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Abstract

First, Halpern-type proximal point algorithm is introduced in com-
plete CAT(0) metric spaces. Then, Browder convergence theorem is
considered for this algorithm and also we prove that Halpern-type prox-
imal point algorithm converges strongly to a zero of the operator.

1 Introduction

One of the most important parts in nonlinear and convex analysis is mono-
tone operator theory. It has an essential role in convex analysis, optimization,
variational inequalities, semigroup theory and evolution equations. A zero of
a maximal monotone operator is a solution of variational inequality associated
to the monotone operator also an equilibrium point of an evolution equation
governed by the monotone operator as well as a solution of a minimization
problem for a convex function when the monotone operator is a subdifferen-
tial of the convex function. Therefore existence and approximation of a zero
of a maximal monotone operator is the center of consideration of many recent
researchers. The most popular method for approximation of a zero of a maxi-
mal monotone operator is the proximal point algorithm which was introduced
by Martinet [30] and Rockafellar [32]. Rockafellar [32] showed the weak con-
vergence of the sequence generated by the proximal point algorithm to a zero
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of the maximal monotone operator in Hilbert spaces. Giiler’s counterexample
[21] showed that the sequence generated by the proximal point algorithm does
not necessarily converge strongly even if the maximal monotone operator is the
subdifferential of a convex, proper, and lower semicontinuous function. Xu [35]
and Kamimura and Takahashi [23] introduced a Halpern-type proximal point
algorithm, which guarantees the strong convergence in Hilbert space. For some
generalization in Hilbert spaces the reader can consult [6, 12, 17, 24, 25, 33].
Proximal point algorithm introduced by Bacék [3] for the case of convex func-
tions in Hadamard spaces. In the general cases, this algorithm is organized in
Hadamard spaces by Khatibzadeh and Ranjbar [26] for the monotone opera-
tors (also, see [31]). In this paper by using of the duality theory introduced in
[2], we consider maximal monotone operators and Halpern-type proximal point
algorithm on Hadamard spaces and prove the strong convergence of Halpern-
type proximal point algorithm in this nonlinear version of Hilbert spaces (i.e.
complete CAT(0) spaces).

2 Preliminaries

Let (X,d) be a metric space and x,y € X. A geodesic path joining = to y
is an isometry ¢ : [0,d(z,y)] — X such that ¢(0) = z,c(d(z,y)) = y. The
image of a geodesic path joining x to y is called a geodesic segment between
x and y. The metric space (X,d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be an uniquely geodesic
space if there is exactly one geodesic joining = and y for each z,y € X.

A geodesic space (X, d) is a CAT(0) space if satisfies the following inequal-
ity:
CN—inequality: If z,yo, y1,y2 € X such that d(yo, y1) = d(yo,y2) = 2d(y1,y2),
then

1 1 1
d*(z,yo) < idz(lﬂ,yl) + §d2($7y2) - ZdQ(yl,yz)

A complete CAT(0) space is called a Hadamard space. It is known that
CAT(0) spaces are uniquely geodesic spaces. For other equivalent definitions
and basic properties, we refer the reader to the standard texts such as [10,
14, 20, 22]. Some examples of CAT(0) spaces are pre-Hilbert spaces (see [10]),
R-trees (see [27]), Euclidean buildings (see [13]), the complex Hilbert ball with
a hyperbolic metric (see [19]), Hadamard manifolds and many others.

For all z and y belong to a CAT(0) space X, we write (1—t)x & ty for the
unique point z in the geodesic segment joining from z to y such that
d(z,z) = td(z,y) and d(z,y) = (1 — t)d(z,y). Set [z,y] ={(1 —t)x Dty : t €
[0,1]}, a subset C of X is called convex if [z,y] C C for all z,y € C.

The following technical lemma is well-known in CAT(0) spaces.
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Lemma 2.1. [16] Let (X,d) be a CAT(0) space. Then, for all x,y,z € X
and all t € [0,1] :

(1) &tz d (1—1t)y,2) <td*(z,2) + (1 —t)d?*(y,2) — t(1 — t)d?*(x,y),

(2) ditzed (1 —1t)y,2) <td(z,2z)+ (1—1t)d(y,2),

In addition, by using (1), we have

ditz® (1 —t)y,tz® (1 —1t)2) < (1 —t)d(y, 2).

A concept of convergence in complete CAT(0) spaces was introduced by
Lim [29] that is called A-convergence as follows:
Let (x,) be a bounded sequence in complete CAT(0) space (X,d) and z € X.
Set r(z, (z,)) := limsup,,_, . d(z,x,). The asymptotic radius of (z,) is given
by r((zy)) := inf{r(z, (z,)) : * € X} and the asymptotic center of (z,,) is
the set A((zn)) == {z € X : r(z,(x,)) = r((z,))}. It is known that in the
complete CAT(0) spaces, A((x,)) consists of exactly one point (see [28]). A
sequence (x,) in the complete CAT(0) space (X,d) is said A-convergent to
z € X it A((zn,)) = {x} for every subsequence (2, ) of (z,). The concept of
A-convergence has been studied by many authors (e.g. [16, 18]).
Berg and Nikolaev [4] have introduced the concept of quasilinearization for
CAT(0) space X. They denote a pair (a,b) € X x X by ab and called it a
vector. Then the quasilinearization map (.) : (X x X) x (X x X) —» R is
defined by

(ab, cd) = L(d?(a,d) + d?(b, ) — d(a,c) — d2(b,d)),  (a,b,c,d € X).

It can be easily verified that (ab,ab) = d?(a,b), (ba,cd) = —{ab,cd) and
(ab,cd) = {ae,cd) + {(eb,cd) are satisfied for all a,b,¢,d,e € X. Also, we
can formally add compatible vectors, more precisely at + &5 = c%, for all
a,b,c € X. We say that X satisfies the Cauchy-Schwarz inequality if

(@b, cd) < d(a,b)d(c,d),  (a,b,c;d € X).

It is known ([4], Corollary 3) that a geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.
Ahmadi Kakavandi and Amini [2] have introduced the concept of dual space
of a complete CAT(0) space X, based on a work of Berg and Nikolaev [4], as
follows.

Consider the map © : R x X x X — C(X,R) defined by

O(t,a,b)(z) = t{ab,ad), (t€R, a,bzc X),

where C(X,R) is the space of all continuous real-valued functions on X. Then
the Cauchy-Schwarz inequality implies that ©(t,a,b) is a Lipschitz function
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with Lipschitz semi-norm L(O(¢,a,b)) = [t|d(a,b) (t € R, a,b € X), where
L(p) = sup{% cx,y € X,z # y} is the Lipschitz semi-norm for any
function ¢ : X — R. A pseudometric D on R x X x X is defined by

D((t7 a, b)7 (87 & d)) = L(@(ta a, b) - @(57 ¢, d))? (t7 s € Ra a, b7 ) de X)

For a Hadamard space (X, d), the pseudometric space (R x X x X, D) can be
considered as a subspace of the pseudometric space of all real-valued Lipschitz
functions%Lip(X, R),L). It is obtained that D((t,a,b), (s,c,d)) = 0 if and
only if t(a ,ﬁ/) = s<a>l, ﬁ/), for all x,y € X [2, Lemma 2.1]. Then, D can
impose an equivalent relation on R x X x X, where the equivalence class of
(t,a,b) is

[tab] = {sed : D((t,a,b), (s, ¢,d)) = 0}

The set X* = {[t%] : (t,a,b) € R x X x X} is a metric space with metric
D([t%], [szl]) := D((t,a,b), (s, c,d)), which is called the dual space of (X, d).
It is clear that [ad] = [bb] for all a,b € X. Fix o € X, we write 0 = [00] as the
zero of the dual space. In [2], it is shown that the dual of a closed and convex

subset of Hilbert space H with nonempty interior is H and t(b—a) = [t%] for
allt € R, a,b € H. Note that X* acts on X x X by

(o, 7) = t(ab 7),  (+° = [tab] € X,z,y € X)),
Also, we use the following notation:

(ax* + By*, TY) = ale*, 7)) + Bly*. 7)), (a,BER, 2,y € X, z*,y* € X*).

Introducing of a dual for a CAT(0) space implies a concept of weak convergence
with respect to the dual space which is named w — convergence in [2]. In
[2], authors also showed that w-convergence is stronger than A-convergence.
Ahmadi Kakavandi in [1] presented an equivalent definition of w-convergence
in complete CAT(0) spaces without using of dual space, as follows:

Definition 2.2. [1] A sequence (z,) inthe complete CAT(0) space (X,d)
w-converges to x € X if limsup,, . (zz,,z)) =0, Vye X.

w-convergence is equivalent to the weak convergence in Hilbert space H,
because if (.,.) is the inner product in Hilbert space H, then

2022, 7)) = d(a,y) + P (2,0) — d*(2,9) = 2(¢ — 2,2 — ).

We must notice that any bounded sequence does not have a subsequence
that is w-convergent. It is obvious that convergence in the metric implies
w-convergence, and in [2] it has been shown that w-convergence implies A-
convergence but the converse is not valid (see [1]). However Ahmadi Kakavandi
[1] proved the following characterization of A-convergence.
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Lemma 2.3. [I] A bounded sequence (x,) in Hadamard space (X,d), A-
converges to x € X if and only if limsup,,_,._(zz,, 7)) <0, Vye X.

In the sequel, we denote w-convergence by — and strong convergence by —.

3 Maximal Monotone Operators

Let X be a complete CAT(0) space with dual X* and A : X — 2%
be a multi-valued operator with domain D(A) := {& € X : Az # 0},
range R(A) := U,y Az, A7Yz*) == {z € X : 2* € Az} and graph
gra(A) == {(z,z*) € X x X*: 2 € D(A),z* € Azx}.

Definition 3.1. Let X be a Hadamard space with dual space X*. The multi-
valued operator A : X — 2% is monotone if and only if

<J"* - y*aﬁ> > 07
for all z,y € D(A), z* € Ax,y* € Ay.

Definition 3.2. Let X be a Hadamard space with dual X*. The multi-valued
monotone operator A : X — 2% is maximal if there exists no monotone
operator B : X — 2% such that gra(B) properly contains gra(A), i.e. for
any (y,y*) € X x X*, the inequality (z* —y*, y&) > 0, for all (z,z*) € gra(A)
implies y* € Ay.

In this section, we show that the graph of a maximal monotone operator is
sequentialy weakly-strongly closed in X x X*, i.e. if (x,,x}) € gra(A) Vn € N,
x, — z and (z}) C X* converges to z* € X* in metric D then z* € Az.

Lemma 3.3. Let X be a Hadamard space with dual X™* then
[(@* —y*, )| < D(a*,y*)d(z,y),  forallz,y € X, a*,y* € X*.

Proof. let z,y € X, z*,y* € X*. Consider t,s € R and a,b,c,d € X such
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%
that z* = ti and y* = [scd]. If @ = y that is clear, suppose x # y, then

(" — . 7| = |([tab] — [sed], i)
— |(t(ab, ) — s(ed, )|
—|<t%?ﬁ %cﬁ>—s<cd y?>—s<gl,c7)|
— |t{ab, @) — t{ab, @f) — s(cd, @) + s(cd, &)
— d(z,y)] (O(t,a,b)(z) — O(s,c,d)(x)) — (O(t,a,b)(y) — O(s,c,d)(y))

d(z,y)
(B(t,a,b) — O(s,¢,d))(u) — (O(t,a,b) — O(s,c,d))(v)

< d(x,y)sup{ cu,v € X u # v}

O

Theorem 3.4. Let X be a Hadamard space with dual X* and A : X — 2%~
be a multi-valued mazimal monotone operator. Suppose (x,,x) € gra(A) for
all n € N such that (zy,) is a bounded sequence in X that is w-convergent to
z € X and (z}) C X* converges to z* € X* in metric D then z* € Ax.

Proof. By Lemma 3.3, for all n € N and all (y,y*) € gra(A), we have

(s, =y g@n) — (& — ", 5t)]

= [(z}, — 2", y@) + (¥ —y", ga) + (@* —y", 7))
= (2}, — 2", §q) + {&* — ", Ty)]
(), — a7, g@a)| + [(e® — ", 72)]

Let n — o0, we get
L yEn) = (2 =y yt). (3.1)
On the other hand, by monotonicity of A, for all (y,y*) € gra(A), we have
0< (z} —y* ymn> VneN,
which, by (3.1), implies
0< (2" —y"4d), V(yy") € gra(A).
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Hence, the maximality of A implies z* € Ax. O

We say that a subset C' of Hadamard space X is w-sequentially closed if
for any sequence (x,) C C that x, — xz, we have x € C. It is clear that
every w-sequentially closed subset of X is closed. By Theorem 3.4, it is easy
to verify that if A: X — 2% be a multi-valued maximal monotone operator
then A~1(2*) is a w-sequentially closed subset of Hadamard space X, for any
x* e X*.

4 Halpern-type Proximal Point Algorithm

One of the most important problems in monotone operator theory is finding
a zero of a maximal monotone operator. This problem can be formulated in
Hadamard space as follows:

Find x € X, suchthat 0 € A(x), (4.1)

where A : X — 2X7 is a monotone operator on the Hadamard space X and 0
is the zero of dual space X*.

Let X be a Hadamard space with dual X* and A : X — 2% be a multi-
valued operator. We say that A satisfies the range condition if for every
y € X and every o > 0, there exists a point € X such that [a@] € Ax. Tt is
known that if A is a maximal monotone operator on the Hilbert space H then
R(I+XA)=H, VYX> 0, where I is identity operator. Thus, every maximal
monotone operator A on a Hilbert space satisfies the range condition.

Lemma 4.1. If A is a monotone operator on a Hadamard space X that sat-
isfies the range condition then for every y € X and every a > 0, there exists
a unique point x € X such that [aﬁ/] € Azx.

Proof. If there exists 2, z € X such that [aZ])] € Az and [az])] € Az, then by
monotonicity of A, we have

0 < 2([azf] — [0z, 7F)
= 20&<.ﬁ/, Z?> - 2a<'@7 ﬁ)
= a(d®(y, 2) — d*(z,2) — &(y,x)) — a(d*(z,2) + d*(y, 2) — d*(y,2))
= —2d*(x, 2),
which implies z = z. O

We do not know if every maximal monotone operator A : X — 2% satisfies
the range condition when X is a Hadamard space.
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Let A : X — 2% be a multi-valued maximal monotone operator on the
Hadamard space X with dual X* that satisfies the range condition, (\,) is
a sequence of positive real numbers, (o) is a sequence in ]0,1[ and v € X.
Halpern-type proximal point algorithm for maximal monotone operator A in
Hadamard space X is the sequence generated by

{[;nwnﬂ(anu & (1= an) 7)) € Azpys, w2

o € X.

Note that, since the operator A satisfies the rang condition, the Halpern-type
proximal point algorithm (4.2) is well-defined and also (4.2) is accordance with
the Halpern-type proximal point algorithm

{xn+1 € (I + XA Hanu+ (1 —an)zy), where [ is the identity operator
o € X.

in a Hilbert space that is considered by [5, 6, 7, 8, 9, 25, 33, 35].

The aim of this section is to prove strong convergence of the sequence generated
by the Halpern-type proximal point algorithm (4.2) to an element of A~1(0),
where 0 is the zero of dual space. To this purpose, we need to the following
lemmas.

Lemma 4.2. Let X be a CAT(0) space, x,y € X and t €]0,1[. Then,

(W%, (tx © (L= t)y)y) < (G2 TY), (2 € X).

Proof. Let z € X. By Lemma 2.1 we have,

2((y2, (tr @ (1 - )y)y) — 152, 70)) = (& ((tz © (1 - t)y), 2) — d*((tz @ (1 - t)y), y)
— d*(y,2)) = t(d* (2, 2) — d*(z,y) — d*(y,2))
< td*(z,2) + (1 — O)d®(y, 2) — t(1 — t)d*(z, )
—?d*(z,y) — d*(y, 2) — td*(x, z) + td* (z, )
+td*(y, 2)
=0,
which implies the desired inequality. O

Lemma 4.3. Let X be a CAT(0) space and (xy,) be a bounded sequence in X
that A-converges to X. Then,

d*(x,y) < linhinf d*(x,,7) (y € X)
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Proof. By Lemma 2.3, for all y € X, we get
d*(a,y) — liminf d*(z,,, y) = limsup(d®(z,y) — d*(z5,y))

< lim sup(dQ(a?n,x) + dg(x, y) — dz(mn,y))

n

= limsup(zz,,, 73) < 0,

that is the desired inequality. O

Let X be a Hadamard space with dual X*, A : X — 2% be a multi-
valued monotone operator such that satisfies the range condition and C > 0
and u € X are fixed. Then by Lemma 4.1, for each ¢ €]0,1[ and each = € X,
there exists a unique point z;, such that [Fz.(tu ® (1 — t)z)] € A(zi.).
Thus, for every t €]0,1[, we can define the mapping S;: X — X with
Se(x) =z, Vo € X. In the following, we show that, for every ¢t €0, 1[, S;
has a unique fixed point z; € X.

Proposition 4.4. For each t €]0,1[, S; has a unique fized point z; € X.
Proof. Let x,y € X, then

(&5 (- 2] € ASi(e)) and (55, (y){tu® (1 - ] € ASily).

By monotonicity of A, we have

2(S () (tu & (1 — 1)), Sy (2)Su(y)) < 2(Se(y) (tu® (1 = t)y), Sy(2)Se(y))
2 j

which implies,

((tu (1= ))(tu & (1= t)y), $i(+)Su(y))
ditu® (1 —t)x,tu @ (1 — t)y)d(Se(z)S:(y)).

2d2(5t(95)7 Si(y))

IAIA

2
2
Hence,

d(Si(x), S:(y)) < d(tu ® (1 = ), tu® (1 = t)y) < (1 = )d(z,y)

Thus, for each ¢ €]0,1[, S; is a contraction. Consequently, by Banach’s Con-
traction Principle, for each ¢ €]0, 1, S; has a unique fixed point that is named
Zt. O
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In the following, we show that (z;) converges strongly to Py-1(0yu, where
Py-1(g) is the metric projection on A~1(0).

Theorem 4.5. [15] Let C' be a nonempty convex subset of a CAT(0) space
X, z€ X andu € C. Then u= Pex if and only if

(@h,uf) >0, VyeC.

We say that a Hadamard space X satisfies the condition @ if every bounded
sequence in X has a subsequence that is w-convergent.
It is said that a Hadamard space (X,d) satisfies the (S) property if for any
(z,y) € X x X there exists a point y, € X such that [z{] = [y,4]. Hilbert
spaces and symmetric Hadamard manifold satisfy the (S) property (see [1],
Definition 2.7). Lemma 2.8 of [1] implies that if a Hadamard space (X, d) sat-
isfies the (S) property then it satisfies the condition @ because every bounded
sequence in a Hadamard space (X, d) has a A-convergent subsequence. Also,
the proper Hadamard spaces satisfy the condition @ (see [1], Propositions 4.3
and 4.4).

The following theorem is a version of Browder convergence theorem (see
[11]) for Halpern-type proximal point algorithm.

Theorem 4.6. Let X be a Hadamard space with dual X* that satisfies the
condition Q and A : X — 2X7 be a multi-valued mazimal monotone opera-
tor that satisfies the range condition and A=1(0) # 0 is conver. Then (z)
converges strongly to Pa-1gyu ast — 0.

Proof. For each t €]0,1[, [z (tu® (1 — t)2¢)] € A(z;). By monotonicity of A,
for all ¢ € A=1(0), we have

0 < 2(z(tu® (1 —t)z), 21
=d*(tu® (1 —t)z,q) — d*(ze,q) — d*(tu @ (1 — )z, 2,),
hence,
d*(2,q) < P (tu @ (1 — 1)z, q)
< td*(u, q) + (1 = t)d* (21, ),
which implies,
d*(2,q) < d*(u,q), Vg€ ATH(0). (4.3)

In particular, {2} is bounded. Thus, by the condition @, there exists a sub-
sequence of (z;) that is w-convergent. Moreover,

. 1 1 ot
2lgl_lir(l) D([ézt(tu B (1—1t)2)],0) = th_r)r(l) ad(tu@(l—t)zt, zt) = }1_% 5d(u, 2)=0
(4.4)
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Now, if (¢,) is a sequence in ]0, 1] such that ¢, — 0 and (z;,) is w-convergent
to z. Then, by (4.4) and Theorem 3.4, we get z € A=1(0). Thus, by (4.4) and
Lemma 4.3, we obtain

d*(z,q) < liminf d* (2, q) < d*(u,q), Vg€ A7(0),

which, for all ¢ € A=1(0), implies,

(7, 24) = {7, Z4) + (7, ug)
d2(Z7 Q) - d2(u7 q)
0

IN

Hence, by Theorem 4.5, z = P4-1(gyu. The arbitrariness of the subsequence
(2t,,) of (z¢) ensures that (z;) indeed w-converges to Py-1(gyu, as t — 0. Now,
we prove the strong convergence of (z).

By monotonicity of A and Lemma 4.2, for all ¢ € A~1(0), we have

< t{z1, g2)
= t(z10, 32)) + t(q, §21),

which implies
d*(z1,q) < (qU,qZ) Vg€ AH(0).

In particular,

(21, Pa-1(0yu) < ((Pa-1(0)u)t, (Pa-1(0)u)zr)-
Letting t — 0, we get d?(z, Ps-1(0yu) — 0, that is the desired result. O

Lemma 4.7. [15] Let (X,d) be a CAT(0) space and a,b,c € X. Then for
each A € [0,1],

?Ma® (1= N)b,¢) < N2d%(a,¢) + (1 — N)2d%(b, ¢) + 2A(1 — \)(a¢, _é>.

Theorem 4.8. Let X be a Hadamard space with dual X* that satisfies the
condition Q and A : X — 2% be a multi-valued mazimal monotone operator
such that satisfies the range condition and A=1(0) # 0 is convez. If ((xn,x}))
is a sequence in graph of A such that (xy,) is bounded and lim,, D(z},0) = 0,
then
limsup<1ﬁ, M) <0, where p= Pa-1(g)u.
n
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Proof. For each t €]0,1], there exists a unique point z; € X such that
[Sz(tue (1 —t)2)] € A(z). By Theorem 4.6, as t — 0, (z;) converges
strongly to p = P4-1(gyu. By monotonicity of A, for each ¢ € (0,1) and all
n € N, we have

2
0< 6<zt(tu@ (1—t)z) — T TnZh).

which, by Lemma 4.7, implies
Pz, x0) + 20, Tnz) < P (tu® (1 — t)zg, 2n) — 2d?(u, 2;)
< P (u, 2n) 4+ (1 — £)2d? (20, ) + 2t(1 — t) (uzy,, Zer,
= t2d*(u, ) + (1 — )2d (21, 2) + 2t(1 — t) (uz;, Ze2)
+2t(1 — t)d* (24, )
= 2% (u, ) + (1 — £2)d? (20, 2 ) + 26(1 — 1) (U2}, Zen)).

Thus, for each ¢t € (0,1) and all n € N, we get

2t(1 — t)(@,xnzﬁ < 2 (u, wp) + 2{z, Zxy,)
< t2d*(u, ) 4+ 2D (27, 0)d(2, ).

Hence, for each ¢ € (0,1), we obtain

N t
lim sup(uz;, Tpz;) < =D lim sup d?(u, ,). (4.5)
On the other hand, by the continuity of d,
(@7 Tnzt) @ ﬁ as t — 0, uniformly respect to n.

Therefore, for any number € > 0, there exists § > 0 such that

(W, Tn) < & + (U2, Tnzr),

for all 0 < t < § and all n € N. This implies that

lim sup d*(u, z,,).

— t
lim sup(up, Znp) < € + limsup(uz;, Tnz) <& + ——
n n 21—t

Letting t — 0, we get

lim sup(up, Z,p) < €.

Hence, as ¢ — 0, we deduce lim supTL(@, m> <0. O
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Lemma 4.9. [3/] Let (s,) be a sequence of nonnegative real numbers, (ay,)
a sequence of real numbers in [0,1] with Y .° | o, = 00, (u,) a sequence of
nonnegative real numbers with Y o u, < oo, and (t,) a sequence of real
numbers with limsup,, t,, < 0. Suppose that

Sn+1 S (]- - an)sn + antn + Unp,
for allm € N. Then limy,_ 0S8, = 0.

The following lemma is a direct application of the well-known Stolz-Cesaro
theorem.

Lemma 4.10. Suppose that (a,) and (b,) are positive sequences such

that :g by, = 400 and lim,— oo Zf‘ =0, then lim,, 4 ﬁ =0.

Theorem 4.11. Let X be a Hadamard space with dual X* that satisfies the
condition Q and A : X — 2X7 be a multi-valued mazimal monotone operator
that satisfies the range condition and A~1(0) # (0 is conver. If (z,,) generated
by (4.2) such that

Zn(on_1u® (1 — an_1)Tn_1)],0)

DQ([%xnﬂ(anu @ (1 — an)za)],0) < D*(]

n n—1
+ On,

2

s = oo and

where (6,,) is a positive sequence with > o1 60, < 00, .07 | A
S — 0, then

(1) D([ﬁxnﬂ(anu@ (1 — n)x,)],0) = 0, as n — oo. Also, if (x,,) is a
subsequence of (x,), w-converges to x, then x € A~1(0).

(2) If an, — 0 and Y7 a, = 4oo, then (x,) converges strongly to
p= PAfl(O)u.

Proof. Let ¢ € A=1(0). By monotonicity of A and (4.2), we have

0 < (5wt (@t ® (1 - an)zn), s
which implies
d*(Tpy1,q) + d*(@ni1, nu @ (1 — an)zy)) < d*(apu® (1 — an)zy),q). (4.6)
Thus

P (zn11,q) < d*(nu® (1 — o)z, q)
S andQ(ua Q) + (1 - O[n)dQ(J}n’ Q)
< max{d*(u,q),d*(z1,9)}.
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So, (x,) is bounded. Let us to prove (1). By (4.6), we have

A (Tng1, 0u @ (1= an)wn)) < d*(0nu® (1 — an)rn), q) — d*(Tn1, )
< andQ(ua Q) + dZ(xna Q) - d2($n+1a Q)7

that is

1
)‘iDz([ianrl(anu D (1 - Oén)-TnS], 0) < O‘nd2(ua q) + d2(xn7 Q) - d2($n+17 q)'

An
(4.7)
Moreover, by assumptions, for all k& > n, we get

D?([Aikxm(aku & (1—anae)],0) < DQ(%w(anu & (1 an),).0)

k

+ > 6

i=n—+1

which, by (4.7), implies

1
A2 D ([ (g @ (1 — i) zr)], 0) < nd®(u, q) + d2(2n, q) — d(2ny1, q)

Ak
k
+A2 ) 6
1=n+1

Summing up from n =1 to k, after that dividing by Zizl A2, then

Zi:l and2 (U, Q) d2 (xlu q)

Dz([)\ixkﬂ(aku @ (1 — ap)ai)],0) <
k

k k
2n=1 7 2n=1 %
k
+ En:l )‘gz Z;.inJrl 91
% .

Zn:l A%L
Letting £k — oo then, by Lemma 4.10, we get

D([)\ikxk-&-l(aku ® (1 — ag)zk)], 0) — 0.

Now, if (z,, ) is a subsequence of (z,,) that w-converges to z, then by Theorem
3.4, we get x € A~1(0).
For prove (2), by Theorem 4.8 and part (1), we get

lim sup<1ﬁ7 m> <0, where p= Py-1(u. (4.8)
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On the other hand, by (4.6), and Lemma 4.7 we have

d*(2n41,p) < d*(u @ (1 — an)zs), p)
< 2d?(u,p) + (1 — o) 2d*(n, p) + 200 (1 — o ) (wh, Tr)
< (1 - ozn)dQ(xn,p) + an(andz(uap> 1 - an @7 m

which, by the Lemma 4.9, the assumptions and (4.8), implies d(x,1,p) — 0,
that is the desired result. O

Theorem 4.12. Let X be a Hadamard space with dual X* that satisfies the
condition Q and A : X — 2X7 be a multi-valued mazimal monotone operator
such that satisfies the range condition and A=1(0) # 0 is convex. If (x,)
generated by (4.2) such that

(i) (A\n) is a nondecreasing sequence such that Y .- ﬁ < 00,

(i) o — 0 and 3725 @, = +00,

then () converges strongly to p = Py—1(gyu.

Proof. By a proof similar to Theorem 4.11, (z,,) is bounded. By monotonicity
of A and (4.2), we have

1 1

0< T([i)\ ZTn(an_1u® (1 — an—l)xn—lj]f[rxnﬂ(anu &1 - an)xnj], Tt 17)
n n—1 n
that is
1 N 1 N
%] (Tnt1(anu ® (1 — an)Tn), Tns1@n) < P (@n(an-1u® (1 — n—1)Tn-1), Tns17n)
nAn—1

which implies

1 1

Ecﬁ(mn“, anpu ® (1 — ay)zy,) < o 1d2(xn+1, Ap_1u ® (1 — ap_1)Tp_1)
2
an
+ Ed%u,xn)
< ! d* (2, 0 1u® (1 — apy_1)Tp_1)
= /\n)\n—l nyEn—1 n—1)4&n—1
1 2 ay o
+ /\n)\n_ld (Tpt1,Tn) + )\—Qd (u, )
+ d(Znt1, Tn)d( T, n1u @ (1 — ap_1)Tp 1)
AnAn—l
< )\2 dQ(xna Qp—1U D (1 - an—l)xn—l)
n—1
1 2
+ M + 55,
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where
M = sup{2d(xp i1, 2n)d(Tn, tn_1uB(1—y—1)Tn_1), d2(xn+1, z,),d*(u, Zn)}
n

Hence

n(an-10® (1 — an-1)Tn-1)],0)

(5 nra{anu @ (1 - an)a,)),0) < (15

n—1
+ On,
2
where 6,, = M(ﬁ + $#), Vn € N. By the assumptions, we have
oo b <00, X A2 =00, $% =0, &, — 0 and S @, = +oo. Hence,
part (2) of Theorem 4.11 completes the proof. O
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