k : qs ∈ R, s = 0, 1, 2, 3} (1)

where

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (2)

It seems forthwith that multiplication of the real quaternions is not commuta-
tive owing to these ruled. So, it is not easy to work the real quaternions algebra
problems. Similarly, it is well known that the main obstacle in study of the
real quaternions matrices, dating back 1936 [19], is the non-commutative mul-
tiplication of the real quaternions. There are many studies on matrices of the
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real quaternions. So, Baker discussed right eigenvalues of the real quaternion
matrices with a topological approach in [2]. On the other hand, Huang and
So introduced on left eigenvalues of the real quaternion matrices [10]. After
that Huang discussed consimilarity of the real quaternion matrices and ob-
tained the Jordan canonical form of the real quaternion matrices down below
consimilarity [11]. Jiang and Ling studied in [15] the problem of condiago-
nalization of the real quaternion matrices under consimilarity and gave two
algebraic methods for the condiagonalization. Jiang and Wei studied the real
quaternion matrix equation X − AX̃B = C by means of real representation
of the real quaternion matrices [13]. Also, Jiang and Ling studied the prob-

lem of solution of the quaternion matrix equation AX̃ − XB = C via real
representation of a quaternions matrix [14].
After Hamilton had discovered the real quaternions, James Cockle defined,
by using real quaternions, the set of split quaternions, in 1849 [5]. The split
quaternions are not commutative like real quaternions. But the set of split
quaternions contains zero divisors, nilpotent and nontrivial idempotent ele-
ments [16]. The split quaternions are a recently developing topic, since the
split quaternions are used to express Lorentzian relations. Also, there are
many studies on geometric and physical meaning of the split quaternions [16]-
[17]. In [8], author studied equations ax = xb, ax = xb and x2 = a, in algebras
obtained by the Cayley-Dickson process. One of this algebras is algebra of split
quaternions. In [18], authors gave eigenvalue problem of a rotation matrix in
Minkowski 3 space by using split quaternions. In [6], authors investigated
linear split quaternionic equations with the terms of the form axb. Alagoz et
al. considered split quaternion matrices. They investigated the split quater-
nions matrices using properties of complex matrices [1]. After that Erdogdu
and Ozdemir obtained method of finding eigenvalues of the split quaternions
matrices. Also, they gave an extension of Gershgorin theorem for the split
quaternion matrices in [7]. Zhang et al. studied the split quaternionic least
square problem, derived two algebraic methods for finding solutions of the
problems in split quaternionic mechanics [20].

2 Consimilarity of Split Quaternions

Let R be the real number field, C = R ⊕ Ri be complex number field, and
HS = R⊕ Ri⊕ Rj ⊕ Rk be the split quaternion field over R, where

i2 = −1, j2 = k2 = 1
ij = −ji = k, jk = −kj = −i, ki = −ik = j.

(3)

The real part and the imaginary part of a = a0 + a1i + a2j + a3k ∈ HS are
defined as Re a = a0 and Im a = a1i+ a2j + a3k, respectively.



On the Consimilarity of Split Quaternions and Split Quaternion Matrices 191

The multiplication of a = a0 + a1i+ a2j + a3k and b = b0 + b1i+ b2j + b3k is
defined as

ab = Re aRe b+ g (Im a, Im b) + Re a Im b+ Re b Im a+ Im a× Im b

where
g (Im a, Im b) = −a1b1 + a2b2 + a3b3,

Im a× Im b = (a3b2 − a2b3) i+ (a3b1 − a1b3) j + (a1b2 − a2b1) k.

The conjugate of a split quaternion is denoted by a and it is

ā = a0 − a1i− a2j − a3k = Re a− Im a.

The norm of a split quaternion is defined as

‖a‖ =
√
|aa| =

√
|a20 + a21 − a22 − a23|.

Also, a split quaternion a is said to be spacelike, timelike or lightlike (null), if
aa < 0, aa > 0 or aa = 0, respectively.
The linear transformation φ, τ : HS → End (HS) , given by

φ (a) : HS → HS , φ (a) (x) = ax

and
τ (a) : HS → HS , τ (a) (x) = xa,

are called the left representation and the right representation of the algebra
HS , respectively. We know that every associative finite-dimensional algebra
A over an arbitrary K is isomorphic with a subalgebra of the matrix algebra
Mn (K) . So we could find a faithful representation for the algebra A in the
matrix algebra Mn (K), [8]. For the split quaternion algebra HS , the mapping:

φ : HS →M4 (R) , φ (a) =


a0 −a1 a2 a3
a1 a0 a3 −a2
a2 a3 a0 −a1
a3 −a2 a1 a0

 (4)

is an isomorphism between HS and the algebra of matrices with the above
form. The matrix φ (a) is called the left matrix representation for split quater-
nion a ∈ HS . In the same manner, we introduce the right matrix representation
for the split quaternion a as;

τ : HS →M4 (R) , τ (a) =


a0 −a1 a2 a3
a1 a0 −a3 a2
a2 −a3 a0 a1
a3 a2 −a1 a0

 , (5)
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where a = a0 + a1i+ a2j + a3k ∈ HS , [16].
It is nearby to identify a split quaternion a ∈ HS with a vector −→a ∈ R4

2

(where R4
2 is semi-Euclidean space [17]). We will denote such identification by

the symbol i.e.

a = a0 + a1i+ a2j + a3k ∼= −→a =


a0
a1
a2
a3

 .

Also, we show that conjugate, real part and imaginary part of a

a ∼=


a0
−a1
−a2
−a3

 = Ca, Rea = a0 ∼= a0e1 and Ima ∼=
−−→
Ima =


0
a1
a2
a3


respectively, where

C =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , e1 =


1
0
0
0

 .

Theorem 1. [16] If a, b, x ∈ HS and c ∈ R, then we have:

1. a = b⇔ φ (a) = φ (b)⇔ τ (a) = τ (b) ,

2. φ (a+ b) = φ (a) + φ (b) , τ (a+ b) = τ (a) + τ (b) ,

3. φ (ca) = cφ (a) , τ (ca) = cτ (a) ,

4. ab = φ (a)
−→
b , ab = τ (b)−→a , φ (a) τ (b) = τ (b)φ (a) ,

5. axb = φ (a) τ (b)−→x = τ (b)φ (a)−→x ,

6. φ (ab) = φ (a)φ (b) , τ (ab) = τ (b) τ (a) ,

7. φ (a) = ε(φ (a))
T
ε, τ (a) = ε(τ (a))

T
ε, ε =

(
−I2 0

0 I2

)
,

8. φ
(
a−1

)
= φ−1 (a) , τ

(
a−1

)
= τ−1 (a) , ‖a‖ 6= 0,

9. φ
(
a−1

)
=


− 1
‖a‖2 ε(φ (a))

T
ε if a is spacelike

1
‖a‖2 ε(φ (a))

T
ε if a is timelike

There is no inverse if a is lightlike
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10. det(φ (a)) = det(τ (a)) = ‖a‖2.

From Theorem 1, we get

ax− xb = (φ (a)− τ (b))−→x . (6)

The authors showed the following result about the difference φ (a) − τ (b) in
the last equation [16].

Theorem 2. [16] Let a = a0 + a1i+ a2j+ a3k, b = b0 + b1i+ b2j+ b3k ∈ HS

be given, and denote δ (a, b) = φ (a)− τ (b) . Then

i. If a and b are two split quaternions with g (Ima, Ima) < 0, g (Imb, Imb) <
0 or g (Ima, Ima) > 0, g (Imb, Imb) > 0 then, the determinant of δ (a, b)
is

det(δ (a, b)) = s4 − 2s2
(

(Ima)
2

+ (Imb)
2
)

+
(

(Ima)
2 − (Imb)

2
)2

or

det(δ (a, b)) = s4 + 2s2
(

(Ima)
2

+ (Imb)
2
)

+
(

(Ima)
2 − (Imb)

2
)2

where s = a0 − b0. Thus det(δ (a, b)) = 0 if and only if Rea = Reb and
g (Ima, Ima) = g (Imb, Imb) .

ii. If a0 6= b0, or g (Im a, Im a) 6= g (Im b, Im b) , then δ (a, b) is non-singular
and its inverse can be written as

δ−1 (a, b) = φ−1
(
a2 − 2b0a+ ‖b‖

) (
φ (a)− τ

(
b̄
))

= φ−1 (2 (a0 − b0) a+ ‖b‖ − ‖a‖)
(
φ (a)− τ

(
b̄
))

and

δ−1(a, b) = τ−1
(
b2 − 2a0b+ ‖a‖

)
(φ (ā)− τ (b))

= τ−1 (2 (b0 − a0) b+ ‖a‖ − ‖b‖) (φ (ā)− τ (b))
.

iii. If a0 = b0 and g (Im (a) , Im (a)) = g (Im (b) , Im (b)) , then δ (a, b) is
singular and has a generalized inverse as follows

δ−(a, b) =
1

4(Ima)
2 δ (a, b) =

1

4(Ima)
2 (φ (Ima)− τ (Imb)) .
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Definition 1. [16] The split quaternions a and b is said to be similar if there
exists a split quaternion p, ‖p‖ 6= 0 such that p−1ap = b. The relation, a is
similar to b, is denoted a ∼ b. Similarity is an equivalence relation on the split
quaternions.

Two complex matrix A,B ∈ Cn×n are complex consimilar if there exists an
invertible complex matrix P such that P AP−1 = B. Complex consimilarity
is an equivalence relation on Cn×n and has been extensively studied [12].
The split quaternion holds an important place in differential geometry and
structure theory of Lorentz Space [16],[17], and for this reason consimilarity
relation will be defined for split quaternions.
If a, b ∈ HS , generally ab 6= a b. Thus the mapping a→ pap−1 is not an equiv-
alence relation on HS . Thus we need to give a new definition of consimilarity
of split quaternion matrices.

Definition 2. Let a = a0 + a1i+ a2j + a3k ∈ HS , then we define ã = jaj =
a0 − a1i+ a2j − a3k. We say that ã is the j − conjugate of a.

For any a, b ∈ HS , the following equalities are easy to confirm

i. (̃ã) = a;

ii. (̃a+ b) = ã+ b̃;

iii. (̃ab) = ãb̃;

iv. (ã) = (̃a).

Definition 3. The split quaternions a and b is said to be consimilar if there
exists a split quaternion p, ‖p‖ 6= 0 such that p̃ap−1 = b. This relation is

denoted a
c∼ b.

Theorem 3. For a, b, c ∈ HS , the followings are satisfied:

• Reflexive: a
c∼ a ;

• Symmetric: if a
c∼ b, then b

c∼ a;

• Transitive: if a
c∼ b and b c∼ c then a

c∼ c.

Proof.

• Reflexive: 1̃ a 1−1 = a trivially, for a ∈ HS . So, consimilarity is reflexive.
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• Symmetric: Let p̃ap−1 = b. Since p is nonsingular, we have

(p̃)
−1
bp = (p̃)

−1
p̃ap−1p = a.

So, consimilarity is symmetric.

• Transitive: Let p̃1ap1
−1 = b and p̃2bp2

−1 = c. Then

c = p̃2p̃1ap
−1
1 p−12 = (p̃2p1) a(p2p1)

−1
.

So, consimilarity is transitive.

Then, by Theorem 3, consimilarity is an equivalence relation on HS .

Theorem 4. Let a, b ∈ HS be given. Then the linear equation

ax− x̃ b = 0 (7)

has a nonzero solution (‖x‖ 6= 0), i.e., a and b are consimilar, if and only if

Re (ja) = Re (jb) and g (Im (ja) , Im (ja)) = g (Im (jb) , Im (jb)) 6= 0. (8)

In that case, the general solution of (7) is

x =

[
p+

1

(Im ja)
2 (Im ja)p(Im jb)

]
(9)

where p ∈ HS is arbitrary, in particular, if ja 6= −bj, i.e., Im (ja) + Im (jb) 6=
0, then the general solution of (7) can be written as

x = λ1 (Im (ja) + Im (jb)) + λ2

(
Im (ja) Im (jb) + (Im (ja))

2
)

(10)

where λ1, λ2 ∈ R are arbitrary.

Proof. The equation (7) can be expressed as

ax− jxjb = 0⇔ jax− xjb = 0⇔ [φ (ja)− τ (jb)]−→x = δ (ja, jb)−→x = 0.

This equation has a nonzero solution for x if and only if det(δ (ja, jb)) = 0,
which is equivalent to (8). In the present case, the general solution can be
written as

x = 2
[
I4 − δ− (ja, jb) δ (ja, jb)

]−→p
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where −→p is an arbitrary vector. An expression of δ− (ja, jb) can be derived
from Theorem 2. Thus

x = 2

[
I4 −

1

4(Im ja)
2 δ (ja, jb) δ (ja, jb)

]
−→p

= 2

[
I4 −

1

(Im ja)
2

(
2(Im ja)

2
I4 − 2φ (Im ja) τ (Im jb)

)]−→p
=

[
I4 +

1

(Im ja)
2φ (Im ja) τ (Im jb)

]
−→p .

Applying it to split quaternion form by Theorem 1 in the last equation, we
have

x =

[
p+

1

(Im ja)
2 (Im ja)p(Im jb)

]
.

If ja 6= −b̄j in (9), then we set p = Im (ja) and p = (Im (ja))
2

in (9), respec-
tively, and (9) becomes

x1 = Im (ja) + Im (jb) , x2 = (Im (ja))
2

+ Im (ja) Im (jb) .

Thus (10) is also a solution to (7) under (8). The independence of x1 and x2
can be seen from two simple facts that Rex1 = 0 and Rex2 6= 0. Therefore
(10) is exactly the general solution to (7), since the rank of δ (ja, jb) is two
under (8).

3 Consimilarity of Split Quaternion Matrices

The set of m×n matrices with the split quaternion entries, which is denoted by
Hm×n

S with ordinary matrix addition and multiplication is a ring with unity.

Let AT , A and A∗ = (AT ) be transpose, conjugate and transpose conjugate
matrix of A ∈ Hm×n

S , respectively.

Theorem 5. [1] For any A ∈ Hm×n
S and B ∈ Hn×s

S , the followings statements
are valid:

i.
(
A
)T

= (AT ) ;

ii. (AB)
∗

= B∗A∗;

iii. If A and B are nonsingular (m = n = s), (AB)
−1

= B−1A−1;
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iv. If A is nonsingular (m = n), (A∗)
−1

=
(
A−1

)∗
;

v. If A is nonsingular (m = n),
(
A
)−1 6= (A−1), in general;

vi. If A is nonsingular (m = n),
(
AT
)−1 6= (A−1)T , in general;

vii. AB 6= AB, in general;

viii. (AB)
T 6= BTAT , in general.

Definition 4. Let A ∈ Hn×n
S , then we define Ã = jAj. We say that Ã is the

j − conjugate of A.

For any A,B ∈ Hm×n
S and C ∈ Hn×s

S , the following equalities are easy to
confirm

i.
(̃
Ã
)

= A;

ii. ˜(A+B) = Ã+ B̃;

iii. (̃AC) = ÃC̃;

iv.
(
Ã
)

=
(̃
A
)
.

Theorem 6. If A ∈ Hn×n
S , in that case

A is nonsingular ⇔ Ã is nonsingular ⇔ A∗ is nonsingular.

Furthermore, if A is nonsingular, (A∗)
−1

=
(
A−1

)∗
and

(
Ã
)−1

= (̃A−1).

Proof. Since A is nonsingular, there exists an matrix A−1 ∈ Hn×n
S so that

AA−1 = In. Thus AA−1 = In ⇔ jAjjA−1j = In and
(
Ã
)−1

= (̃A−1).

Similar way, we get A∗
(
A−1

)∗
= In.

Definition 5. The split quaternion matrices A and B is said to be consimilar
if there exists a split quaternion P such that P̃AP−1 = B. This relation is
denoted as A

c∼B. Consimilarity relation is an equivalence relation on Hn×n
S .

Clearly if A ∈ Cn×n, then A = Ã = jAj. Thus, A ∈ Cn×n is consimilar to
B ∈ Cn×n as complex matrices if A is consimilar to B as split quaternion ma-
trices. Then, consimilarity relation in Hn×n

S is a natural extension of complex
consimilarity in Cn×n.
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Theorem 7. If A,B ∈ Hn×n
S , then

A
c∼B ⇔ jA ∼ jB ⇔ Aj ∼ Bj ⇔ jA ∼ Bj.

Proof. Since A
c∼B ⇔ there exists a nonsingular matrix P ∈ Hn×n

S so that

P̃AP−1 = jPjAP−1 = B. Thus A
c∼B ⇔ PjAP−1 = jB ⇔ jA ∼ jB. Since

j−1jAj = Aj, we get jA ∼ Aj and jB ∼ Bj. Therefore jA ∼ jB ⇔ Aj ∼
Bj ⇔ jA ∼ Bj.

Definition 6. Let A ∈ Hn×n
S , λ ∈ HS . If there exists 0 6= x ∈ Hn×1

S such that

Ax̃ = xλ (Ax̃ = λx)

then λ is said to be a right (left) coneigenvalues of A and x is said to be a
coneigenvector of A corresponding to the right (left) coneigenvalue λ. The set
of right coneigenvalues is defined as

σ̃r (A) = {λ ∈ HS : Ax̃ = xλ, for some x 6= 0} .

The set of left coneigenvalues is similarly defined and is denoted by σ̃l (A) .

Recall that if x ∈ Hn×1
S (x 6= 0), and λ ∈ HS satisfying Ax = xλ (Ax = λx),

we call x an eigenvector of A, while λ is an right (left) eigenvalue of A. We
also say that x is an eigenvector corresponding to the right(left) eigenvalue λ.

Theorem 8. Let A,B ∈ Hn×n
S , if A is consimilar to B, then A and B have

the same right coneigenvalues.

Proof. Let A
c∼B, then, there exists a nonsingular matrix P ∈ Hn×n

S such that

B = P̃AP−1. Let λ ∈ HS be a right coneigenvalue for the matrix A, then we
find the matrix 0 6= x ∈ Hn×1

S such that Ax̃ = xλ. Let y = Px̃. Finally

By = P̃AP−1y = P̃Ax̃ = P̃ xλ = ỹλ.

Theorem 9. If A ∈ Hn×n
S , in that case λ is right coneigenvalue of A if and

only if for any β ∈ HS (‖β‖ 6= 0) , β̃λβ−1 is a right eigenvalue of A.

Proof. From Ax̃ = xλ , we get A (x̃β) = x β̃
(
β̃
)−1

λβ.

Theorem 10. If A ∈ Hn×n
S and λ ∈ HS , then λ0 is a right coneigenvalue of

A ⇔ jλ0 is a right eigenvalue of Aj ⇔ λ0j is a right eigenvalue of jA.
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Proof. Suppose that λ0 is right coneigenvalue of A. Then 0 6= x ∈ Hn×n
S so

that Ax̃ = Ajxj = xλ0 ⇔ Ajx = x (λ0j) ⇔ λ0j is a right eigenvalue of Aj.
Also, Ax̃ = xλ0 ⇔ jAx̃ = jxjjλ0 = x̃jλ0 ⇔ jλ0 is a right eigenvalue of
jA.

Definition 7. [1] Let A = A1 +A2j ∈ Hn×n
S where As ∈ Cn×n, s = 1, 2. The

2n× 2n matrix (
A1 A2

A2 A1

)
is called the complex adjoint matrix of A and denoted χA.

Theorem 11. [1] Let A,B ∈ Hn×n
S , then the followings are satisfied:

i. χA+B = χA + χB ;

ii. χAB = χAχB ;

iii. If A is nonsingular, (χA)
−1

= χA−1 ;

iv. In general χA∗ 6= (χA)
∗
.

Theorem 12. For every A ∈ Hn×n
S ,

σ̃r (A) ∩ C = σ̃ (χA)

where σ̃ (χA) =
{
λ ∈ C : χAy = λy, for some 0 6= y ∈ Cn×1} is the set of

coneigenvalues of χA.

Proof. Let A = A1 + A2j ∈ Hn×n
S such that As ∈ Cn×n, s = 1, 2, and λ ∈ C

be a right coneigenvalue of A. Therefore there exists nonzero column vector
x ∈ Hn×1

S such that Ax̃ = xλ. This implies

(A1 +A2j) (x1 + x2j) = (x1 + x2j)λ

(Ax1 +A2x2) = x1λ and (A2x1 +A1x2) = x2λ.

Using these equations, we can write(
A1 A2

A2 A1

)(
x1
x2

)
= λ

(
x1
x2

)
.

Therefore, the complex right coneigenvalue of the split quaternion matrix A is
an equivalent to the coneigenvalue of the adjoint matrix χA that is σ̃r (A)∩C =
σ̃ (χA) .
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4 Real Representation of Split Quaternion Matrices

Let A = A0 + A1i + A2j + A3k ∈ Hm×n
S where As are m × n real matrices,

s = 0, 1, 2, 3. We define the linear transformation φA (X) = AX̃. Then, we
can write

φA (1) = A = A0 +A1i+A2j +A3k

φA (i) = A ĩ = A1 −A0i−A3j +A2k

φA (j) = A j̃ = A2 +A3i+A0j +A1k

φA (k) = A k̃ = −A3 +A2i+A1j −A0k.

Then, we find the real representation of the split quaternion matrix A as
follows:

φA =


A0 A1 A2 −A3

A1 −A0 A3 A2

A2 −A3 A0 A1

A3 A2 A1 −A0

 ∈ R4m×4n.

Theorem 13. For the split quaternion matrix A, the following identities are
satisfied:

i. If A ∈ Hm×n
S , then

P−1m φAPn = φÃ , Q
−1
m φAQn = −φA, R−1m φARn = φA, S−1m φASn = −φA;

where

Pm =


Im 0 0 0
0 −Im 0 0
0 0 Im 0
0 0 0 −Im

 , Qm =


0 −Im 0 0
Im 0 0 0
0 0 0 Im
0 0 −Im 0

 ,

Rm =


0 0 −Im 0
0 0 0 −Im

−Im 0 0 0
0 −Im 0 0

 , Sm =


0 0 0 Im
0 0 −Im 0
0 −Im 0 0
Im 0 0 0

 ,

ii. If A,B ∈ Hm×n
S , then φA+B = φA + φB ;

iii. If A ∈ Hm×n
S , B ∈ Hn×r

S , in that case φAB = φAPnφB = φAφB̃Pr;

iv. If A ∈ Hm×m
S , in that case A is nonsingular if and only if φA is nonsin-

gular, φ−1A = PmφA−1Pm;
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v. If A ∈ Hm×m
S , φA = ε2(φA)

T
ε2 where ε2 =


Im 0 0 0
0 −Im 0 0
0 0 −Im 0
0 0 0 Im

 ;

vi. If A ∈ Hm×m
S ,

A = A0 +A1i+A2j +A3k =
1

4
(Im iIm jIm kIm)φA


In
iIn
jIn
−kIn

 ;

vii. If A ∈ Hm×m
S ,

σ̃l (A) ∩ C = σ (φA)

where σ (φA) = {λ ∈ C : φAy = λy, for some y 6= 0} is the set of eigen-
values of φA.

Proof. The first six statements can be seen in an easy way. Thus we will prove
vii.
Let A = A0 + A1i + A2j + A3k ∈ Hm×m

S where A0, A1, A2, A3 ∈ Rm×m

and λ ∈ C be a left coniegenvalue of A. Thus there exists a nonzero vector
x = x0 + x1i+ x2j + x3k ∈ Hm×1

S such that Ax̃ = λx. This implies

(A0 +A1i+A2j +A3k) (x0 − x1i+ x2j − x3k) = λ (x0 + x1i+ x2j + x3k)

(A0x0 +A1x1 +A2x2 −A3x3) + i (A1x0 −A0x1 +A3x2 +A2x3)
+j (A2x0 −A3x1 +A0x2 +A1x3) + k (A3x0 +A2x1 +A1x2 −A0x3)
= λx0 + λx1i+ λx2j + +λx3k.

Therefore we obtain the following equations

A0x0 +A1x1 +A2x2 −A3x3 = λx0
A1x0 −A0x1 +A3x2 +A2x3 = λx1
A2x0 −A3x1 +A0x2 +A1x3 = λx2
A3x0 +A2x1 +A1x2 −A0x3 = λx3.

Using these equations, we can write
A0 A1 A2 −A3

A1 −A0 A3 A2

A2 −A3 A0 A1

A3 A2 A1 −A0




x0
x1
x2
x3

 = λ


x0
x1
x2
x3

 .

Thus we have σ̃l (A) ∩ C = σ (φ (A)) .
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5 The Split Quaternion Matrix Equation AX̃ −XB = C

In [3]-[4], Complex matrix equation AX − XB = C and in [14] real quater-

nion matrix equation AX̃ −XB = C was studied by means of the theory of
consimilarity. In this section, we take into consideration the split quaternion
matrix equation

AX̃ −XB = C (11)

by means of the real representation, where A ∈ Hm×m
S , B ∈ Hn×n

S and C ∈
Hm×n

S .
We define the real representation matrix equation of the split quaternion ma-
trix equation (11) by

φAY − Y φB = φC (12)

By (iii.) in Theorem 13, the equation (11) is equivalent to the equation

φAφXPn − φXPnφB = φC . (13)

Theorem 14. The split quaternion matrix equation AX̃ − XB = C has a
solution X if and only if real matrix equation φAY −Y φB = φC has a solution
Y = φXPn.

Theorem 15. Let A ∈ Hm×m
S , B ∈ Hn×n

S and C ∈ Hm×n
S . The split quater-

nion matrix equation AX̃ − XB = C has a solution X ∈ Hm×n
S if and only

if the matrix equation φAY − Y φB = φC has a solution Y ∈ R4m×4n. In this
case, if Y is a solution to the matrix equation φAY − Y φB = φC , we have

X =
1

16
(Im iIm jIm kIm)

(
Y −Q−1m Y Qn +R−1m Y Rn − S−1m Y Sn

)
Im
−iIm
jIm
kIm


(14)

is a solution to AX̃ −XB = C.

Proof. We show that if the real matrix

Y =


Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44

 , Yuv ∈ Rm×n, u, v = 1, 2, 3, 4
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is a solution to (12), the matrix represented in (14) is a solution to (11). Since
Q−1m φXQn = −φX , R−1m φXRn = φX , S−1m φXSn = −φX , and Y = φXPn, we
have

φA
(
−Q−1m Y PnQn

)
Pn −

(
−Q−1m Y PnQn

)
PnφB = φC

φA
(
R−1m Y PnRn

)
Pn −

(
R−1m Y PnRn

)
PnφB = φC

φA
(
−S−1m Y PnSn

)
Pn −

(
−S−1m Y PnSn

)
PnφB = φC .

(15)

Last equations show that if Y is a solution to (12), then
(
−Q−1m Y PnQn

)
Pn,(

R−1m Y PnRn

)
Pn and

(
S−1m Y PnSn

)
Pn are also solutions to (12). Then the

undermentioned real matrix:

Y ′ =
1

4

(
Y −

(
Q−1m Y PnQn −R−1m Y PnRn + S−1m Y PnSn

)
Pn

)
(16)

is a solution to (12). Since Y ′ = φXPn, we easily obtain

Y ′Pn = φX =


Y ′0 Y ′1 Y ′2 −Y ′3
Y ′1 −Y ′0 Y ′3 Y ′2
Y ′2 −Y ′3 Y ′0 Y ′1
Y ′3 Y ′2 Y ′1 −Y ′0

 ,

where

Y ′0 = 1
4 (Y11 + Y22 + Y33 + Y44) , Y ′1 = 1

4 (−Y12 + Y21 − Y34 + Y43) ,

Y ′2 = 1
4 (Y13 − Y24 + Y31 − Y42) , Y ′3 = 1

4 (Y14 + Y23 + Y32 + Y41) .
(17)

Now, we construct a split quaternion matrix by using Theorem 13-vi:

X = Y ′0 + Y ′1 i+ Y ′2j + Y ′3k =
1

4
(Im iIm jIm kIm)Y ′


In
−iIn
jIn
kIn

 .

Thus X is a solution to equation given by (11).

As a special case of Theorem 15 for C = 0, we have the following result for
consimilarity of split quaternion matrices.

Theorem 16. Let A ∈ Hn×n
S , B ∈ Hn×n

S . If the matrix C = 0 for equation

AX̃ − XB = C and X is nonsingular, then split quaternion matrix A is
consimilar to B and real matrix φA is similar to φB.
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Proof. If the matrix C = 0 and X is nonsingular for equation AX̃ −XB = C,
then we get

AX̃ = XB ⇒ X−1AX̃ = B

and

X−1AX̃ = B ⇒ φX−1AφXPn = φB ⇒ φX−1PnφAφXPn = φB
⇒ Pn(φX)

−1
φAφXPn = φB ⇒ (φXPn)

−1
φAφXPn = φB .

Therefore split quaternion matrix A is consimilar to B and real matrix φA is
similar to φB .

Example: Solve the matrix equation(
1 i
i j

)
X̃ −X

(
1 0
0 0

)
=

(
−2i+ j 2 + j − k
1 + i+ k 1 + i− 2k

)
by using its real representation.
Real representation of given equation is



1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0
0 1 −1 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 0
0 0 0 0 0 1 −1 0
0 0 0 1 1 0 0 0


Y − Y



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0



=



0 2 −2 0 1 1 0 −1
1 1 1 1 0 0 1 −2
−2 0 0 −2 0 1 1 1
1 1 −1 −1 −1 2 0 0
1 1 0 −1 0 2 −2 0
0 0 1 −2 1 1 1 1
0 1 1 1 −2 0 0 −2
−1 2 0 0 1 1 −1 −1


.

If we solve this equation, we have
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Y =



0 1 −1 0 0 1 0 0
0 0 0 −1 0 1 1 0
1 0 0 1 0 0 0 −1
0 1 0 0 1 0 0 −1
0 1 0 0 0 1 −1 0
0 1 1 0 0 0 0 −1
0 0 0 −1 1 0 0 1
1 0 0 −1 0 1 0 0


.

Then

φX = Y ′P2 = 1
4

(
Y P2 −

(
Q−12 Y P2Q2 −R−12 Y P2R2 + S−12 Y P2S2

))

=



0 1 1 0 0 1 0 0
0 0 0 1 0 1 −1 0
1 0 0 −1 0 0 0 1
0 1 0 0 1 0 0 1
0 1 0 0 0 1 1 0
0 1 −1 0 0 0 0 1
0 0 0 1 1 0 0 −1
1 0 0 1 0 1 0 0


.

From Theorem 13, we obtain

X =
1

16
(I2 iI2 jI2 kI2) (φX)


I2
iI2
jI2
−kI2

 =

(
i 1 + j
k i+ j

)
.

Acknowledgements
The authors would like to thank the anonymous referee for his/her helpful
suggestions and comments which improved significantly the presentation of
the paper.

References

[1] Y. Alagoz, K. H. Oral and S. Yuce, Split quaternion matrices,
Miskolc Math. Notes 13 (2012), 223–232.

[2] A. Baker, Right eigenvalues for quaternionic matrices: a topological
approach, Linear Algebra and Appl. 286 (1999), 303–309.



On the Consimilarity of Split Quaternions and Split Quaternion Matrices 206

[3] J. H. Bevis, F. J. Hall and R. E. Hartwig,, The matrix equation
AX − XB = C and its special cases., SIAM J. Matrix Anal. Appl. 9
(1988), 348-359.

[4] J. H. Bevis, F. J. Hall and R. E. Hartwig,, Consimilarity and
the matrix equation AX − XB = C, Current Trends in Matrix Theory.
Elsevier Science Publishing Co. Inc., 1987.

[5] J. Cockle, On systems of algebra involving more than one imaginary,
Phil. Mag. 35 (1849), 434–635.

[6] M. Erdogdu and M. Ozdemir, Two-sided linear split quaternionic
equations with n unknowns, Linear and Multilinear Alg. 63 (2015), 97–
106.

[7] M. Erdogdu and M. Ozdemir, On Eigenvalues of split quaternion
matrices, Adv. Appl. Clifford Alg. 23 (2013), 625–638.

[8] C. Flaut, Some equation in algebras obtained by cayley-dickson process,
An. St. Univ. Ovidius Constant 9 (2001), 45–68.

[9] W. R. Hamilton, Lectures on quaternions, Hodges and Smith, Dublin,
1853.

[10] L. Huang and W. So, On left eigenvalues of a quaternionic matrix,
Linear Algebra and Appl. 323 (2001), 105–116.

[11] L. Huang, Consimilarity of quaternion matrices and complex matrices,
Linear Algebra and Appl. 331 (2001), 21–30.

[12] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge Univer-
sity Press, New York, 1985.

[13] T.S. Jiang and M.S. Wei., On a solution of the quaternion matrix

equation X −AX̃B = C and its application, Acta Math. Sin. 21 (2005),
483–490.

[14] T.S. Jiang and S. Ling, On a solution of the quaternion matrix equation

AX̃ − XB = C and its applications, Adv. Appl. Clifford Algebras 23
(2013), 689–699.

[15] T. Jiang and S. Ling, Algebraic methods for condiagonalization under
consimilarity of quaternion matrices in quaternionic quantum mechanics,
Adv. Appl. Clifford Alg. 23 (2013), 405–415.



On the Consimilarity of Split Quaternions and Split Quaternion Matrices 207

[16] L. Kula and Y. Yaylı, Split quaternions and rotations in semi euclidean
space, J. Korean Math. Soc. 44 (2007), 1313–1327.

[17] M. Ozdemir and A. A. Ergin, Rotations with unit timelike quaternions
in minkowski 3-space, J. Geom. Phys. 56 (2006), 322–336.

[18] M. Ozdemir, M. Erdogdu and Hakan Simsek, On the eigenvalues
and eigenvectors of a lorentzian rotation matrix by using split quaternions,
Adv. Appl. Clifford Alg. 24 (2014), 179-192.

[19] L. A. Wolf, Similarity of matrices in which the elements are real quater-
nions, Bull. Amer. Math. Soc. 42 (1936), 737–743.

[20] Z. Zhang, Z. Jiang and T. Jiang, Algebraic methods for least squares
problem in split quaternionic mechanics, Appl. Math. Comput. 269
(2015), 618-625.

Hidayet Hüda Kösal,
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