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Popoviciu type inequalities for n−convex
functions via extension of Montgomery identity

Asif R. Khan, Josip Pečarić and Marjan Praljak

Abstract

Extension of Montgomery’s identity is used in derivation of Popoviciu-
type inequalities containing sums

∑m
i=1 pif(xi), where f is an n-convex

function.
Integral analogues and some related results for n-convex functions at

a point are also given, as well as Ostrowski-type bounds for the integral
remainders of identities associated with the obtained inequalities.

1 Introduction

Pečarić [7] proved the following result (see also [10, p.262]):

Proposition 1. The inequality

m∑
i=1

pif(xi) ≥ 0 (1)

holds for all convex functions f if and only if the m−tuples x = (x1, . . . , xm),
p = (p1, . . . , pm) ∈ Rm satisfy

m∑
i=1

pi = 0 and

m∑
i=1

pi|xi − xk| ≥ 0 for k ∈ {1, . . . ,m}. (2)
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Since
m∑
i=1

pi|xi − xk| = 2

m∑
i=1

pi(xi − xk)+ −
m∑
i=1

pi(xi − xk),

where y+ = max(y, 0), it is easy to see that condition (2) is equivalent to

m∑
i=1

pi = 0,

m∑
i=1

pixi = 0 and

m∑
i=1

pi(xi−xk)+ ≥ 0 for k ∈ {1, . . . ,m−1}.

(3)
Let A denote the linear operator A(f) =

∑m
i=1 pif(xi), let w(x, t) = (x −

t)+ and x(1) ≤ x(2) ≤ . . . ≤ x(m) be the sequence x in ascending order. Notice
that A(w(·, xk)) =

∑m
i=1 pi(xi − xk)+. For t ∈ [x(k), x(k+1)] we have

A(w(·, t)) = A(w(·, x(k))) + (x(k) − t)
∑

{i:xi>x(k)}

pi,

so the mapping t 7→ A(w(·, t)) is linear on [x(k), x(k+1)]. Furthermore,
A(w(·, x(m)) = 0, so condition (3) is equivalent to

m∑
i=1

pi = 0,

m∑
i=1

pixi = 0 and

m∑
i=1

pi(xi − t)+ ≥ 0 for every t ∈ [x(1), x(m−1)].

(4)
It turns out that condition (4) is appropriate for extension of Proposition

1 to the integral case and the more general class of n-convex functions (see
e.g. [10]).

Definition 1. The nth order divided difference of a function f : I → R at
distinct points xi, xi+1, . . . , xi+n ∈ I = [a, b] ⊂ R for some i ∈ N is defined
recursively by:

[xj ; f ] = f (xj) , j ∈ {i, . . . , i+ n}
[xi, . . . , xi+n; f ] = [xi+1,...,xi+n;f ]−[xi,...,xi+n−1;f ]

xi+n−xi .

It may easily be verified that

[xi, . . . , xi+n; f ] =

n∑
k=0

f(xi+k)∏i+n
j=i,j 6=i+k(xi+k − xj)

.

Remark 1. Let us denote [xi, . . . , xi+n; f ] by ∆(n)f(xi). The value
[xi, . . . , xi+n; f ] is independent of the order of the points xi, xi+1, . . . , xi+n.
We can extend this definition by including the cases in which two or more
points coincide by taking respective limits. �



POPOVICIU TYPE INEQUALITIES FOR n−CONVEX FUNCTIONS VIA
EXTENSION OF MONTGOMERY IDENTITY 163

Definition 2. A function f : I → R is called convex of order n or n−convex
if for all choices of (n+ 1) distinct points xi, . . . , xi+n we have ∆(n)f(xi) ≥ 0.

If nth order derivative f (n) exists, then f is n-convex if and only if f (n) ≥ 0.
For 1 ≤ k ≤ n − 2, a function f is n-convex if and only if f (k) exists and is
(n− k)-convex.

The following result is due to Popoviciu [11, 12] (see [14, 10, 9] also).

Proposition 2. Let n ≥ 2. Inequality (1) holds for all n-convex functions
f : [a, b]→ R if and only if the m−tuples x ∈ [a, b]m, p ∈ Rm satisfy

m∑
i=1

pix
k
i = 0, for all k = 0, 1, . . . , n− 1 (5)

m∑
i=1

pi(xi − t)n−1
+ ≥ 0, for every t ∈ [a, b]. (6)

In fact, Popoviciu proved a stronger result - it is enough to assume that (6)
holds for every t ∈ [x(1), x(m−n+1)] and then, due to (5), it is automatically
satisfied for every t ∈ [a, b]. The integral analogue (see [13, 10, 9]) is given in
the next proposition.

Proposition 3. Let n ≥ 2, p : [α, β] → R and g : [α, β] → [a, b]. Then, the
inequality ∫ β

α

p(x)f(g(x)) dx ≥ 0 (7)

holds for all n-convex functions f : [a, b]→ R if and only if∫ β

α

p(x)g(x)k dx = 0, for all k = 0, 1, . . . , n− 1∫ β

α

p(x) (g(x)− t)n−1
+ dx ≥ 0, for every t ∈ [a, b].

(8)

In this paper we will prove inequalities of type (1) and (7) for n-convex
functions by using the following extension of Montgomery’s identity via Tay-
lor’s formula obtained in [1].

Proposition 4. Let n ∈ N, f : I → R be such that f (n−1) is absolutely
continuous, I ⊂ R an open interval, a, b ∈ I, a < b. Then the following
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identity holds

f (x) =
1

b− a

∫ b

a

f (t) dt+

n−2∑
k=0

f (k+1) (a)

k! (k + 2)

(x− a)
k+2

b− a

−
n−2∑
k=0

f (k+1) (b)

k! (k + 2)

(x− b)k+2

b− a
+

1

(n− 1)!

∫ b

a

Tn (x, s) f (n) (s) ds (9)

where

Tn (x, s) =


− (x−s)n
n(b−a) + x−a

b−a (x− s)n−1
, a ≤ s ≤ x,

− (x−s)n
n(b−a) + x−b

b−a (x− s)n−1
, x < s ≤ b.

(10)

In case n = 1 the sum
∑n−2
k=0 · · · is empty, so identity (9) reduces to the

well-known Montgomery identity (see for instance [6])

f (x) =
1

b− a

∫ b

a

f (t) dt+

∫ b

a

P (x, s) f ′ (s) ds

where P (x, s) is the Peano kernel, defined by

P (x, s) =


s−a
b−a , a ≤ s ≤ x,

s−b
b−a , x < s ≤ b.

The outline of the paper is as follows: in Section 2 we will use the exten-
sion of Montgomery’s identity (9) to obtain inequalities of type (1) and (7) for
n-convex functions. In Section 3 we will give related inequalities for n-convex
functions at a point, a generalization of the class of n-convex functions intro-
duced in [9]. In Section 4 we will will give bounds for the integral reminders
of identities obtained in earlier sections by using Čebyšev type inequalities. In
the last section we will prove certain properties of linear functionals associated
with the obtained inequalities. In particular, we will construct new classes of
exponentially convex functions and Cauchy type means.

2 Popoviciu type identities and inequalities via extension
of Montgomery identity

Theorem 1. Suppose all the assumptions from Proposition 4 hold and let
Tn be given by (10). Furthermore, let m ∈ N, xi ∈ [a, b] and pi ∈ R for
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i ∈ {1, 2, . . . ,m} be such that
∑m
i=1 pi = 0. Then

m∑
i=1

pif (xi) =
1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

m∑
i=1

pi (xi − a)
k+2

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

m∑
i=1

pi (xi − b)k+2

]

+
1

(n− 1)!

∫ b

a

(
m∑
i=1

piTn (xi, s)

)
f (n) (s) ds (11)

Proof. We take extension of Montgomery identity (9) to obtain

m∑
i=1

pif (xi) =
1

b− a

∫ b

a

f (t) dt
m∑
i=1

pi

+

m∑
i=1

pi

(
n−2∑
k=0

f (k+1) (a)

k! (k + 2)

(xi − a)
k+2

b− a
−
n−2∑
k=0

f (k+1) (b)

k! (k + 2)

(xi − b)k+2

b− a

)

+
1

(n− 1)!

m∑
i=1

pi

∫ b

a

Tn (xi, s) f
(n) (s) ds.

By simplifying this expressions we obtain (11).

We may state its integral version as follows.

Theorem 2. Let g : [α, β] → [a, b] and p : [α, β] → R be integrable functions

such that
∫ β
α
p(x)dx = 0. Let n ∈ N, I ⊂ R be an open interval, a, b ∈ I,

a < b, Tn be given by (10) and f : I → R be such that f (n−1) is absolutely
continuous. Then∫ β

α

p (x) f(g(x)) dx =
1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

∫ β

α

p (x) (g(x)− a)k+2 dx

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

∫ β

α

p (x) (g(x)− b)k+2 dx

]

+
1

(n− 1)!

∫ b

a

(∫ β

α

p (x)Tn (g(x), s) dx

)
f (n) (s) .ds (12)

Proof. Our required result is obtained by using extension of Montgomery iden-
tity (9) in the following expression∫ β

α

p (x) f(g(x)) dx

and then using Fubini’s theorem.



POPOVICIU TYPE INEQUALITIES FOR n−CONVEX FUNCTIONS VIA
EXTENSION OF MONTGOMERY IDENTITY 166

Now we state inequalities derived from the obtained identities.

Theorem 3. Let all the assumptions of Theorem 1 hold with the additional
condition

m∑
i=1

piTn(xi, s) ≥ 0, for all s ∈ [a, b]. (13)

Then, for every n−convex function f : I → R the following inequality holds

m∑
i=1

pif (xi) ≥ 1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

m∑
i=1

pi (xi − a)
k+2

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

m∑
i=1

pi (xi − b)k+2

]
(14)

If the inequality in (13) is reversed, then (14) holds with the reversed sign of
inequality.

Proof. The function f is n-convex, so f (n) ≥ 0. Using this fact and (13) in
(11) we easily arrive at our required result.

Remark 2. If reverse inequality holds in (13) then reverse inequality holds in
(14).

Now we state an important consequence.

Theorem 4. Suppose all the assumptions from Theorem 1 hold. Additionally,
let j ∈ N, 2 ≤ j ≤ n and let x = (x1, . . . , xm) ∈ [a, b]m, p = (p1, . . . , pm) ∈ Rm
satisfy (5) and (6) with n replaced by j. If f is n-convex and n − j is even,
then

m∑
i=1

pif (xi) ≥ 1

b− a

 n−2∑
k=j−2

1

k! (k + 2)
f (k+1) (a)

m∑
i=1

pi (xi − a)
k+2

−
n−2∑
k=j−2

1

k! (k + 2)
f (k+1) (b)

m∑
i=1

pi (xi − b)k+2

 . (15)

Proof. Let s ∈ [a, b] be fixed. Notice that

(b− a)Tn(x, s) = Ln(x) + (b− a)(x− s)n−1
+ , (16)

where

Ln(x) = − (x− s)n

n
+ (x− b)(x− s)n−1.
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Using the Pochhammer symbol (y)k = y(y − 1) · · · (y − k + 1) we have

L(j)
n (x) = −(n− 1)j−1(x− s)n−j +

(
j

0

)
(x− b)(n− 1)j(x− s)n−j−1

+

(
j

1

)
(n− 1)j−1(x− s)n−j

= (n− 1)j−1(x− s)n−j−1 [(j − 1)(x− s) + (n− j)(x− b)] . (17)

Therefore, (16) and (17) for s < x ≤ b yield

dj

dxj
Tn(x, s) =

1

b− a
L(j)
n (x) + (n− 1)j(x− s)n−j−1

=
(n− 1)j−1

b− a
(x− s)n−j−1 [(j − 1)(x− s) + (n− j)(x− a)] ≥ 0, (18)

while for a ≤ x < s we have

(−1)n−j
dj

dxj
Tn(x, s) = (−1)n−j

1

b− a
L(j)
n (x)

=
(n− 1)j−1

b− a
(s− x)n−j−1 [(j − 1)(s− x) + (n− j)(b− x)] ≥ 0.

(19)

From (16) it is clear that x 7→ dj

dxj Tn(x, s) is continuous for j ≤ n− 2. Hence,
if j ≤ n − 2 and n − j is even, from (18) and (19) we can conclude that the
function x 7→ Tn(x, s) is j-convex. Moreover, the conclusion extends to the
case j = n, i. e. the mapping x 7→ Tn(x, s) is n-convex, since the mapping

x 7→ dn−2

dxn−2Tn(x, s) is 2-convex.
Now, by Proposition 2, we see that assumption (13) is satisfied, so inequal-

ity (14) holds. Moreover, due to assumption (5),
∑m
i=1 piP (xi) = 0 for every

polynomial P of degree ≤ j − 1, so the first j − 2 terms in the inner sum in
(14) vanish, i. e., the right hand side of (14) under the assumptions of this
theorem is equal to the right hand side of (15).

Corollary 1. Suppose all the assumptions from Theorem 1 hold. Additionally,
let j ∈ N, 2 ≤ j ≤ n, let x = (x1, . . . , xm) ∈ [a, b]m, p = (p1, . . . , pm) ∈ Rm
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satisfy (5) and (6) with n replaced by j and denote

H(x) =
1

b− a

 n−2∑
k=j−2

1

k! (k + 2)
f (k+1) (a) (x− a)

k+2

−
n−2∑
k=j−2

1

k! (k + 2)
f (k+1) (b) (x− b)k+2

 . (20)

If H is j-convex on [a, b] and n− j is even, then

m∑
i=1

pif(xi) ≥ 0.

Proof. Applying Proposition 2 we conclude that the right hand side of (15) is
nonnegative for the j-convex function H.

Remark 3. For example, since the functions x 7→ (x − a)k+2 and x 7→
(−1)k−j(x − b)k+2 are j-convex on [a, b], the function H given by (20) is
j-convex if f (k+1)(a) ≥ 0 and (−1)k+1−jf (k+1)(b) ≥ 0 for k = j−2, . . . , n−2.

In the remainder of the section we will state integral versions of the previous
results, the proofs of which are analogous to the discrete case.

Theorem 5. Let all the assumptions of Theorem 2 hold with the additional
condition ∫ β

α

p (x)Tn (g(x), s) dx ≥ 0, for all s ∈ [a, b].

Then, for every n−convex function f : I → R the following inequality holds∫ β

α

p (x) f(g(x)) dx≥ 1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

∫ β

α

p (x) (g(x)− a)k+2 dx

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

∫ β

α

p (x) (g(x)− b)k+2 dx

]
. (21)

Theorem 6. Suppose all the assumptions from Theorem 2 hold. Additionally,
let j ∈ N, 2 ≤ j ≤ n and let p : [α, β] → R and g : [α, β] → [a, b] satisfy (8)
with n replaced by j. If f is n-convex and n− j is even, then∫ β

α

p (x) f(g(x)) dx≥ 1

b− a

 n−2∑
k=j−2

1

k! (k + 2)
f (k+1) (a)

∫ β

α

p (x) (g(x)− a)k+2 dx

−
n−2∑
k=j−2

1

k! (k + 2)
f (k+1) (b)

∫ β

α

p (x) (g(x)− b)k+2 dx

 .
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Corollary 2. Let j, n, f, p and g be as in Theorem 6 and let H be given by
(20). If H is j-convex and n− j is even, then∫ β

α

p(x)f(g(x)) dx ≥ 0.

3 Related inequalities for n-convex functions at a point

In this section we will give related results for the class of n-convex functions
at a point introduced in [9].

Definition 3. Let I be an interval in R, c a point in the interior of I and
n ∈ N. A function f : I → R is said to be n-convex at point c if there exists a
constant K such that the function

F (x) = f(x)− K

(n− 1)!
xn−1 (22)

is (n− 1)-concave on I ∩ (−∞, c] and (n− 1)-convex on I ∩ [c,∞). A function
f is said to be n-concave at point c if the function −f is n-convex at point c.

A property that explains the name of the class is the fact that a function
is n-convex on an interval if and only if it is n-convex at every point of the
interval (see [2, 9]). Pečarić, Praljak and Witkowski in [9] studied necessary
and sufficient conditions on two linear functionals A : C([a, c]) → R and
B : C([c, b])→ R so that the inequality A(f) ≤ B(f) holds for every function
f that is n-convex at c. In this section we will give inequalities of this type for
particular linear functionals related to the inequalities obtained in the previous
section.

Let ei denote the monomials ei(x) = xi, i ∈ N0. For the rest of this section,
A and B will denote the linear functionals obtained as the difference of the
left and right hand sides of inequality (14) applied to the intervals [a, c] and

[c, b] respectively. More concretely, let T
[a,c]
n and T

[c,b]
n denote the equivalent

of (10) on these intervals, i. e.,

T [a,c]
n (x, s) =


− (x−s)n
n(c−a) + x−a

c−a (x− s)n−1
, a ≤ s ≤ x,

− (x−s)n
n(c−a) + x−c

c−a (x− s)n−1
, x < s ≤ c,

(23)

T [c,b]
n (x, s) =


− (x−s)n
n(b−c) + x−c

b−c (x− s)n−1
, c ≤ s ≤ x,

− (x−s)n
n(b−c) + x−b

b−c (x− s)n−1
, x < s ≤ b.

(24)
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Let x ∈ [a, c]m, p ∈ Rm, y ∈ [c, b]l and q ∈ Rl and denote

A(f) =

m∑
i=1

pif (xi)−
1

c− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

m∑
i=1

pi (xi − a)
k+2

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (c)

m∑
i=1

pi (xi − c)k+2

]
, (25)

B(f) =

l∑
i=1

qif (yi)−
1

b− c

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (c)

l∑
i=1

qi (yi − c)k+2

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

l∑
i=1

qi (yi − b)k+2

]
. (26)

Notice that, using the newly introduced functionals A and B, identity (11)
applied to the intervals [a, c] and [c, b] can be written as

A(f) =
1

(n− 1)!

∫ c

a

(
m∑
i=1

piT
[a,c]
n (xi, s)

)
f (n) (s) ds, (27)

B(f) =
1

(n− 1)!

∫ b

c

(
l∑
i=1

qiT
[c,b]
n (yi, s)

)
f (n) (s) ds. (28)

Theorem 7. Let x ∈ [a, c]m, p ∈ Rm, y ∈ [c, b]l and q ∈ Rl be such that

m∑
i=1

piT
[a,c]
n (xi, s) ≥ 0, for every s ∈ [a, c], (29)

l∑
i=1

qiT
[c,b]
n (yi, s) ≥ 0, for every s ∈ [c, b], (30)

∫ c

a

(
m∑
i=1

piT
[a,c]
n (xi, s)

)
f (n) (s) ds =

∫ b

c

(
l∑
i=1

qiT
[c,b]
n (yi, s)

)
f (n) (s) ds,

(31)

where T
[a,c]
n , T

[c,b]
n , A and B are given by (23), (24), (25) and (26) respectively.

If f : [a, b]→ R is (n+ 1)-convex at point c, then

A(f) ≤ B(f). (32)

If the inequalities in (29) and (30) are reversed, then (32) holds with the
reversed sign of inequality.
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Proof. Let F = f−K
n!en be as in Definition 3, i. e., the function F is n-concave

on [a, c] and n-convex on [c, b]. Applying Theorem 3 to F on the interval [a, c]
we have

0 ≥ A(F ) = A(f)− K

n!
A(en) (33)

and applying Theorem 3 to F on the interval [c, b] we have

0 ≤ B(F ) = B(f)− K

n!
B(en). (34)

Identities (27) and (28) applied to the function en yield

A(en) =
1

(n− 1)!

∫ c

a

(
m∑
i=1

piT
[a,c]
n (xi, s)

)
ds,

B(en) =
1

(n− 1)!

∫ b

c

(
l∑
i=1

qiT
[c,b]
n (yi, s)

)
ds.

Therefore, assumption (31) is equivalent to A(en) = B(en). Now, from (33)
and (34) we obtain the stated inequality.

Remark 4. In the proof of Theorem 7 we have, actually, shown that

A(f) ≤ K

n!
A(en) =

K

n!
B(en) ≤ B(f).

In fact, inequality (32) still holds if we replace assumption (31) with the weaker
assumption that K (B(en)−A(en)) ≥ 0.

Corollary 3. Let j1, j2, n ∈ N, ≤ j1, j2 ≤ n, let f : [a, b] → R be (n + 1)-
convex at point c, let m-tuples x ∈ [a, c]m and p ∈ Rm satisfy (5) and (6) with
n replaced by j1, let l-tuples y ∈ [c, b]l and q ∈ Rl satisfy

l∑
i=1

qiy
k
i = 0, for all k = 0, 1, . . . , j2 − 1

l∑
i=1

qi(yi − t)j2−1
+ ≥ 0, for every t ∈ [y(1), y(l−n+1)]

and let (31) holds. If n− j1 and n− j2 are even, then

A(f) ≤ B(f).

Proof. See the proof of Theorem 4.



POPOVICIU TYPE INEQUALITIES FOR n−CONVEX FUNCTIONS VIA
EXTENSION OF MONTGOMERY IDENTITY 172

4 Bounds for identities related to the Popoviciu-type in-
equalities

Let f, h : [a, b] → R be two Lebesgue integrable functions. We consider the
Čebyšev functional

T (f, h) =
1

b− a

∫ b

a

f(x)h(x)dx−

(
1

b− a

∫ b

a

f(x)dx

)(
1

b− a

∫ b

a

h(x)dx

)
.

(35)
The symbol Lp [a, b] (1 ≤ p <∞) denotes the space of p-power integrable func-
tions on the interval [a, b] equipped with the norm

‖f‖p =

(∫ b

a

|f (t)|p dt

) 1
p

and L∞ [a, b] denotes the space of essentially bounded functions on [a, b] with
the norm

‖f‖∞ = ess sup
t∈[a,b]

|f (t)| .

The following results can be found in [4].

Proposition 5. Let f : [a, b] → R be a Lebesgue integrable function and h :
[a, b]→ R be an absolutely continuous function with (·−a)(b−·)[h′]2 ∈ L[a, b].
Then we have the inequality

|T (f, h)| ≤ 1√
2

(
1

b− a
|T (f, f)|

∫ b

a

(x− a)(b− x)[h′(x)]2dx

)1/2

. (36)

The constant 1√
2

in (36) is the best possible.

Proposition 6. Let h : [a, b]→ R be a monotonic nondecreasing function and
let f : [a, b]→ R be an absolutely continuous function such that f ′ ∈ L∞[a, b].
Then we have the inequality

|T (f, h)| ≤ 1

2(b− a)
‖f ′‖∞

∫ b

a

(x− a)(b− x)dh(x). (37)

The constant 1
2 in (37) is the best possible.

By using the aforementioned results we will obtain bounds for the integral
remainders of identities obtained in Section 2.
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For m−tuples p = (p1, . . . , pm), x = (x1, . . . , xm) with xi ∈ [a, b], pi ∈ R
(i = 1, . . . ,m) such that

∑m
i=0 pi = 0 and the function Tn defined as in (10),

denote

δ(s) =

m∑
i=1

piTn(xi, s), for s ∈ [a, b]. (38)

Similarly for functions g : [α, β] → [a, b] and p : [α, β] → R such that∫ β
α
p(x)dx = 0, denote

∆(s) =

∫ β

α

p (x)Tn (g(x), s) dx, for s ∈ [a, b]. (39)

Now, we are ready to state the main results of this section.

Theorem 8. Let n ∈ N, f : [a, b] → R be such that f (n) is an absolutely
continuous function with (· − a)(b− ·)[f (n+1)]2 ∈ L[a, b], xi ∈ [a, b] and pi ∈ R
(i ∈ {1, . . . ,m}) such that

∑m
i=0 pi = 0 and let the functions Tn, T and δ be

defined in (10), (35) and (38) respectively. Then

m∑
i=1

pif (xi) =
1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

m∑
i=1

pi (xi − a)
k+2

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

m∑
i=1

pi (xi − b)k+2

]

+

[
f (n−1)(b)− f (n−1)(a)

]
(n− 1)!(b− a)

∫ b

a

δ(s)ds+R1
n(f ; a, b), (40)

where the remainder R1
n(f ; a, b) satisfies the estimation

|R1
n(f ; a, b)| ≤ 1

(n− 1)!

(
b− a

2

∣∣∣∣∣T (δ, δ)

∫ b

a

(s− a)(b− s)[f (n+1)(s)]2ds

∣∣∣∣∣
)1/2

.

(41)

Proof. If we apply Proposition 5 for f → δ and h→ f (n), then we obtain∣∣∣∣∣ 1

b− a

∫ b

a

δ(s)f (n)(s)ds−

(
1

b− a

∫ b

a

δ(s)ds

)(
1

b− a

∫ b

a

f (n)(s)ds

)∣∣∣∣∣
≤ 1√

2

(
1

b− a
|T (δ, δ)|

∫ b

a

(s− a)(b− s)[f (n+1)(s)]2ds

)1/2

.
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Furthermore, we have

1

(n− 1)!

∫ b

a

δ(s)f (n)(s)ds =

[
f (n−1)(b)− f (n−1)(a)

]
(n− 1)!(b− a)

∫ b

a

δ(s)ds

+ R1
n(f ; a, b).

where R1
n(f ; a, b) satisfies inequality (41). Now from identity (11) we obtain

(40).

Here we state the integral version of previous theorem.

Theorem 9. Let n ∈ N, f : [a, b] → R be such that f (n) is an absolutely
continuous function with (· − a)(b − ·)[f (n+1)]2 ∈ L[a, b], let g : [α, β] → [a, b]

and p : [α, β]→ R be functions such that
∫ β
α
p(x)dx = 0 and let the functions

Tn, T and ∆ be defined in (10), (35) and (39) respectively. Then∫ β

α

p (x) f(g(x)) dx=
1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

∫ β

α

p (x) (g(x)− a)
k+2

dx

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

∫ β

α

p (x) (g(x)− b)k+2
dx

]

+

[
f (n−1)(b)− f (n−1)(a)

]
(n− 1)!(b− a)

∫ b

a

∆(s)ds+R2
n(f ; a, b), (42)

where the remainder R2
n(f ; a, b) satisfies the estimation

|R2
n(f ; a, b)| ≤ 1

(n− 1)!

(
b− a

2
|T (∆,∆)|

∫ b

a

(s− a)(b− s)[f (n+1)(s)]2ds

)1/2

.

(43)

Proof. This results easily follows by proceeding as in the proof of previous
theorem and by replacing (11) by (12).

By using Proposition 6 we obtain the following Grüss type inequality.

Theorem 10. Let n ∈ N, f : [a, b] → R be such that f (n) is an abso-
lutely continuous function with f (n+1) ≥ 0 on [a, b], xi ∈ [a, b] and pi ∈ R
(i ∈ {1, . . . ,m}) such that

∑m
i=0 pi = 0. Also, let the functions T and δ be

defined in (35) and (38) respectively. Then we have representation (40) and
the remainder R1

n(f ; a, b) satisfies the following estimation

|R1
n(f ; a, b)| ≤ 1

(n− 1)!
‖∆′‖∞

[
b− a

2

[
f (n−1)(b) + f (n−1)(a)

]
−
[
f (n−2)(b)− f (n−2)(a)

]]
. (44)
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Proof. If we apply Proposition 6 for f → δ and h→ f (n), then we obtain∣∣∣∣∣ 1

b− a

∫ b

a

δ(s)f (n)(s)ds−

(
1

b− a

∫ b

a

δ(s)ds

)(
1

b− a

∫ b

a

f (n)(s)ds

)∣∣∣∣∣
≤ 1

2(b− a)
‖δ′‖∞

∫ b

a

(s− a)(b− s)f (n+1)(s)ds.

Since∫ b

a

(s− a)(b− s)f (n+1)(s)ds =

∫ b

a

(2s− a− b)f (n)(s)ds

= (b− a)
[
f (n−1)(b) + f (n−1)(a)

]
− 2

[
f (n−2)(b)− f (n−2)(a)

]
, (45)

by using the identities (11) and (45) we deduce (44).

Next we give the integral version of the above theorem.

Theorem 11. Let n ∈ N, f : [a, b] → R be such that f (n) is an absolutely
continuous function with f (n+1) ≥ 0 on [a, b], let g : [α, β] → [a, b] and p :

[α, β] → R be functions such that
∫ β
α
p(x)dx = 0. Also, let the functions T

and ∆ be defined in (35) and (39) respectively. Then we have representation
(42) and the remainder R2

n(f ; a, b) satisfies the following estimation

|R2
n(f ; a, b)| ≤ 1

(n− 1)!
‖∆′‖∞

[
b− a

2

[
f (n−1)(b) + f (n−1)(a)

]
−
[
f (n−2)(b)− f (n−2)(a)

]]
. (46)

Now we state some Ostrowski-type inequalities related to the obtained
identities.

Theorem 12. Let all the assumptions of Theorem 1 hold. Furthermore, let
(q, r) be a pair of conjugate exponents, that is 1 ≤ q, r ≤ ∞, 1

q + 1
r = 1. Let

f (n) ∈ Lq [a, b] for some n ∈ N, n > 1. Then we have∣∣∣∣∣
m∑
i=1

pif (xi)−
1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

m∑
i=1

pi (xi − a)
k+2

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

m∑
i=1

pi (xi − b)k+2

]∣∣∣∣∣
≤ 1

(n− 1)!
‖f (n)‖q

∥∥∥∥∥
m∑
i=1

piTn (xi, ·)

∥∥∥∥∥
r

. (47)
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The constant on the right hand side of (47) is sharp for 1 < q ≤ ∞ and the
best possible for q = 1.

Proof. Let us denote

λ(s) =
1

(n− 1)!

m∑
i=1

piTn (xi, s) .

Now, by using identity (11) and applying Hölder’s inequality we obtain∣∣∣∣∣
m∑
i=1

pif (xi)−
1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

m∑
i=1

pi (xi − a)
k+2

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

m∑
i=1

pi (xi − b)k+2

]∣∣∣∣∣ ≤ ‖f (n)‖q‖λ‖r. (48)

For the proof of the sharpness of the constant
(∫ b

a
|λ(s)|r ds

)1/r

, let us find a

function f for which the equality in (48) is obtained.
For 1 < q <∞ take f to be such that

f (n)(s) = sgnλ(s) · |λ(s)|1/(q−1).

For q =∞, take f such that

f (n)(s) = sgnλ(s).

Finally, for q = 1, we prove that∣∣∣∣∣
∫ b

a

λ(s)f (n)(s)ds

∣∣∣∣∣ ≤ max
s∈[a,b]

|λ(s)|
∫ b

a

f (n)(s)ds (49)

is the best possible inequality.
Function Tn (x, ·) for n = 1 has a jump of −1 at point x. But, for n ≥ 2

it is continuous, and thus λ(s) is continuous. Suppose that |λ(s)| attains its
maximum at s0 ∈ [a, b]. First we consider the case λ(s0) > 0. For ε small
enough we define fε(s) by

fε(s) =


0 , a ≤ s ≤ s0,

1
εn! (s− s0)n , s0 ≤ s ≤ s0 + ε,

1
(n−1)! (s− s0)n−1 , s0 + ε ≤ s ≤ b.

We have ∣∣∣∣∣
∫ b

a

λ(s)f (n)
ε (s)ds

∣∣∣∣∣ =

∣∣∣∣∫ s0+ε

s0

λ(s)
1

ε
ds

∣∣∣∣ =
1

ε

∫ s0+ε

s0

λ(s)ds.
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Now, from inequality (49) we have

1

ε

∫ s0+ε

s0

λ(s)ds ≤ λ(s0)
1

ε

∫ s0+ε

s0

ds = λ(s0).

Since

lim
ε→0

1

ε

∫ s0+ε

s0

λ(s)ds = λ(s0),

the statement follows.
In the case λ(s0) < 0, we define fε(s) by

fε(s) =


1

(n−1)! (s− s0 − ε)n−1 , a ≤ s ≤ s0,

− 1
εn! (s− s0 − ε)n , s0 ≤ s ≤ s0 + ε,

0 , s0 + ε ≤ s ≤ b

and the rest of the proof is the same as above.

Now we give the integral case of the above theorem.

Theorem 13. Let all the assumptions of Theorem 2 hold. Furthermore, let
(q, r) be a pair of conjugate exponents, that is 1 ≤ q, r ≤ ∞, 1

q + 1
r = 1. Let

f (n) ∈ Lq [a, b] for some n ∈ N, n > 1. Then we have∣∣∣∣∣
∫ β

α

p (x) f(g(x)) dx

− 1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

∫ β

α

p (x) (g(x)− a)
k+2

dx

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

∫ β

α

p (x) (g(x)− b)k+2
dx

]∣∣∣∣∣
≤ 1

(n− 1)!
‖f (n)‖q

∥∥∥∥∥
∫ β

α

p(x)Tn (g(x), s) dx

∥∥∥∥∥
r

. (50)

The constant on the right hand side of (50) is sharp for 1 < q ≤ ∞ and the
best possible for q = 1.

5 Mean Value Results and Exponential Convexity

In this section we will prove some properties of linear functionals associated
with the inequalities obtained in earlier sections. Under the assumptions of
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Theorem 3 using (14) and Theorem 5 using (21) we define the following func-
tionals respectively:

Λ1(f) =

m∑
i=1

pif (xi)−
1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

m∑
i=1

pi (xi − a)
k+2

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

m∑
i=1

pi (xi − b)k+2

]
(A1)

Λ2(f) =

∫ β

α

p(x)f(g(x))dx

− 1

b− a

[
n−2∑
k=0

1

k! (k + 2)
f (k+1) (a)

∫ β

α

p (x) (g(x)− a)
k+2

dx

−
n−2∑
k=0

1

k! (k + 2)
f (k+1) (b)

∫ β

α

p (x) (g(x)− b)k+2
dx

]
(A2)

Now we give mean value theorems for Λk, k ∈ {1, 2}. Here f0(x) = xn

n! .

Theorem 14. Let f ∈ Cn[a, b] and let Λk : Cn[a, b]→ R for k ∈ {1, 2} be the
linear functionals as defined in (A1) and (A2) respectively. Then there exists
ξk ∈ [a, b] for k ∈ {1, 2} such that

Λk(f) = f (n)(ξk)Λk(f0), k ∈ {1, 2} (51)

Proof. Since f (n) is continuous on [a, b], so L ≤ f (n)(x) ≤ M for x ∈ [a, b]
where L = min

x∈[a,b]
f (n)(x) and M = max

x∈[a,b]
f (n)(x).

Therefore the function

F (x) = M
xn

n!
− f(x) = Mf0(x)− f(x)

gives us
F (n)(x) = M − f (n)(x) ≥ 0

i.e. F is n−convex function. Hence Λk(F ) ≥ 0 and we conclude that for
k ∈ {1, 2}

Λk(f) ≤MΛk(f0).

Similarly, for k ∈ {1, 2} we have

LΛk(f0) ≤ Λk(f).
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Combining the two inequalities we get

LΛk(f0) ≤ Λk(f) ≤MΛk(f0)

which gives us (51).

Theorem 15. Let f, h ∈ Cn[a, b] and let Λk : Cn[a, b] → R for k ∈ {1, 2}
be the linear functionals as defined in (A1) and (A2) respectively. Then there
exists ξk ∈ [a, b] for k ∈ {1, 2} such that

Λk(f)

Λk(h)
=
f (n)(ξk)

h(n)(ξk)

assuming that both the denominators are non-zero.

Proof. Fix k ∈ {1, 2}. Let h ∈ Cn[a, b] be defined as

ω = Λk(h)f − Λk(f)h.

Using Theorem 14 there exists ξk such that

0 = Λk(ω) = ω(n)(ξk)Λk(f0)

or
[Λk(h)f (n)(ξk)− Λk(f)h(n)(ξk)]Λk(f0) = 0

which gives us the required result.

Remark 5. If the inverse of f(n)

h(n) exists, then from the above mean value
theorems we can give generalized means

ξk =

(
f (n)

h(n)

)−1(
Λk(f)

Λk(h)

)
, k ∈ {1, 2}. (52)

5.1 Logarithmically Convex Functions

A number of important inequalities arise from logarithmic convexity of some
functions. In the following definitions I is an interval in R.

Definition 4. A function f : I → (0,∞) is called log−convex in J−sense if
the inequality

f2

(
x1 + x2

2

)
≤ f (x1) f (x2)

holds for each x1, x2 ∈ I.
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Definition 5. [10, p. 7] A function f : I → (0,∞) is called log−convex if
the inequality

f(λx1 + (1− λ)x2) ≤ [f(x1)]
λ
[f(x2)]

(1−λ)

holds for each x1, x2 ∈ I and λ ∈ [0, 1].

Remark 6. A function log-convex in the J−sense is log-convex if it is con-
tinuous as well.

5.2 n−Exponentially Convex Functions

Bernstein [3] and Widder [15] independently introduced an important sub-class
of convex functions, which is called class of exponentially convex functions
on a given open interval and studied some properties of this newly defined
class. Pečarić and Perić in [8] introduced the notion of n−exponentially con-
vex functions which is in fact generalization of the concept of exponentially
convex functions. In the present subsection, we discus the same notion of
n−exponential convexity by describing related definitions and some impor-
tant results with some remarks from [8].

Definition 6. A function f : I → R is n−exponentially convex in the
J−sense if the inequality

n∑
i,j=1

uiujf

(
ti + tj

2

)
≥ 0

holds for each ti ∈ I and ui ∈ R, i ∈ {1, . . . , n}.

Definition 7. A function f : I → R is n−exponentially convex if it is
n−exponen-tially convex in the J−sense and continuous on I.

Remark 7. We can see from the definition that 1−exponentially convex func-
tions in the J−sense are in fact nonnegative functions. Also, n−exponentially
convex functions in the J−sense are k−exponentially convex in the J−sense
for every k ∈ N such that k ≤ n.

Definition 8. A function f : I → R is exponentially convex in the J−sense,
if it is n−exponentially convex in the J−sense for each n ∈ N.

Remark 8. A function f : I → R is exponentially convex if it is
n−exponentially convex in the J−sense and continuous on I.
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Proposition 7. If function f : I → R is n−exponentially convex in the
J−sense, then the matrix [

f

(
ti + tj

2

)]m
i,j=1

is positive-semidefinite. Particularly

det

[
f

(
ti + tj

2

)]m
i,j=1

≥ 0

for each m ∈ N,m ≤ n and ti ∈ I for i ∈ {1, . . . ,m}.

Corollary 4. If function f : I → R is exponentially convex, then the matrix[
f

(
ti + tj

2

)]m
i,j=1

is positive-semidefinite. Particularly

det

[
f

(
ti + tj

2

)]m
i,j=1

≥ 0

for each m ∈ N and ti ∈ I for i ∈ {1, . . . ,m}.

Corollary 5. If function f : I → (0,∞) is exponentially convex, then f is
log−
convex.

Remark 9. A function f : I → (0,∞) is log−convex in J−sense if and only
if the inequality

u2
1f(t1) + 2u1u2f

(
t1 + t2

2

)
+ u2

2f(t2) ≥ 0

holds for each t1, t2 ∈ I and u1, u2 ∈ R. It follows that a positive function is
log-convex in the J−sense if and only if it is 2−exponentially convex in the
J−sense. Also, using basic convexity theory it follows that a positive function
is log-convex if and only if it is 2−exponentially convex.

Here, we get our results concerning the n−exponential convexity and ex-
ponential convexity for our functionals Λk, k ∈ {1, 2} as defined in (A1) and
(A2). Throughout the section I is an interval in R.
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Theorem 16. Let D1 = {ft : t ∈ I} be a class of functions such that the
function t 7→ [z0, z1, . . . , zn; ft] is n−exponentially convex in the J−sense on
I for any n + 1 mutually distinct points z0, z1, . . . , zn ∈ [a, b]. Let Λk be
the linear functionals for k ∈ {1, 2} as defined in (A1) and (A2). Then the
following statements are valid:

(a) The function t 7→ Λk(ft) is n−exponentially convex function in the
J−sense on I.

(b) If the function t 7→ Λk(ft) is continuous on I, then the function t 7→
Λk(ft) is n−exponentially convex on I.

Proof. (a) Fix k ∈ {1, 2}. Let us define the function ω for ti ∈ I, ui ∈ R,
i ∈ {1, . . . , n} as follows

ω =

n∑
i,j=1

uiujf ti+tj
2

,

Since the function t 7→ [z0, z1, . . . , zn; ft] is n−exponentially convex in
the J−sense, therefore

[z0, z1, . . . , zn;ω] =

n∑
i,j=1

uiuj [z0, z1, . . . , zn; f ti+tj
2

] ≥ 0

which implies that ω is n−convex function on I and therefore Λk(ω) ≥ 0.
Hence

n∑
i,j=1

uiujΛk(f ti+tj
2

) ≥ 0.

We conclude that the function t 7→ Λk(ft) is an n−exponentially convex
function on I in J−sense.

(b) This part easily follows from definition of n−exponentially convex func-
tion.

As a consequence of the above theorem we give the following corollaries.

Corollary 6. Let D2 = {ft : t ∈ I} be a class of functions such that the
function t 7→ [z0, z1, . . . , zn; ft] is an exponentially convex in the J−sense on
I for any n + 1 mutually distinct points z0, z1, . . . , zn ∈ [a, b]. Let Λk be
the linear functionals for k ∈ {1, 2} as defined in (A1) and (A2). Then the
following statements are valid:
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(a) The function t 7→ Λk(ft) is exponentially convex in the J−sense on I.

(b) If the function t 7→ Λk(ft) is continuous on I, then the function t 7→
Λk(ft) is exponentially convex on I.

(c) The matrix
[
Λk

(
f ti+tj

2

)]m
i,j=1

is positive-semidefinite. Particularly,

det
[
Λk

(
f ti+tj

2

)]m
i,j=1

≥ 0

for each m ∈ N and ti ∈ I where i ∈ {1, . . . ,m}.

Proof. Proof follows directly from Theorem 16 by using definition of exponen-
tial convexity and Corollary 4.

Corollary 7. Let D3 = {ft : t ∈ I} be a class of functions such that the
function t 7→ [z0, z1, . . . , zn; ft] is 2−exponentially convex in the J−sense on
I for any n + 1 mutually distinct points z0, z1, . . . , zn ∈ [a, b]. Let Λk be
the linear functionals for k ∈ {1, 2} as defined in (A1) and (A2). Then the
following statements are valid:

(a) If the function t 7→ Λk(ft) is continuous on I, then it is 2−exponentially
convex on I. If the function t 7→ Λk(ft) is additionally positive, then it
is also log-convex on I. Moreover, the following Lyapunov’s inequality
holds for r < s < t, r, s, t ∈ I

[Λk(fs)]
t−r ≤ [Λk(fr)]

t−s [Λk(ft)]
s−r. (53)

(b) If the function t 7→ Λk(ft) is positive and differentiable on I, then for
every s, t, u, v ∈ I such that s ≤ u and t ≤ v, we have

µs,t(Λk, D3) ≤ µu,v(Λk, D3) (54)

where µs,t is defined as

µs,t(Λk, D3) =


(

Λk(fs)
Λk(ft)

) 1
s−t

, s 6= t,

exp
(

d
dsΛk(fs)

Λk(fs)

)
, s = t.

(55)

for fs, ft ∈ D3.

Proof. (a) It follows directly form Theorem 16 and Remark 9. As the func-
tion t 7→ Λk(ft) is log-convex, i.e., ln Λk(ft) is convex we have

ln[Λk(fs)]
t−r ≤ ln[Λk(fr)]

t−s + ln[Λk(ft)]
s−r, k ∈ {1, 2}

which gives us (53).
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(b) For a convex function f , the inequality

f(s) − f(t)

s − t
≤ f(u) − f(v)

u − v
(56)

holds for all s, t, u, v ∈ I ⊂ R such that s ≤ u, t ≤ v, s 6= t, u 6= v.
Since Λ(ft) is log−convex by (c), setting f(t) = ln Λ(ft) in (56) we have

ln Λk(fs) − ln Λk(ft)

s− t
≤ ln Λk(fu)− ln Λk(fv)

u− v
(57)

for s ≤ u, t ≤ v, s 6= t, u 6= v, which is equivalent to (55). The cases
for s = t and/or u = v are easily derived from (57) by taking respective
limits.

Remark 10. The results from Theorem 16 and Corollaries 6 and 7 still
hold when any two (all) points z0, z1, . . . , zn ∈ [a, b] coincide for a family
of differentiable (n−times differentiable) functions ft such that the function
t 7→ [z0, z1, . . . , zn; ft] is n−exponentially convex, exponentially convex and
2−expoenetially convex in the J−sense respectively.

Now, we give two important remarks and one useful corollary from [5],
which we will use in some examples in the next section.

Remark 11. We will say that µs,t(Λk,Ω) defined with (55) is a mean if

a ≤ µs,t(Λk,Ω) ≤ b

for s, t ∈ I and k ∈ {1, 2}, where Ω = {ft : t ∈ I} is a family of functions and
[a, b] ⊂ Dom(ft). �

Theorems 16 give us the following corollary.

Corollary 8. Let a, b ∈ R and Λk be linear functionals for k ∈ {1, 2}. Let
Ω = {ft : t ∈ I} be a family of functions in C2[a, b]. If

a ≤

(
d2fs
dx2

d2ft
dx2

) 1
s−t

(ξ) ≤ b,

for ξ ∈ [a, b], s, t ∈ I, then µs,t(Λk,Ω) is a mean for k ∈ {1, 2}.

Remark 12. In some examples, we will get means of this type:(
d2fs
dx2

d2ft
dx2

) 1
s−t

(ξ) = ξ, ξ ∈ [a, b], s 6= t.
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6 Examples with Applications

In this section, we use various classes of functions Ω = {ft : t ∈ I}, where
I is an interval in R, to construct different examples of exponentially convex
functions and Stolarsky-type means. Let us consider some examples.

Example 1. Let Ω1 = {ψt : R → [0,∞) : t ∈ R} be a family of functions
defined by

ψt(x) =

{
etx

tn , t 6= 0,
xn

n! , t = 0.

Since dn

dxnψt(x) = etx > 0, the function ψt(x) is a n−convex on R for every

t ∈ R and t→ dn

dxnψt(x) is exponentially convex by definition. Using analogous
arguing as in the proof of Theorems 16, we have that t 7→ [z0, z1, . . . , zn;ψt]
is exponentially convex (and so exponentially convex in the J−sense). Using
Corollary 6 we conclude that t 7→ Λk(ψt), k ∈ {1, 2} are exponentially convex
in the J−sense. It is easy to see that these mappings are continuous, so they
are exponentially convex.

Assume that t 7→ Λk(ψt) > 0 for k ∈ {1, 2}. By introducing convex func-
tions ψt in (52), we obtain the following means: for k ∈ {1, 2}

Ms,t(Λk,Ω1) =


1
s−t ln

(
Λk(ψs)
Λk(ψt)

)
, s 6= t,

Λk(id.ψs)
Λk(ψs)

− n
s , s = t 6= 0,

Λk(id.ψ0)
(n+1)Λk(ψ0) , s = t = 0.

where id stands for identity function on R. Here Ms,t(Λk,Ω1) = ln(µs,t(Λk,Ω1)),
k ∈ {1, 2} are in fact means.

Remark 13. We observe here that

(
dnψs
dxn

dnψt
dxn

) 1
s−t

(ln ξ) = ξ is a mean for

ξ ∈ [a, b] where a, b ∈ R+.

Example 2. Let Ω2 = {ϕt : (0,∞) → R : t ∈ R} be a family of functions
defined as

ϕt(x) =

{
(x)t

t(t−1)···(t−n+1) , t 6∈ {0, . . . , n− 1},
(x)j ln(x)

(−1)n−1−jj!(n−1−j)! , t = j ∈ {0, . . . , n− 1}.

Since ϕt(x) is n−convex function for x ∈ (0,∞) and t 7→ d2

dx2ϕt(x) is
exponentially convex, so by the same arguments given in previous example we
conclude that Λk(ϕt), k ∈ {1, 2} are exponentially convex.
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We assume that Λk(ϕt) > 0 for k ∈ {1, 2}. For this family of convex
functions we obtain the following means: for k ∈ {1, 2}, J = {0, 1, . . . , n− 1}

Ms,t(Λk,Ω2) =


(

Λk(ϕs)
Λk(ϕt)

) 1
s−t

, s 6= t,

exp
(

(−1)n−1(n− 1)!Λk(ϕ0ϕs)
Λk(ϕs)

+
∑n−1
k=0

1
k−t

)
, s = t 6∈ J,

exp
(

(−1)n−1(n− 1)!Λk(ϕ0ϕs)
2Λk(ϕs)

+
∑n−1
k=0,k 6=t

1
k−t

)
, s = t ∈ J.

Here Ms,t(Λk,Ω2) = µs,t(Λk,Ω2), k ∈ {1, 2} are in fact means.

Remark 14. Further, in this choice of family Ω2, we have(
dnϕs
dxn

dnϕt
dxn

) 1
s−t

(ξ) = ξ, ξ ∈ [a, b], s 6= t, where a, b ∈ (0,∞).

So, using Remark 12 we have an important conclusion that µs,t(Λk,Ω2) is in
fact mean for k ∈ {1, 2}.

Example 3. Let Ω3 = {θt : (0,∞) → (0,∞) : t ∈ (0,∞)} be a family of
functions defined by

θt(x) =
e−x
√
t

tn/2
.

Since t 7→ dn

dxn θt(x) = e−x
√
t is exponentially convex for x > 0, being the

Laplace transform of a nonnegative function [5]. So, by same argument given
in Example 1 we conclude that Λk(θt), k ∈ {1, 2} are exponentially convex.

We assume that Λk(θt) > 0 for k ∈ {1, 2}. For this family of functions we
have the following possible cases of µs,t(Λk,Ω3): for k ∈ {1, 2}

Ms,t(Λk,Ω3) =


(

Λk(θs)
Λk(θt)

) 1
s−t

, s 6= t,

exp
(
− Λk(id.θs)

2
√
s Λk(θs)

− n
2s

)
, s = t.

By (52), Ms,t(Λk,Ω3) = −(
√
s +
√
t) lnµs,t(Λk,Ω3), k ∈ {1, 2} defines a

class of means.

Example 4. Let Ω4 = {φt : (0,∞) → (0,∞) : t ∈ (0,∞)} be a family of
functions defined by

φt(x) =

{
t−x

(ln t)n , t 6= 1,
xn

n , t = 1.
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Since dn

dxnφt(x) = t−x = e−xlnt > 0 for x > 0, so by same argument given in
Example 1 we conclude that t 7→ Λk(φt), k ∈ {1, 2} are exponentially convex.

We assume that Λk(φt) > 0 for k ∈ {1, 2}. For this family of functions we
have the following possible cases of µs,t(Λk,Ω4): for k ∈ {1, 2}

Ms,t(Λk,Ω4) =


(

Λk(φs)
Λk(φt)

) 1
s−t

, s 6= t,

exp
(
−Λk(id.φs)

sΛk(φs)
− n

s ln s

)
, s = t 6= 1,

exp
(
− 1

(n+1)
Λk(id.φ1)

Λk(φ1)

)
, s = t = 1.

By (52), Ms,t(Λk,Ω4) = −L(s, t) lnµs,t, (Λk,Ω4), k ∈ {1, 2} defines a class
of means, where L(s, t) is Logarithmic mean defined as:

L(s, t) =

{
s−t

ln s−ln t , s 6= t,

s , s=t.
(58)

Remark 15. Monotonicity of µs,t(Λk,Ωj) follow form (54) for k ∈ {1, 2},
j ∈ {1, 2, 3, 4}.
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inequalities via Montgomery identity and Taylor’s formula II , Tamkang
Jour. Math. 36 (4), (2005), 279-301.
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[7] J. Pečarić, On Jessens Inequality for Convex Functions, III, J. Math.
Anal. Appl., 156 (1991), 231-239.



POPOVICIU TYPE INEQUALITIES FOR n−CONVEX FUNCTIONS VIA
EXTENSION OF MONTGOMERY IDENTITY 188
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Prilaz baruna Filipovića 28A, 10000 Zagreb, Croatia.
Email: pecaric@hazu.hr

Marjan PRALJAK,
Faculty of Food Technology and Biotechnology,
University of Zagreb,
Pierottijeva 6, Zagreb, Croatia.
Email: mpraljak@pbf.hr


