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On sortable intervals of monomials

V. Bonanzinga and S. Eliahou

Abstract

In 1996, in his study of Gröbner bases of toric ideals, Sturmfels intro-
duced a sorting operator on pairs of monomials of degree d in n variables.
This gave rise to the notion of sortable sets, namely sets B of monomials
of degree d such that B×B is preserved by that operator. In this paper,
we determine all lex-intervals or revlex-intervals of monomials which are
sortable. The solution involves the notion of greatest common prefix.

1 Introduction

Throughout this paper, we shall let S = K[x1, . . . , xn] denote the polynomial
ring in the variables x1, . . . , xn over a field K. We view S as a graded algebra
endowed with the standard grading given by deg(xi) = 1 for all i. We denote
by Sn,d the set of monomials xa11 · · ·xann in S of degree a1 + · · ·+ an = d.

In his study of Gröbner bases of toric ideals [5], Sturmfels introduced the
following sorting operator on pairs of monomials in Sn,d.

Definition 1.1. The operator

sort : Sn,d × Sn,d −→ Sn,d × Sn,d
(u, v) 7−→ (u′, v′)

is defined as follows. For any u, v ∈ Sn,d, write uv = xk1xk2 . . . xk2d with
non-decreasing indices 1 ≤ k1 ≤ k2 ≤ · · · ≤ k2d ≤ n. We then set

u′ = xk1xk3 . . . xk2d−1
,

v′ = xk2xk4 . . . xk2d .
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Observe that u′, v′ still belong to Sn,d and that sort(u, v) = sort(v, u).

Subsets B ⊂ Sn,d which behave well with respect to this operator, i.e. such
that

sort(B ×B) ⊂ B ×B,

are said to be sortable. These sets are of special interest, in particular because
they give rise to toric ideals which have quadratic Gröbner bases and to K-
algebras which are Koszul. See [1, 2, 3, 4, 5] for related information. It is
difficult in general to describe families of sortable sets. Here, we shall focus
on those subsets of Sn,d which constitute an interval under the lexicographic
or the reverse lexicographic order on Sn,d. Among them, we shall determine
precisely those which are sortable.

Recall the definition of the lexicographic order on Sn,d. Given
a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Nn such that

∑
i ai =

∑
i bi = d, we write

xa11 · · ·xann >lex xb11 · · ·xbnn

if and only if the leftmost nonzero coordinate of a−b is positive. Equivalently,
let

u = xi1 · · ·xid , v = xj1 · · ·xjd ∈ Sn,d
with i1 ≤ · · · ≤ id, j1 ≤ · · · ≤ jd. Then u >lex v if and only if the leftmost
nonzero coordinate of (i1−j1, . . . , id−jd) is negative. Actually, we shall mostly
omit the subscript and simply write ≥ instead of ≥lex.

We now recall the notions of lex-segments and lex-intervals.

Definition 1.2. For v ∈ Sn,d, the lex-segment L(v) is the set of all monomials
u ∈ Sn,d satisfying u ≥ v. More generally, for v1 ≥ v2 ∈ Sn,d, the lex-interval
L(v1, v2) is the set of all monomials u ∈ Sn,d satisfying v1 ≥ u ≥ v2.

Here is a short description of the content of this paper. In Section 2,
we establish properties of the sort operator which will help us compare the
monomial pair (u, v) with sort(u, v). In Section 3, we define sets Biw(v),
consisting of all monomials u ∈ Sn,d which are index-wise smaller than or
equal to a given v ∈ Sn,d, and we show that these sets are always sortable. In
Section 4, we show that for v ∈ Sn,d, the lex-segment L(v) is sortable if and
only if L(v) coincides with Biw(v). This necessary and sufficient condition is
then turned into a simple criterion in Section 5, thereby answering the problem
of characterizing sortable lex-segments originally formulated in [2]. In order to
go further and study the sortability of lex-intervals, we shall need the notion of
greatest common prefix discussed in Section 6. This allows us to determine all
sortable lex-intervals in Section 7. Finally, in Section 8, we obtain analogous
sortability criteria for revlex-intervals.
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2 Some properties of the sort operator

We first introduce some terminology. Given a monomial u ∈ Sn,d, written as
u = xi1 · · ·xid with 1 ≤ i1 ≤ · · · ≤ id ≤ n, we shall usually denote its index
multiset by the corresponding capital letter, that is

U = [i1, . . . , id].

Actually, we shall rather write

U = [i1 ≤ · · · ≤ id],

since knowing the ordering of the elements of U is useful in the present context.
Note that for u, v ∈ Sn,d, with index multisets U, V , the index multiset of their
product uv ∈ Sn,2d is given by the multiset sum∗

U ] V.

We now establish a few properties of the sort operator. For any u, v ∈ Sn,d,
we shall keep the notation

(u′, v′) = sort(u, v)

throughout the rest of this section.

Lemma 2.1. For all u, v ∈ Sn,d, we have uv = u′v′.

Proof. This is immediate, since the index multiset of u′v′ is, by construction,
the same as that of uv.

Lemma 2.2. For all u, v ∈ Sn,d such that u ≥ v, there are only two possibil-
ities:

either u ≥ u′ ≥ v′ ≥ v,
or u′ ≥ u ≥ v ≥ v′.

Proof. Assume for a contradiction that u ≥ u′ and v > v′. Then we get
uv > u′v′, in contradiction with Lemma 2.1. The proof for the other case is
similar.

In order to determine which of these alternatives the pair (u, v) satisfies,
we introduce a key index r = δ(u, v) and three types of monomial pairs.

∗For finite multisets U = [i1, . . . , ip], V = [j1, . . . , jq ], their multiset sum is defined as
U ] V = [i1, . . . , ip, j1, . . . , jq ].
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Definition 2.3. Let u, v ∈ Sn,d such that u ≥ v. Denote u = xi1 · · ·xid ,
v = xj1 · · ·xjd with i1 ≤ · · · ≤ id and j1 ≤ · · · ≤ jd, and set i0 = j0 = 0. We
shall denote by δ(u, v) the maximal integer r such that 0 ≤ r ≤ d and

i0 ≤ j0 ≤ i1 ≤ j1 ≤ . . . ≤ ir ≤ jr.

Still with r = δ(u, v), we say that the pair (u, v) is of

• type 0 if r = d,

• type 1 if r < d and jr ≤ ir+1 ≤ ir+2 < jr+1,

• type 2 if r < d and jr ≤ jr+1 < ir+1.

Observe that, by construction, every pair of monomials (u, v) with u ≥ v
is of one of the above three types, and uniquely so.

Proposition 2.4. Let u, v ∈ Sn,d with u ≥ v. Then the pair (u, v) is of

• type 0 if and only if (u′, v′) = (u, v);

• type 1 if and only if u > u′ > v′ > v;

• type 2 if and only if u′ > u > v > v′.

Proof. Denote u = xi1 · · ·xid , v = xj1 · · ·xjd with i1 ≤ i2 ≤ · · · ≤ jd and
j1 ≤ j2 ≤ · · · ≤ jd. If (u, v) is of type 0, i.e. if r = d, we have

i1 ≤ j1 ≤ . . . ≤ id ≤ jd,

whence u′ = u and v′ = v by definition of the sorting operator. Assume now
r < d. We examine in turn the cases where (u, v) is of type 1 and of type 2.
We shall denote by U ′, V ′ the index multiset of u′, v′, respectively.

Type 1. We have jr ≤ ir+1 ≤ ir+2 < jr+1. Thus, in the process of construct-
ing (U ′, V ′), we get(

U ′

V ′

)
=

(
i1 . . . ir ir+1 . . .
j1 . . . jr ir+2

)
.

Since ir+2 < jr+1, we have v′ > v, and hence u > u′ by Lemma 2.2, as stated.
Incidentally, we must have r ≤ d− 2 in this case.

Type 2. We have jr ≤ jr+1 < ir+1. Then here, in the process of constructing
(U ′, V ′), we get (

U ′

V ′

)
=

(
i1 . . . ir jr+1 . . .
j1 . . . jr

)
.
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Since jr+1 < ir+1, we have u′ > u, whence v > v′ by Lemma 2.2. Incidentally,
we cannot have r = 0 in this case, since i1 ≤ j1 by the assumption u ≥ v.

Finally, since types 0, 1 and 2 cover all possibilities, the implications proven
so far are in fact equivalences.

3 Sortable sets

Definition 3.1. Let B ⊂ Sn,d be a set of monomials of degree d in x1, . . . , xn.
We say that B is sortable if B ×B is stable under the sort operator, i.e. if

sort(B ×B) ⊂ B ×B.

Here is a known class of sortable sets. Given a = (a1, . . . , an) ∈ Nn, let

Sa
n,d = {xc11 · · ·xcnn ∈ Sn,d | ci ≤ ai for all i}.

Then Sa
n,d is sortable for all a = (a1, . . . , an) ∈ Nn. (See Proposition 6.11 in

[2, p. 105].)

We now construct a new class of sortable sets. To this end, we introduce a
partial order between monomials in Sn,d, denoted ≤iw and referred to as the
index-wise partial order.

Definition 3.2. Let u = xi1 · · ·xid , v = xj1 · · ·xjd be monomials of degree d
with i1 ≤ i2 ≤ · · · ≤ id and j1 ≤ j2 ≤ · · · ≤ jd. We shall write

u ≤iw v

if and only if iα ≤ jα for all α = 1, . . . , d.

Definition 3.3. Let v ∈ Sn,d be a monomial in x1, . . . , xn of degree d. Define

Biw(v) = {u ∈ Sn,d | u ≤iw v}.

For instance, for any v ∈ Sn,d, it is plain that Biw(v) contains xd1. Note
that if u, v ∈ Sn,d and u ≤iw v, then u ≥ v under the lexicographical order.
This amounts to the set inclusion

Biw(v) ⊂ L(v).

(See Lemma 4.1 below).
Observe that Biw(v) is nothing else than the set of minimal generators of

the principal Borel ideal 〈v〉 generated by v, see e.g. [6].
We now show that the sets Biw(v) constitute yet another class of sortable

sets in Sn,d.
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Proposition 3.4. Let v ∈ Sn,d. Then Biw(v) is sortable.

Proof. Let the index multiset of v be V = [j1 ≤ · · · ≤ jd]. Let u1, u2 ∈ Biw(v),
with index multisets

U1 = [h1 ≤ · · · ≤ hd], U2 = [i1 ≤ · · · ≤ id],

respectively. By hypothesis, we have

hα, iα ≤ jα (1)

for all α = 1, . . . , d. Let the index multiset of u1u2 = u′1u
′
2 be

W = [k1 ≤ · · · ≤ k2d],

where W = U1 ]U2 is the multiset sum of U1, U2. By definition of the sorting
operator, the index multisets of u′1, u

′
2 are

[k1 ≤ k3 ≤ · · · ≤ k2d−1], [k2 ≤ k4 ≤ · · · ≤ k2d],

respectively. We must show that u′1, u
′
2 ≤iw v. Since k2β−1 ≤ k2β for all β,

this will follow at once from the following claim.

Claim. For all β = 1, . . . , d, we have

k2β ≤ jβ .

Indeed, it follows from (1) that

hα, iα ≤ jα ≤ jβ

for all 1 ≤ α ≤ β. Thus, the multiset W = U1 ] U2 contains at least 2β
elements which are bounded above by jβ , namely [h1, i1, . . . , hβ , iβ ]. But since
k1, k2, . . . , k2β are the 2β smallest elements in W = U1 ] U2, it follows that

k1, . . . , k2β ≤ jβ .

This proves the claim which, in turn, implies u′1, u
′
2 ∈ Biw(v).

Note that the sets Biw(v) need not coincide with the sets Sa
n,d. Indeed,

let v = x1x3 ∈ S3,2. Then Biw(v) = {x21, x1x2, x1x3}. Thus, if we had
Biw(v) = Sa

3,2 for some a = (a1, a2, a3) ∈ N3, we would then necessarily have
a = (2, 1, 1). But now, observe that

x2x3 ∈ S
(2,1,1)
3,2 \Biw(x1x3).

Hence Biw(x1x3) 6= Sa
3,2 for all a ∈ N3, as claimed.
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4 When is a lex-segment sortable?

In this section, we shall characterize all those lex-segments L(v) which are
sortable. We start by formalizing as a lemma an earlier observation comparing
Biw(v) and L(v).

Lemma 4.1. Let v ∈ Sn,d be a monomial in x1, . . . , xn of degree d. Then
Biw(v) ⊂ L(v).

Proof. Let V = [j1 ≤ · · · ≤ jd] be the index multiset of v. Let u ∈ Sn,d such
that u ≤iw v, with index multiset U = [i1 ≤ · · · ≤ id]. Then we have

iα ≤ jα

for all α = 1, . . . , d. It follows that u ≥ v, as desired.

Example 4.2. Let v = x32 ∈ S3,3. Then we have

Biw(v) = {x31, x21x2, x1x22, x32},
L(v) = {x31, x21x2, x21x3, x1x22, x1x2x3, x1x23, x32}.

We are now ready to state and prove our promised characterization.

Theorem 4.3. Let v ∈ Sn,d. Then L(v) is sortable if and only if L(v) =
Biw(v).

Proof.
• If L(v) = Biw(v), then L(v) is sortable by Proposition 3.4.
• Conversely, assume that L(v) 6= Biw(v). Since Biw(v) ⊂ L(v) by Lemma 4.1,
there exists some u ∈ L(v) \ Biw(v), i.e. such that u > v and u 6≤iw v.
Denote u = xi1 · · ·xid with i1 ≤ i2 ≤ · · · ≤ id, and v = xj1 · · ·xjd with
j1 ≤ j2 ≤ · · · ≤ jd. Since u > v, there is an index s ≥ 1 such that

iα = jα for all 1 ≤ α ≤ s− 1,
is < js.

(2)

Moreover, since u 6≤iw v, there is an index t ≥ 1 such that

iβ ≤ jβ for all 1 ≤ β ≤ t− 1,
it > jt.

(3)

It follows from the definition of s, t that s < t. Since we do not know how jβ
compares with iβ+1 for s+1 ≤ β ≤ t−1, we have no precise control on δ(u, v)
and we cannot determine the type of (u, v).
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To get around this problem, we shall construct a new monomial u ∈ L(v)\
Biw(v), by suitably increasing all indices iβ with s + 1 ≤ β ≤ t − 1, and for
which the type of (u, v) will be easier to determine†. So, let us define

iβ =

{
jβ if s+ 1 ≤ β ≤ t− 1,
iβ otherwise,

and let u = xi1 · · ·xid . We first claim that

i1 ≤ i2 ≤ · · · ≤ id. (4)

Indeed, the inequality iα ≤ iα+1 clearly holds for all α ∈ [1, d− 1] \ {s, t− 1},
since in those cases it reduces to either iα ≤ iα+1 or jα ≤ jα+1. Now, for
α = s, we have

is = is < js ≤ js+1 = is+1,

and for α = t− 1, we have

it−1 = jt−1 ≤ jt < it = it.

This proves (4). Next, we claim that δ(u, v) = t− 1. Indeed, relations (2) and
(3) become

iα = jα for all 1 ≤ α ≤ s− 1,
is < js,

(5)

and

iβ = jβ for all s+ 1 ≤ β ≤ t− 1,
it > jt,

(6)

respectively. As a first consequence, observe that u ≥ u > v. Moreover, by
(5), (6) and the fact that the jα are nondecreasing, we have

i1 = j1 ≤ i2 = j2 ≤ · · · ≤ it−1 = jt−1 ≤ jt < it.

Thus, we have δ(u, v) = t − 1 by definition of this index, and the pair (u, v)
is of type 2 since it−1 ≤ jt−1 ≤ jt < it. It follows from Proposition 2.4 that
u′ > u > v > v′. Hence L(v) is not sortable, as claimed.

†If s + 1 > t− 1, i.e. if s = t− 1 since s < t, we simply end up with u = u.
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5 A simple criterion

We shall now derive from Theorem 4.3 a simple criterion for recognizing when
a given monomial v ∈ Sn,d has the property that L(v) is sortable or not.

Definition 5.1. Let w be a monomial in the variables x1, . . . , xn. If w 6= 1,
we denote by min(w), max(w) the smallest, respectively the largest, index of
the variables dividing w. For w = 1, we set min(1) =∞ and max(1) = 0.

For instance, if w = x52x
2
3x4, then min(w) = 2 and max(w) = 4.

Theorem 5.2. Let v be a monomial in the variables x1, . . . , xn. Then L(v)
is not sortable if and only if v has a factor w of degree 2 in x2, . . . , xn−1.

Proof. Denote v = xj1 . . . xjd with j1 ≤ · · · ≤ jd, and assume first that L(v) is
not sortable. By Theorem 4.3, there exists a monomial u ∈ L(v) \Biw(v), i.e.
satisfying u > v and u 6≤iw v. Thus, denoting u = xi1 . . . xid with i1 ≤ · · · ≤ id,
there exist indices 1 ≤ s < t ≤ d such that

iα = jα for all 1 ≤ α ≤ s− 1,
is < js,
iβ ≤ jβ for all s ≤ β ≤ t− 1,
it > jt,

(7)

as in (2), (3) in the proof of Theorem 4.3. This implies

2 ≤ js ≤ jt ≤ n− 1,

since 1 ≤ is < js ≤ jt < it ≤ n by (7). Hence, the monomial w = xjsxjt is a
factor of v of degree 2 in the variables x2, . . . , xn−1.

Conversely, assume that v has a factor w of degree 2 in x2, . . . , xn−1. Then
there is a decomposition

v = v1xh1xh2v2

with 2 ≤ h1 ≤ h2 ≤ n−1 and with v1, v2 possibly trivial monomials‡ satisfying
max(v1) ≤ h1 ≤ h2 ≤ min(v2). We now set

u = v1xh1−1x
b
n,

where b = d− deg(v1)− 1, so that deg(u) = d. Note that u > v. Let us now
start the computation of (u′, v′) = sort(u, v). On the level of index multisets,
we have (

U ′

V ′

)
=

(
V1 h1 − 1 h2 . . .
V1 h1 . . . . . .

)
.

‡Recall our conventions max(1) = 0 and min(1) =∞.
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Since h2 < n, it follows that u′ > u, whence also v > v′ by Lemma 2.2.
Summarizing, we found that L(v) contains u, v but not v′. Therefore L(v) is
not sortable, as stated.

Corollary 5.3. Let v ∈ Sn,d. Then L(v) is sortable if and only if v = xa1xjx
b
n

for some a, b ∈ N and some index j such that 1 ≤ j ≤ n.

Compare with Proposition 3.2 (i) of [6], a closely related statement.

6 The greatest common prefix

In order to extend our sortability criterion to arbitrary lex-intervals of mono-
mials, we shall need the notion of greatest common prefix of two or more
monomials. Analogous notions appear in various contexts such as computer
science, combinatorics on words, computational molecular biology and braid
theory.

Definition 6.1. Let u ∈ S be a monomial in x1, . . . , xn. A prefix of u is any
factor w of u satisfying

max(w) ≤ min(u/w).

Equivalently, if u = xi1 · · ·xid with i1 ≤ · · · ≤ id, a prefix of u is a factor w
of the form

w = xi1 · · ·xik
for some 0 ≤ k ≤ d.

Note that for each 0 ≤ k ≤ deg(u), there is a unique prefix w of u of
degree k. We now consider the case of two monomials; the extension to more
monomials is straightforward.

Definition 6.2. Let u, v ∈ S be monomials in x1, . . . , xn. The greatest com-
mon prefix of u, v, denoted

gcp(u, v),

is the common prefix of u, v of highest degree.

Note that gcp(u, v) divides gcd(u, v), the usual greatest common divisor of
u, v. For example, if u = x1x

2
2x3 and v = x1x2x

2
3, then

gcp(u, v) = x1x2, gcd(u, v) = x1x2x3.

Here is an equivalent characterization of gcp(u, v).
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Remark 6.3. Let u, v be monomials in x1, . . . , xn. Then gcp(u, v) is the
common factor w of u, v of highest degree satisfying

max(w) ≤ min(u/w), max(w) ≤ min(v/w).

Finally, let us observe that the notion of gcp allows a useful equivalent
formulation of the lexicographical order.

Proposition 6.4. Let v1 6= v2 ∈ Sn,d. Let v0 = gcp(v1, v2). Then v1 >lex v2
if and only min(v1/v0) < min(v2/v0).

7 The case of lex-intervals

Given v1 ≥ v2 in Sn,d, we denote by L(v1, v2) the lex-interval determined by
v1, v2 with respect to the lexicographical order, namely

L(v1, v2) = {u ∈ Sn,d | v1 ≥ u ≥ v2}.

Of course, lex-segments are lex-intervals: if v ∈ Sn,d, then

L(v) = L(xd1, v).

In this section, we generalize Theorem 5.2 and determine which lex-intervals
in Sn,d are not sortable. Even though Theorem 5.2 will follow as an immedi-
ate corollary, we have treated it separately with an independent and simpler
proof.

The case of arbitrary lex-intervals requires the notion of greatest common
prefix introduced in the preceding section. Note L(v, v) = {v} is sortable, since
sort(v, v) = (v, v). Thus, we only need to examine the case where v1 > v2.

Theorem 7.1. Let v1 > v2 be monomials in x1, . . . , xn of degree d. Let
v0 = gcp(v1, v2). Then L(v1, v2) is not sortable if and only if the monomial
v2/v0 has a factor w of degree 2 such that max(w) < n.

Proof. • Assume first that v2/v0 has a factor w = xh1
xh2

with h1 ≤ h2 < n.
Since v1 > v2, there are decompositions

v1 = v0w1, v2 = v0w2

with max(v0) ≤ min(w1) < min(w2). Without loss of generality, we may
assume that w is the prefix of degree 2 in w2. Thus, we may further decompose

w2 = xh1
xh2

w2



ON SORTABLE INTERVALS OF MONOMIALS 98

with h1 = min(w2) and min(w2) ≥ h2. We shall now find a special monomial
u in L(v1, v2) such that sort(u, v2) falls outside L(v1, v2)× L(v1, v2). Set

u = v0xh1−1x
b
n

with b = d− deg(v0)− 1, so that deg(u) = d.
We first show, using Proposition 6.4, that u belongs to L(v1, v2). Indeed,

on the one hand we have
u > v2,

since v0 is a common prefix of u, v2 and since h1 − 1 = min(w2) − 1. On the
other hand, in order to show

v1 ≥ u,

we need to determine the greatest common prefix of v1, u. First note that
min(w1) ≤ h1 − 1, since min(w1) < min(w2) = h1. We get:

gcp(v1, u) =


v0 if min(w1) < h1 − 1,
v0xh1−1 if min(w1) = h1 − 1 and w1 > xh1−1x

b
n,

v0xh1−1x
b
n if min(w1) = h1 − 1 and w1 = xh1−1x

b
n.

In either case, we easily conclude with Proposition 6.4 that v1 ≥ u. Therefore
u ∈ L(v1, v2), as stated.

Let us now apply the sort operator to the pair (u, v2). On the level of index
multisets, we have(

U ′

V ′2

)
=

(
V0 h1 − 1 h2 . . .
V0 h1 . . . . . .

)
.

Since h2 < n, it follows that u′ > u, whence also v2 > v′2 by Lemma 2.2. Thus
L(v1, v2) contains u, v2 but not v′2. It follows that L(v1, v2) is not sortable, as
stated.

• Conversely, assume that v2/v0 has no factor w of degree 2 satisfying
max(w) < n. It follows that either deg(v2/v0) = 1, or else

v2/v0 = xjx
b
n

with max(v0) ≤ j ≤ n and b ≥ 1. We now show that, in each case, the interval
L(v1, v2) is sortable.

(1) Assume first deg(v2/v0) = 1. Then, since v1 > v2, there are indices
max(v0) ≤ h1 < h2 ≤ n such that

v1 = v0xh1
, v2 = v0xh2

.



ON SORTABLE INTERVALS OF MONOMIALS 99

It follows that L(v1, v2) = v0{xh1 , xh1+1, . . . , xh2}. But then, it is clear that
for any indices i, j such that h1 ≤ i ≤ j ≤ h2, we have

sort(v0xi, v0xj) = (v0xi, v0xj).

Thus, L(v1, v2) is sortable in this case.
(2) Assume now v2/v0 = xjx

b
n with max(v0) ≤ j ≤ n and b ≥ 1. Since

v1 > v2 = v0xjx
b
n, there is a decomposition

v1 = v0xhv1

with max(v0) ≤ h < j and h ≤ min(v1). Note that the equality h = j is
excluded by our assumption gcp(v1, v2) = v0. With these values of v1, v2, we
now describe all monomials in the lex-interval L(v1, v2).

Claim. Let u ∈ Sn,d. Then we have

v0xhv1 ≥ u ≥ v0xjx
b
n

if and only if u = v0xiu for some monomial u and some index i such that
h ≤ i ≤ j, and either

(i) h = i and v1 ≥ u, or else

(ii) h < i ≤ j and u is any monomial in xi, . . . , xn of appropriate degree.

Checking the claim is straightforward and left to the reader.
We now prove that L(v1, v2) is sortable. So let u1 ≥ u2 ∈ L(v1, v2). Since

v1 ≥ u1 ≥ u2 ≥ v2, there are decompositions

u1 = v0xi1u1, u2 = v0xi2u2

such that h ≤ i1 ≤ i2 ≤ j. Let us start the computation of (u′1, u
′
2) =

sort(u1, u2). On the level of index multisets, we have(
U ′1
U ′2

)
=

(
V0 i1 . . .
V0 i2 . . .

)
.

It follows that u′2 admits v0xi2 as a prefix. Recalling the equality v2 = v0xjx
b
n,

we now show that u′2 ≥ v2.

(i) If i2 < j, then clearly u′2 > v2.

(ii) If i2 = j, then u′2 ≥ v2 since v2, by its specific structure, is the smallest
monomial of its degree having v0xj as a prefix.
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It follows from Lemma 2.2 that v1 ≥ u′1 ≥ u′2 ≥ v2, and hence that u′1, u
′
2 still

belong to L(v1, v2). Therefore L(v1, v2) is sortable, as stated.

Corollary 7.2. The only sortable lex-intervals L(v1, v2) ⊂ Sn,d with v1 > v2
are those such that (v1, v2) = (v0w1, v0xjx

b
n), where b = d − deg(v0) − 1 and

where v0, w1 are monomials satisfying

max(v0) ≤ min(w1) < j ≤ n.

8 From lex to revlex

Our aim here is to establish the analogue of Theorem 7.1 for intervals of mono-
mials under the reverse lexicographical order on Sn,d. Instead of adapting our
earlier proofs to this new setting, we shall develop tools allowing us to transfer
knowledge between the lex and the revlex orders. The desired analogue will
then directly follow from Theorem 7.1 using those tools.

Recall first the definition of the revlex order. Given a = (a1, . . . , an),
b = (b1, . . . , bn) ∈ Nn such that

∑
i ai =

∑
i bi = d, we write

xa11 · · ·xann >rev x
b1
1 · · ·xbnn

if and only if the rightmost nonzero coordinate of a − b is negative. Equiva-
lently, let

u = xi1 · · ·xid , v = xj1 · · ·xjd ∈ Sn,d
with i1 ≤ · · · ≤ id, j1 ≤ · · · ≤ jd. Then u >rev v if and only if the rightmost
nonzero coordinate of (i1 − j1, . . . , id − jd) is negative.

Informally, the lex order gives a premium in priority to x1, then to x2 and
so on, whereas the revlex order puts a penalty in priority to xn, then to xn−1
and so on. In S2,2 for instance, we have

x1x3 >lex x
2
2 but x1x3 <rev x

2
2.

Note also that x1 > · · · > xn for both orders.

8.1 The automorphism σ

A convenient way to compare the lex and revlex orders is through the K-
algebra automorphism

σ : K[x1, . . . , xn] −→ K[x1, . . . , xn]

xi 7−→ xn+1−i ∀i = 1, . . . , n.
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Indeed, for any monomials u, v ∈ Sn,d, we have

u >lex v ⇐⇒ σ(u) <rev σ(v). (8)

Since σ−1 = σ, this equivalence may as well be written in the form

v >rev u ⇐⇒ σ(u) <lex σ(v). (9)

8.2 Revlex-intervals

We now define intervals in Sn,d under the revlex order.

Definition 8.1. Given v1 ≥rev v2 in Sn,d, we denote by R(v1, v2) the revlex-
interval determined by v1, v2, namely

R(v1, v2) = {u ∈ Sn,d | v1 ≥rev u ≥rev v2}.

Lex-intervals and revlex-intervals may be compared as follows.

Lemma 8.2. For any v1 ≥rev v2 in Sn,d, we have

σ(R(v1, v2)) = L(σ(v2), σ(v1)).

Proof. Let u ∈ Sn,d. Then u ∈ R(v1, v2) if and only if v1 ≥rev u ≥rev v2.
Applying σ and using (9) this in turn is equivalent to

σ(v1) ≤lex σ(u) ≤lex σ(v2),

i.e. to σ(u) ∈ L(σ(v2), σ(v1)). It follows thatR(v1, v2) = σ−1(L(σ(v2), σ(v1))),
whence the stated formula.

8.3 Sort and σ

Here we describe how sort and σ interact with each other.

Lemma 8.3. For any u, v ∈ Sn,d, let (u′, v′) = sort(u, v). Then

sort(σ(u), σ(v)) = (σ(v′), σ(u′)).

Proof. Denote uv = xk1xk2 . . . xk2d with nondecreasing indices ki. Then by
construction, we have

u′ = xk1xk3 . . . xk2d−1
,

v′ = xk2xk4 . . . xk2d .
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Now σ(u)σ(v) = σ(uv) = xn+1−k2dxn+1−k2d−1
. . . xn+1−k1 , here again with

nondecreasing indices. Applying sort to the pair (σ(u), σ(v)), it follows that

σ(u)′ = xn+1−k2dxn+1−k2d−2
. . . xn+1−k2 = σ(v′)

σ(v)′ = xn+1−k2d−1
xn+1−k2d−3

. . . xn+1−k1 = σ(u′),

as stated.

A useful consequence is that σ preserves the sortability property.

Proposition 8.4. Let B be a subset of Sn,d. Then B is sortable if and only
if σ(B) is sortable.

Proof. Since σ−1 = σ, it suffices to prove one direction. So assume that B is
sortable. Any element in σ(B)×σ(B) is of the form (σ(u), σ(v)) for some pair
(u, v) ∈ B × B. We claim that sort(σ(u), σ(v)) still belongs to σ(B) × σ(B).
Indeed, by Lemma 8.3, we have

sort(σ(u), σ(v)) = (σ(v′), σ(u′)).

But (u′, v′) ∈ B×B since B is sortable, whence (σ(v′), σ(u′)) ∈ σ(B)×σ(B).
This shows that sort(σ(u), σ(v)) ∈ σ(B) × σ(B), as claimed. Therefore σ(B)
is sortable.

8.4 The greatest common suffix

Definition 8.5. Let u = xi1 · · ·xid be a monomial in x1, . . . , xn of degree d
with i1 ≤ · · · ≤ id. Let 1 ≤ k ≤ d. The k-suffix of u is the degree k monomial

xid+1−k
· · ·xid .

It may be characterized as the unique monomial u0 of degree k such that u0
divides u and min(u0) ≥ max(u/u0).

We now introduce the analogue for suffixes of the greatest common prefix.

Definition 8.6. Let u, v ∈ S be monomials in x1, . . . , xn. The greatest com-
mon suffix of u, v, denoted

gcs(u, v),

is the common suffix of u, v of highest degree.

Note that gcs(u, v) divides gcd(u, v), as was the case for gcp(u, v). Taking
our earlier example, if u = x1x

2
2x3 and v = x1x2x

2
3, we have

gcs(u, v) = x3.
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Moreover, gcs(u, v) may be characterized as the common factor w of u, v of
highest degree satisfying

min(w) ≥ max(u/w), min(w) ≥ max(v/w).

The following result shows that σ transforms gcs into gcp.

Lemma 8.7. For all v1, v2 ∈ Sn,d, we have σ(gcs(v1, v2))=gcp(σ(v2), σ(v1)).

Proof. This follows from the observation that, for any monomial v, a monomial
v0 is a suffix of v if and only if σ(v0) is a prefix of σ(v).

8.5 Sortable revlex-intervals

We are now ready to determine which revlex-intervals are sortable and which
are not. The results will follow from Theorem 7.1, Corollary 7.2 and the above
properties of the automorphism σ.

Theorem 8.8. Let v1 >rev v2 be monomials in x1, . . . , xn of degree d. Let
v0 = gcs(v1, v2). Then R(v1, v2) is not sortable if and only if v1/v0 has a
factor w of degree 2 such that min(w) > 1.

Proof. By Proposition 8.4, the non-sortability of R(v1, v2) is equivalent to that
of σ(R(v1, v2)). Now σ(R(v1, v2)) = L(σ(v2), σ(v1)) by Lemma 8.2, and the
non-sortability of this lex-interval may be determined using Theorem 7.1. By
Lemma 8.7, we have gcp(σ(v2), σ(v1)) = σ(v0), where v0 = gcs(v1, v2). By
Theorem 7.1, L(σ(v2), σ(v1)) is non-sortable if and only if σ(v1)/σ(v0) has a
factor w′ of degree 2 such that max(w′) < n. Let w = σ(w′). Now

max(w′) < n ⇐⇒ min(w) > 1.

Thus, applying σ, we have that L(σ(v2), σ(v1)) is non-sortable if and only if
v1/v0 has a factor w of degree 2 such that min(w) > 1. It follows that R(v1, v2)
is not sortable if and only if the latter condition holds, as stated.

Corollary 8.9. The only sortable revlex-intervals R(v1, v2) ⊂ Sn,d with v1 >rev
v2 are those such that (v1, v2) = (xb1xjv0, w1v0), where b = d−deg(v0)−1 and
where v0, w1 are monomials satisfying

1 ≤ j < max(w1) ≤ min(v0).
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