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Halpern-type proximal point algorithm in
complete CAT(0) metric spaces

Mohammad Taghi Heydari and Sajad Ranjbar

Abstract

First, Halpern-type proximal point algorithm is introduced in com-
plete CAT(0) metric spaces. Then, Browder convergence theorem is
considered for this algorithm and also we prove that Halpern-type prox-
imal point algorithm converges strongly to a zero of the operator.

1 Introduction

One of the most important parts in nonlinear and convex analysis is mono-
tone operator theory. It has an essential role in convex analysis, optimization,
variational inequalities, semigroup theory and evolution equations. A zero of
a maximal monotone operator is a solution of variational inequality associated
to the monotone operator also an equilibrium point of an evolution equation
governed by the monotone operator as well as a solution of a minimization
problem for a convex function when the monotone operator is a subdifferen-
tial of the convex function. Therefore existence and approximation of a zero
of a maximal monotone operator is the center of consideration of many recent
researchers. The most popular method for approximation of a zero of a maxi-
mal monotone operator is the proximal point algorithm which was introduced
by Martinet [30] and Rockafellar [32]. Rockafellar [32] showed the weak con-
vergence of the sequence generated by the proximal point algorithm to a zero
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of the maximal monotone operator in Hilbert spaces. Güler’s counterexample
[21] showed that the sequence generated by the proximal point algorithm does
not necessarily converge strongly even if the maximal monotone operator is the
subdifferential of a convex, proper, and lower semicontinuous function. Xu [35]
and Kamimura and Takahashi [23] introduced a Halpern-type proximal point
algorithm, which guarantees the strong convergence in Hilbert space. For some
generalization in Hilbert spaces the reader can consult [6, 12, 17, 24, 25, 33].
Proximal point algorithm introduced by Bačák [3] for the case of convex func-
tions in Hadamard spaces. In the general cases, this algorithm is organized in
Hadamard spaces by Khatibzadeh and Ranjbar [26] for the monotone opera-
tors (also, see [31]). In this paper by using of the duality theory introduced in
[2], we consider maximal monotone operators and Halpern-type proximal point
algorithm on Hadamard spaces and prove the strong convergence of Halpern-
type proximal point algorithm in this nonlinear version of Hilbert spaces (i.e.
complete CAT(0) spaces).

2 Preliminaries

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y
is an isometry c : [0, d(x, y)] −→ X such that c(0) = x, c(d(x, y)) = y. The
image of a geodesic path joining x to y is called a geodesic segment between
x and y. The metric space (X, d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be an uniquely geodesic
space if there is exactly one geodesic joining x and y for each x, y ∈ X.

A geodesic space (X, d) is a CAT(0) space if satisfies the following inequal-
ity:
CN−inequality: If x, y0, y1, y2 ∈ X such that d(y0, y1) = d(y0, y2) = 1

2d(y1, y2),
then

d2(x, y0) ≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)− 1

4
d2(y1, y2).

A complete CAT(0) space is called a Hadamard space. It is known that
CAT(0) spaces are uniquely geodesic spaces. For other equivalent definitions
and basic properties, we refer the reader to the standard texts such as [10,
14, 20, 22]. Some examples of CAT(0) spaces are pre-Hilbert spaces (see [10]),
R-trees (see [27]), Euclidean buildings (see [13]), the complex Hilbert ball with
a hyperbolic metric (see [19]), Hadamard manifolds and many others.
For all x and y belong to a CAT(0) space X, we write (1− t)x ⊕ ty for the
unique point z in the geodesic segment joining from x to y such that
d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y). Set [x, y] = {(1− t)x⊕ ty : t ∈
[0, 1]}, a subset C of X is called convex if [x, y] ⊆ C for all x, y ∈ C.
The following technical lemma is well-known in CAT(0) spaces.
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Lemma 2.1. [16] Let (X, d) be a CAT(0) space. Then, for all x, y, z ∈ X
and all t ∈ [0, 1] :
(1) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y),
(2) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z),
In addition, by using (1), we have

d(tx⊕ (1− t)y, tx⊕ (1− t)z) ≤ (1− t)d(y, z).

A concept of convergence in complete CAT(0) spaces was introduced by
Lim [29] that is called ∆-convergence as follows:
Let (xn) be a bounded sequence in complete CAT(0) space (X, d) and x ∈ X.
Set r(x, (xn)) := lim supn→∞ d(x, xn). The asymptotic radius of (xn) is given
by r((xn)) := inf{r(x, (xn)) : x ∈ X} and the asymptotic center of (xn) is
the set A((xn)) := {x ∈ X : r(x, (xn)) = r((xn))}. It is known that in the
complete CAT(0) spaces, A((xn)) consists of exactly one point (see [28]). A
sequence (xn) in the complete CAT(0) space (X, d) is said ∆-convergent to
x ∈ X if A((xnk

)) = {x} for every subsequence (xnk
) of (xn). The concept of

∆-convergence has been studied by many authors (e.g. [16, 18]).
Berg and Nikolaev [4] have introduced the concept of quasilinearization for

CAT(0) space X. They denote a pair (a, b) ∈ X × X by
−→
ab and called it a

vector. Then the quasilinearization map 〈.〉 : (X × X) × (X × X) → R is
defined by

〈
−→
ab,
−→
cd〉 = 1

2 (d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), (a, b, c, d ∈ X).

It can be easily verified that 〈ab, ab〉 = d2(a, b), 〈ba, cd〉 = −〈ab, cd〉 and
〈ab, cd〉 = 〈ae, cd〉 + 〈eb, cd〉 are satisfied for all a, b, c, d, e ∈ X. Also, we

can formally add compatible vectors, more precisely −→ac +
−→
cb =

−→
ab, for all

a, b, c ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d), (a, b, c, d ∈ X).

It is known ([4], Corollary 3) that a geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.
Ahmadi Kakavandi and Amini [2] have introduced the concept of dual space
of a complete CAT(0) space X, based on a work of Berg and Nikolaev [4], as
follows.
Consider the map Θ : R×X ×X → C(X,R) defined by

Θ(t, a, b)(x) = t〈
−→
ab,−→ax〉, (t ∈ R, a, b, x ∈ X),

where C(X,R) is the space of all continuous real-valued functions on X. Then
the Cauchy-Schwarz inequality implies that Θ(t, a, b) is a Lipschitz function
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with Lipschitz semi-norm L(Θ(t, a, b)) = |t|d(a, b) (t ∈ R, a, b ∈ X), where

L(ϕ) = sup{ϕ(x)−ϕ(y)d(x,y) : x, y ∈ X,x 6= y} is the Lipschitz semi-norm for any

function ϕ : X → R. A pseudometric D on R×X ×X is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).

For a Hadamard space (X, d), the pseudometric space (R×X ×X,D) can be
considered as a subspace of the pseudometric space of all real-valued Lipschitz
functions (Lip(X,R), L). It is obtained that D((t, a, b), (s, c, d)) = 0 if and

only if t〈
−→
ab,−→xy〉 = s〈

−→
cd,−→xy〉, for all x, y ∈ X [2, Lemma 2.1]. Then, D can

impose an equivalent relation on R × X × X, where the equivalence class of
(t, a, b) is

[t
−→
ab] = {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.

The set X∗ = {[t
−→
ab] : (t, a, b) ∈ R × X × X} is a metric space with metric

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)), which is called the dual space of (X, d).

It is clear that [−→aa] = [
−→
bb] for all a, b ∈ X. Fix o ∈ X, we write 0 = [−→oo] as the

zero of the dual space. In [2], it is shown that the dual of a closed and convex

subset of Hilbert space H with nonempty interior is H and t(b−a) ≡ [t
−→
ab] for

all t ∈ R, a, b ∈ H. Note that X∗ acts on X ×X by

〈x∗,−→xy〉 = t〈
−→
ab,−→xy〉, (x∗ = [t

−→
ab] ∈ X,x, y ∈ X).

Also, we use the following notation:

〈αx∗+βy∗,−→xy〉 := α〈x∗,−→xy〉+β〈y∗,−→xy〉, (α, β ∈ R, x, y ∈ X, x∗, y∗ ∈ X∗).
Introducing of a dual for a CAT(0) space implies a concept of weak convergence
with respect to the dual space which is named w − convergence in [2]. In
[2], authors also showed that w-convergence is stronger than ∆-convergence.
Ahmadi Kakavandi in [1] presented an equivalent definition of w-convergence
in complete CAT(0) spaces without using of dual space, as follows:

Definition 2.2. [1] A sequence (xn) in the complete CAT(0) space (X, d)
w-converges to x ∈ X if lim supn→∞〈−−→xxn,−→xy〉 = 0, ∀y ∈ X.

w-convergence is equivalent to the weak convergence in Hilbert space H,
because if (., .) is the inner product in Hilbert space H, then

2〈−→xz,−→xy〉 = d2(x, y) + d2(z, x)− d2(z, y) = 2(x− z, x− y).

We must notice that any bounded sequence does not have a subsequence
that is w-convergent. It is obvious that convergence in the metric implies
w-convergence, and in [2] it has been shown that w-convergence implies ∆-
convergence but the converse is not valid (see [1]). However Ahmadi Kakavandi
[1] proved the following characterization of ∆-convergence.
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Lemma 2.3. [1] A bounded sequence (xn) in Hadamard space (X, d), ∆-
converges to x ∈ X if and only if lim supn→∞〈−−→xxn,−→xy〉 ≤ 0, ∀y ∈ X.

In the sequel, we denote w-convergence by ⇀ and strong convergence by→.

3 Maximal Monotone Operators

Let X be a complete CAT(0) space with dual X∗ and A : X → 2X
∗

be a multi-valued operator with domain D(A) := {x ∈ X : Ax 6= ∅},
range R(A) :=

⋃
x∈X Ax, A−1(x∗) := {x ∈ X : x∗ ∈ Ax} and graph

gra(A) := {(x, x∗) ∈ X ×X∗ : x ∈ D(A), x∗ ∈ Ax}.

Definition 3.1. Let X be a Hadamard space with dual space X∗. The multi-
valued operator A : X → 2X

∗
is monotone if and only if

〈x∗ − y∗,−→yx〉 ≥ 0,

for all x, y ∈ D(A), x∗ ∈ Ax, y∗ ∈ Ay.

Definition 3.2. Let X be a Hadamard space with dual X∗. The multi-valued
monotone operator A : X → 2X

∗
is maximal if there exists no monotone

operator B : X → 2X
∗

such that gra(B) properly contains gra(A), i.e. for
any (y, y∗) ∈ X×X∗, the inequality 〈x∗−y∗,−→yx〉 ≥ 0, for all (x, x∗) ∈ gra(A)
implies y∗ ∈ Ay.

In this section, we show that the graph of a maximal monotone operator is
sequentialy weakly-strongly closed in X×X∗, i.e. if (xn, x

∗
n) ∈ gra(A) ∀n ∈ N,

xn ⇀ x and (x∗n) ⊂ X∗ converges to x∗ ∈ X∗ in metric D then x∗ ∈ Ax.

Lemma 3.3. Let X be a Hadamard space with dual X∗ then

|〈x∗ − y∗,−→yx〉| ≤ D(x∗, y∗)d(x, y), for all x, y ∈ X, x∗, y∗ ∈ X∗.

Proof. let x, y ∈ X, x∗, y∗ ∈ X∗. Consider t, s ∈ R and a, b, c, d ∈ X such
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that x∗ = [t
−→
ab] and y∗ = [s

−→
cd]. If x = y that is clear, suppose x 6= y, then

|〈x∗ − y∗,−→yx〉| = |〈[t
−→
ab]− [s

−→
cd],−→yx〉|

= |〈t〈
−→
ab,−→yx〉 − s〈

−→
cd,−→yx〉|

= |〈t〈
−→
ab,−→ya〉+ t〈

−→
ab,−→ax〉 − s〈

−→
cd,−→yc〉 − s〈

−→
cd,−→cx〉|

= |t〈
−→
ab,−→ax〉 − t〈

−→
ab,−→ay〉 − s〈

−→
cd,−→cx〉+ s〈

−→
cd,−→cy〉|

= d(x, y)| (Θ(t, a, b)(x)−Θ(s, c, d)(x))− (Θ(t, a, b)(y)−Θ(s, c, d)(y))

d(x, y)
|

≤ d(x, y) sup{ (Θ(t, a, b)−Θ(s, c, d))(u)− (Θ(t, a, b)−Θ(s, c, d))(v)

d(u, v)
: u, v ∈ X,u 6= v}

= d(x, y)L(Θ(t, a, b)−Θ(s, c, d))

= d(x, y)D([t
−→
ab], [s

−→
cd])

= d(x, y)D(x∗, y∗).

Theorem 3.4. Let X be a Hadamard space with dual X∗ and A : X → 2X
∗

be a multi-valued maximal monotone operator. Suppose (xn, x
∗
n) ∈ gra(A) for

all n ∈ N such that (xn) is a bounded sequence in X that is w-convergent to
x ∈ X and (x∗n) ⊂ X∗ converges to x∗ ∈ X∗ in metric D then x∗ ∈ Ax.

Proof. By Lemma 3.3, for all n ∈ N and all (y, y∗) ∈ gra(A), we have

|〈x∗n − y∗,−−→yxn〉 − 〈x∗ − y∗,−→yx〉|
= |〈x∗n − x∗,−−→yxn〉+ 〈x∗ − y∗,−−→yxn〉+ 〈x∗ − y∗,−→xy〉|
= |〈x∗n − x∗,−−→yxn〉+ 〈x∗ − y∗,−−→xxn〉|
≤ |〈x∗n − x∗,−−→yxn〉|+ |〈x∗ − y∗,−−→xxn〉|
≤ D(x∗n, x

∗)d(xn, y) + |〈x∗ − y∗,−−→xxn〉|.

Let n→∞, we get

〈x∗n − y∗,−−→yxn〉 → 〈x∗ − y∗,−→yx〉. (3.1)

On the other hand, by monotonicity of A, for all (y, y∗) ∈ gra(A), we have

0 ≤ 〈x∗n − y∗,−−→yxn〉, ∀ n ∈ N,

which, by (3.1), implies

0 ≤ 〈x∗ − y∗,−→yx〉, ∀ (y, y∗) ∈ gra(A).
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Hence, the maximality of A implies x∗ ∈ Ax.

We say that a subset C of Hadamard space X is w-sequentially closed if
for any sequence (xn) ⊂ C that xn ⇀ x, we have x ∈ C. It is clear that
every w-sequentially closed subset of X is closed. By Theorem 3.4, it is easy
to verify that if A : X → 2X

∗
be a multi-valued maximal monotone operator

then A−1(x∗) is a w-sequentially closed subset of Hadamard space X, for any
x∗ ∈ X∗.

4 Halpern-type Proximal Point Algorithm

One of the most important problems in monotone operator theory is finding
a zero of a maximal monotone operator. This problem can be formulated in
Hadamard space as follows:

Find x ∈ X, such that 0 ∈ A(x), (4.1)

where A : X → 2X
∗

is a monotone operator on the Hadamard space X and 0
is the zero of dual space X∗.

Let X be a Hadamard space with dual X∗ and A : X → 2X
∗

be a multi-
valued operator. We say that A satisfies the range condition if for every
y ∈ X and every α > 0, there exists a point x ∈ X such that [α−→xy] ∈ Ax. It is
known that if A is a maximal monotone operator on the Hilbert space H then
R(I+λA) = H, ∀λ > 0, where I is identity operator. Thus, every maximal
monotone operator A on a Hilbert space satisfies the range condition.

Lemma 4.1. If A is a monotone operator on a Hadamard space X that sat-
isfies the range condition then for every y ∈ X and every α > 0, there exists
a unique point x ∈ X such that [α−→xy] ∈ Ax.

Proof. If there exists x, z ∈ X such that [α−→xy] ∈ Ax and [α−→zy] ∈ Az, then by
monotonicity of A, we have

0 ≤ 2〈[α−→xy]− [α−→zy],−→zx〉
= 2α〈−→xy,−→zx〉 − 2α〈−→zy,−→zx〉
= α(d2(y, z)− d2(x, z)− d2(y, x))− α(d2(x, z) + d2(y, z)− d2(y, x))

= −2d2(x, z),

which implies x = z.

We do not know if every maximal monotone operator A : X → 2X
∗

satisfies
the range condition when X is a Hadamard space.
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Let A : X → 2X
∗

be a multi-valued maximal monotone operator on the
Hadamard space X with dual X∗ that satisfies the range condition, (λn) is
a sequence of positive real numbers, (αn) is a sequence in ]0, 1[ and u ∈ X.
Halpern-type proximal point algorithm for maximal monotone operator A in
Hadamard space X is the sequence generated by{

[ 1
λn

−−−−−−−−−−−−−−−−−−→
xn+1(αnu⊕ (1− αn)xn)] ∈ Axn+1,

x0 ∈ X.
(4.2)

Note that, since the operator A satisfies the rang condition, the Halpern-type
proximal point algorithm (4.2) is well-defined and also (4.2) is accordance with
the Halpern-type proximal point algorithm

{
xn+1 ∈ (I + λnA)−1(αnu+ (1− αn)xn), where I is the identity operator

x0 ∈ X.

in a Hilbert space that is considered by [5, 6, 7, 8, 9, 25, 33, 35].
The aim of this section is to prove strong convergence of the sequence generated
by the Halpern-type proximal point algorithm (4.2) to an element of A−1(0),
where 0 is the zero of dual space. To this purpose, we need to the following
lemmas.

Lemma 4.2. Let X be a CAT(0) space, x, y ∈ X and t ∈]0, 1[. Then,

〈−→yz,
−−−−−−−−−−−→
(tx⊕ (1− t)y)y〉 ≤ t〈−→yz,−→xy〉, (z ∈ X).

Proof. Let z ∈ X. By Lemma 2.1 we have,

2(〈−→yz,
−−−−−−−−−−−→
(tx⊕ (1− t)y)y〉 − t〈−→yz,−→xy〉) = (d2((tx⊕ (1− t)y), z)− d2((tx⊕ (1− t)y), y)

− d2(y, z))− t(d2(x, z)− d2(x, y)− d2(y, z))

≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y)

− t2d2(x, y)− d2(y, z)− td2(x, z) + td2(x, y)

+ td2(y, z)

= 0,

which implies the desired inequality.

Lemma 4.3. Let X be a CAT(0) space and (xn) be a bounded sequence in X
that ∆-converges to X. Then,

d2(x, y) ≤ lim inf
n

d2(xn, y) (y ∈ X)
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Proof. By Lemma 2.3, for all y ∈ X, we get

d2(x, y)− lim inf
n

d2(xn, y) = lim sup
n

(d2(x, y)− d2(xn, y))

≤ lim sup
n

(d2(xn, x) + d2(x, y)− d2(xn, y))

= lim sup
n
〈−−→xxn,−→xy〉 ≤ 0,

that is the desired inequality.

Let X be a Hadamard space with dual X∗, A : X → 2X
∗

be a multi-
valued monotone operator such that satisfies the range condition and C > 0
and u ∈ X are fixed. Then by Lemma 4.1, for each t ∈]0, 1[ and each x ∈ X,
there exists a unique point zt,x such that [ 1

C zt,x(tu ⊕ (1 − t)x)] ∈ A(zt,x).
Thus, for every t ∈]0, 1[, we can define the mapping St : X → X with
St(x) = zt,x ∀x ∈ X. In the following, we show that, for every t ∈]0, 1[, St
has a unique fixed point zt ∈ X.

Proposition 4.4. For each t ∈]0, 1[, St has a unique fixed point zt ∈ X.

Proof. Let x, y ∈ X, then

[
1

C

−−−−−−−−−−−−−−→
St(x)(tu⊕ (1− t)x)] ∈ A(St(x)) and [

1

C

−−−−−−−−−−−−−−→
St(y)(tu⊕ (1− t)y)] ∈ A(St(y)).

By monotonicity of A, we have

2〈
−−−−−−−−−−−−−−→
St(x)(tu⊕ (1− t)x),

−−−−−−−→
St(x)St(y)〉 ≤ 2〈

−−−−−−−−−−−−−−→
St(y)(tu⊕ (1− t)y),

−−−−−−−→
St(x)St(y)〉

= 2〈
−−−−−−−−−−−−−−→
St(y)(tu⊕ (1− t)x),

−−−−−−−→
St(x)St(y)〉

+ 2〈
−−−−−−−−−−−−−−−−−−−−−−→
(tu⊕ (1− t)x)(tu⊕ (1− t)y),

−−−−−−−→
St(x)St(y)〉,

which implies,

2d2(St(x), St(y)) ≤ 2〈
−−−−−−−−−−−−−−−−−−−−−−→
(tu⊕ (1− t)x)(tu⊕ (1− t)y),

−−−−−−−→
St(x)St(y)〉

≤ 2d(tu⊕ (1− t)x, tu⊕ (1− t)y)d(St(x)St(y)).

Hence,

d(St(x), St(y)) ≤ d(tu⊕ (1− t)x, tu⊕ (1− t)y) ≤ (1− t)d(x, y)

Thus, for each t ∈]0, 1[, St is a contraction. Consequently, by Banach’s Con-
traction Principle, for each t ∈]0, 1[, St has a unique fixed point that is named
zt.
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In the following, we show that (zt) converges strongly to PA−1(0)u, where
PA−1(0) is the metric projection on A−1(0).

Theorem 4.5. [15] Let C be a nonempty convex subset of a CAT(0) space
X, x ∈ X and u ∈ C. Then u = PCx if and only if

〈−→xu,−→uy〉 ≥ 0, ∀y ∈ C.

We say that a Hadamard space X satisfies the condition Q if every bounded
sequence in X has a subsequence that is w-convergent.
It is said that a Hadamard space (X, d) satisfies the (S) property if for any
(x, y) ∈ X × X there exists a point yx ∈ X such that [−→xy] = [−−→yxx]. Hilbert
spaces and symmetric Hadamard manifold satisfy the (S) property (see [1],
Definition 2.7). Lemma 2.8 of [1] implies that if a Hadamard space (X, d) sat-
isfies the (S) property then it satisfies the condition Q because every bounded
sequence in a Hadamard space (X, d) has a ∆-convergent subsequence. Also,
the proper Hadamard spaces satisfy the condition Q (see [1], Propositions 4.3
and 4.4).

The following theorem is a version of Browder convergence theorem (see
[11]) for Halpern-type proximal point algorithm.

Theorem 4.6. Let X be a Hadamard space with dual X∗ that satisfies the
condition Q and A : X → 2X

∗
be a multi-valued maximal monotone opera-

tor that satisfies the range condition and A−1(0) 6= ∅ is convex. Then (zt)
converges strongly to PA−1(0)u as t→ 0.

Proof. For each t ∈]0, 1[, [ 1
C

−−−−−−−−−−−−→
zt(tu⊕ (1− t)zt)] ∈ A(zt). By monotonicity of A,

for all q ∈ A−1(0), we have

0 ≤ 2〈
−−−−−−−−−−−−→
zt(tu⊕ (1− t)zt),−→qzt〉

= d2(tu⊕ (1− t)zt, q)− d2(zt, q)− d2(tu⊕ (1− t)zt, zt),

hence,

d2(zt, q) ≤ d2(tu⊕ (1− t)zt, q)
≤ td2(u, q) + (1− t)d2(zt, q),

which implies,
d2(zt, q) ≤ d2(u, q), ∀q ∈ A−1(0). (4.3)

In particular, {zt} is bounded. Thus, by the condition Q, there exists a sub-
sequence of (zt) that is w-convergent. Moreover,

lim
t→0

D([
1

C

−−−−−−−−−−−−→
zt(tu⊕ (1− t)zt)],0) = lim

t→0

1

C
d(tu⊕(1−t)zt, zt) = lim

t→0

t

C
d(u, zt) = 0.

(4.4)
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Now, if (tn) is a sequence in ]0, 1[ such that tn → 0 and (ztn) is w-convergent
to z. Then, by (4.4) and Theorem 3.4, we get z ∈ A−1(0). Thus, by (4.4) and
Lemma 4.3, we obtain

d2(z, q) ≤ lim inf
n

d2(ztn , q) ≤ d2(u, q), ∀q ∈ A−1(0),

which, for all q ∈ A−1(0), implies,

〈−→zu,−→zq〉 = 〈−→zu,−→zu〉+ 〈−→zu,−→uq〉
= d2(z, q)− d2(u, q)

≤ 0.

Hence, by Theorem 4.5, z = PA−1(0)u. The arbitrariness of the subsequence
(ztn) of (zt) ensures that (zt) indeed w-converges to PA−1(0)u, as t→ 0. Now,
we prove the strong convergence of (zt).
By monotonicity of A and Lemma 4.2, for all q ∈ A−1(0), we have

0 ≤ 2〈
−−−−−−−−−−−−→
zt(tu⊕ (1− t)zt),−→qzt〉

≤ t〈−→ztu,−→qzt〉
= t〈−→ztq,−→qzt〉+ t〈−→qu,−→qzt〉,

which implies
d2(zt, q) ≤ 〈−→qu,−→qzt〉 ∀q ∈ A−1(0).

In particular,

d2(zt, PA−1(0)u) ≤ 〈
−−−−−−−−→
(PA−1(0)u)u,

−−−−−−−−−→
(PA−1(0)u)zt〉.

Letting t→ 0, we get d2(zt, PA−1(0)u)→ 0, that is the desired result.

Lemma 4.7. [15] Let (X, d) be a CAT(0) space and a, b, c ∈ X. Then for
each λ ∈ [0, 1],

d2(λa⊕ (1− λ)b, c) ≤ λ2d2(a, c) + (1− λ)2d2(b, c) + 2λ(1− λ)〈−→ac,
−→
bc〉.

Theorem 4.8. Let X be a Hadamard space with dual X∗ that satisfies the
condition Q and A : X → 2X

∗
be a multi-valued maximal monotone operator

such that satisfies the range condition and A−1(0) 6= ∅ is convex. If ((xn, x
∗
n))

is a sequence in graph of A such that (xn) is bounded and limnD(x∗n,0) = 0,
then

lim sup
n
〈−→up,−−→xnp〉 ≤ 0, where p = PA−1(0)u.
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Proof. For each t ∈]0, 1[, there exists a unique point zt ∈ X such that

[ 1
C

−−−−−−−−−−−−→
zt(tu⊕ (1− t)zt)] ∈ A(zt). By Theorem 4.6, as t → 0, (zt) converges

strongly to p = PA−1(0)u. By monotonicity of A, for each t ∈ (0, 1) and all
n ∈ N, we have

0 ≤ 2

C
〈
−−−−−−−−−−−−→
zt(tu⊕ (1− t)zt)− x∗n,−−→xnzt〉.

which, by Lemma 4.7, implies

d2(zt, xn) + 2〈x∗n,−−→xnzt〉 ≤ d2(tu⊕ (1− t)zt, xn)− t2d2(u, zt)

≤ t2d2(u, xn) + (1− t)2d2(zt, xn) + 2t(1− t)〈−−→uxn,−−→ztxn〉
= t2d2(u, xn) + (1− t)2d2(zt, xn) + 2t(1− t)〈−→uzt,−−→ztxn〉

+ 2t(1− t)d2(zt, xn)

= t2d2(u, xn) + (1− t2)d2(zt, xn) + 2t(1− t)〈−→uzt,−−→ztxn〉.

Thus, for each t ∈ (0, 1) and all n ∈ N, we get

2t(1− t)〈−→uzt,−−→xnzt〉 ≤ t2d2(u, xn) + 2〈x∗n,−−→ztxn〉
≤ t2d2(u, xn) + 2D(x∗n,0)d(zt, xn).

Hence, for each t ∈ (0, 1), we obtain

lim sup
n
〈−→uzt,−−→xnzt〉 ≤

t

2(1− t)
lim sup

n
d2(u, xn). (4.5)

On the other hand, by the continuity of d,

〈−→uzt,−−→xnzt〉 → 〈−→up,−−→xnp〉 as t→ 0, uniformly respect to n.

Therefore, for any number ε > 0, there exists δ > 0 such that

〈−→up,−−→xnp〉 ≤ ε + 〈−→uzt,−−→xnzt〉,

for all 0 < t < δ and all n ∈ N. This implies that

lim sup
n
〈−→up,−−→xnp〉 ≤ ε+ lim sup

n
〈−→uzt,−−→xnzt〉 ≤ ε +

t

2(1− t)
lim sup

n
d2(u, xn).

Letting t→ 0, we get
lim sup

n
〈−→up,−−→xnp〉 ≤ ε.

Hence, as ε→ 0, we deduce lim supn〈−→up,−−→xnp〉 ≤ 0.
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Lemma 4.9. [34] Let (sn) be a sequence of nonnegative real numbers, (αn)
a sequence of real numbers in [0, 1] with

∑∞
n=1 αn = ∞, (un) a sequence of

nonnegative real numbers with
∑∞
n=1 un < ∞, and (tn) a sequence of real

numbers with lim supn tn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αntn + un,

for all n ∈ N. Then limn→∞sn = 0.

The following lemma is a direct application of the well-known Stolz-Cesàro
theorem.

Lemma 4.10. Suppose that (an) and (bn) are positive sequences such

that
∑+∞
n=1 bn = +∞ and limn→+∞

an
bn

= 0, then limm→+∞

∑m
n=1 an∑m
n=1 bn

= 0.

Theorem 4.11. Let X be a Hadamard space with dual X∗ that satisfies the
condition Q and A : X → 2X

∗
be a multi-valued maximal monotone operator

that satisfies the range condition and A−1(0) 6= ∅ is convex. If (xn) generated
by (4.2) such that

D2([
1

λn

−−−−−−−−−−−−−−−−−−→
xn+1(αnu⊕ (1− αn)xn)],0) ≤ D2([

1

λn−1

−−−−−−−−−−−−−−−−−−−−−−→
xn(αn−1u⊕ (1− αn−1)xn−1)],0)

+ θn,

where (θn) is a positive sequence with
∑∞
n=1 θn < ∞,

∑∞
n=1 λ

2
n = ∞ and

αn

λ2
n
→ 0, then

(1) D([ 1
λn

−−−−−−−−−−−−−−−−−−→
xn+1(αnu⊕ (1− αn)xn)],0) → 0, as n → ∞. Also, if (xnk

) is a

subsequence of (xn), w-converges to x, then x ∈ A−1(0).
(2) If αn → 0 and

∑+∞
n=1 αn = +∞, then (xn) converges strongly to

p = PA−1(0)u.

Proof. Let q ∈ A−1(0). By monotonicity of A and (4.2), we have

0 ≤ 〈[ 1

λn

−−−−−−−−−−−−−−−−−−→
xn+1(αnu⊕ (1− αn)xn)],−−−→qxn+1〉,

which implies

d2(xn+1, q) + d2(xn+1, αnu⊕ (1− αn)xn)) ≤ d2(αnu⊕ (1− αn)xn), q). (4.6)

Thus

d2(xn+1, q) ≤ d2(αnu⊕ (1− αn)xn, q)

≤ αnd2(u, q) + (1− αn)d2(xn, q)

≤ max{d2(u, q), d2(x1, q)}.
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So, (xn) is bounded. Let us to prove (1). By (4.6), we have

d2(xn+1, αnu⊕ (1− αn)xn)) ≤ d2(αnu⊕ (1− αn)xn), q)− d2(xn+1, q)

≤ αnd2(u, q) + d2(xn, q)− d2(xn+1, q),

that is

λ2nD
2([

1

λn

−−−−−−−−−−−−−−−−−−→
xn+1(αnu⊕ (1− αn)xn)],0) ≤ αnd2(u, q) + d2(xn, q)− d2(xn+1, q).

(4.7)
Moreover, by assumptions, for all k > n, we get

D2([
1

λk

−−−−−−−−−−−−−−−−−−→
xk+1(αku⊕ (1− αk)xk)],0) ≤ D2([

1

λn

−−−−−−−−−−−−−−−−−−→
xn+1(αnu⊕ (1− αn)xn)],0)

+

k∑
i=n+1

θi,

which, by (4.7), implies

λ2nD
2([

1

λk

−−−−−−−−−−−−−−−−−−→
xk+1(αku⊕ (1− αk)xk)],0) ≤ αnd2(u, q) + d2(xn, q)− d2(xn+1, q)

+ λ2n

k∑
i=n+1

θi.

Summing up from n = 1 to k, after that dividing by
∑k
n=1 λ

2
n, then

D2([
1

λk

−−−−−−−−−−−−−−−−−−→
xk+1(αku⊕ (1− αk)xk)],0) ≤

∑k
n=1 αnd

2(u, q)∑k
n=1 λ

2
n

+
d2(x1, q)∑k
n=1 λ

2
n

+

∑k
n=1 λ

2
n

∑∞
i=n+1 θi∑k

n=1 λ
2
n

.

Letting k →∞ then, by Lemma 4.10, we get

D([
1

λk

−−−−−−−−−−−−−−−−−−→
xk+1(αku⊕ (1− αk)xk)],0)→ 0.

Now, if (xnk
) is a subsequence of (xn) that w-converges to x, then by Theorem

3.4, we get x ∈ A−1(0).
For prove (2), by Theorem 4.8 and part (1), we get

lim sup
n
〈−→up,−−→xnp〉 ≤ 0, where p = PA−1(0)u. (4.8)
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On the other hand, by (4.6), and Lemma 4.7 we have

d2(xn+1, p) ≤ d2(αnu⊕ (1− αn)xn), p)

≤ α2
nd

2(u, p) + (1− αn)2d2(xn, p) + 2αn(1− αn)〈−→up,−−→xnp〉
≤ (1− αn)d2(xn, p) + αn(αnd

2(u, p) + (1− αn)〈−→up,−−→xnp〉),

which, by the Lemma 4.9, the assumptions and (4.8), implies d(xn+1, p)→ 0,
that is the desired result.

Theorem 4.12. Let X be a Hadamard space with dual X∗ that satisfies the
condition Q and A : X → 2X

∗
be a multi-valued maximal monotone operator

such that satisfies the range condition and A−1(0) 6= ∅ is convex. If (xn)
generated by (4.2) such that
(i) (λn) is a nondecreasing sequence such that

∑∞
n=1

1
λnλn−1

<∞,
(ii) αn → 0 and

∑+∞
n=1 αn = +∞,

then (xn) converges strongly to p = PA−1(0)u.

Proof. By a proof similar to Theorem 4.11, (xn) is bounded. By monotonicity
of A and (4.2), we have

0 ≤ 1

λn
〈[ 1

λn−1

−−−−−−−−−−−−−−−−−−−−−−→
xn(αn−1u⊕ (1− αn−1)xn−1)]−[

1

λn

−−−−−−−−−−−−−−−−−−→
xn+1(αnu⊕ (1− αn)xn)],

−−−−−→xn+1xn〉

that is

1

λ2
n

〈
−−−−−−−−−−−−−−−−−−→
xn+1(αnu⊕ (1− αn)xn),

−−−−−→xn+1xn〉 ≤
1

λnλn−1
〈
−−−−−−−−−−−−−−−−−−−−−−→
xn(αn−1u⊕ (1− αn−1)xn−1),

−−−−−→xn+1xn〉

which implies

1

λ2n
d2(xn+1, αnu⊕ (1− αn)xn) ≤ 1

λnλn−1
d2(xn+1, αn−1u⊕ (1− αn−1)xn−1)

+
α2
n

λ2n
d2(u, xn)

≤ 1

λnλn−1
d2(xn, αn−1u⊕ (1− αn−1)xn−1)

+
1

λnλn−1
d2(xn+1, xn) +

α2
n

λ2n
d2(u, xn)

+
2

λnλn−1
d(xn+1, xn)d(xn, αn−1u⊕ (1− αn−1)xn−1)

≤ 1

λ2n−1
d2(xn, αn−1u⊕ (1− αn−1)xn−1)

+M(
1

λnλn−1
+
α2
n

λ2n
),
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where

M = sup
n
{2d(xn+1, xn)d(xn, αn−1u⊕(1−αn−1)xn−1), d2(xn+1, xn), d2(u, xn)}.

Hence

D2([
1

λn

−−−−−−−−−−−−−−−−−−→
xn+1(αnu⊕ (1− αn)xn)],0) ≤ D2([

1

λn−1

−−−−−−−−−−−−−−−−−−−−−−→
xn(αn−1u⊕ (1− αn−1)xn−1)],0)

+ θn,

where θn = M( 1
λnλn−1

+
α2

n

λ2
n

), ∀n ∈ N. By the assumptions, we have∑∞
n=1 θn <∞,

∑∞
n=1 λ

2
n =∞, αn

λ2
n
→ 0, αn → 0 and

∑+∞
n=1 αn = +∞. Hence,

part (2) of Theorem 4.11 completes the proof.

Acknowledgments:
The authors are grateful to the referee for his(her) careful reading and valuable
comments and suggestions. This work was supported by Higher Education
Center of Eghlid.

References

[1] B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric
spaces, Proc. Amer. Math. Soc. 141 (2013), 1029-1039.

[2] B. Ahmadi Kakavandi, M. Amini, Duality and Subdifferential for Convex
Functions on Complete CAT(0) Metric Spaces, Nonlinear Anal. 73 (2010)
3450-3455.
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