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On sortable intervals of monomials

V. Bonanzinga and S. Eliahou

Abstract
In 1996, in his study of Grobner bases of toric ideals, Sturmfels intro-
duced a sorting operator on pairs of monomials of degree d in n variables.
This gave rise to the notion of sortable sets, namely sets B of monomials
of degree d such that B x B is preserved by that operator. In this paper,
we determine all lex-intervals or revlex-intervals of monomials which are
sortable. The solution involves the notion of greatest common prefix.

1 Introduction

Throughout this paper, we shall let S = K[z1,...,z,] denote the polynomial
ring in the variables z1,...,x, over a field K. We view S as a graded algebra
endowed with the standard grading given by deg(z;) = 1 for all i. We denote
by Sy,.q the set of monomials z{* - --z% in S of degree a; + -+ + a, = d.

In his study of Grébner bases of toric ideals [5], Sturmfels introduced the

following sorting operator on pairs of monomials in S, 4.
Definition 1.1. The operator

sort:  SpaXSpnd — Snd X Snd
(u, v) — (u', V")

is defined as follows. For any u,v € Syq, write WV = Ty, T, - . . Thy, With
non-decreasing indices 1 < ky < kg < -+ < kog <n. We then set

[A—
u = Tk Tkg -+ Thkog_15

/ —
v = TkoTky v Thoy-
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Observe that u/,v" still belong to S, 4 and that sort(u,v) = sort(v, u).

Subsets B C S;, ¢ which behave well with respect to this operator, i.e. such
that
sort(B x B) C B x B,

are said to be sortable. These sets are of special interest, in particular because
they give rise to toric ideals which have quadratic Grobner bases and to K-
algebras which are Koszul. See [1, 2, 3, 4, 5] for related information. It is
difficult in general to describe families of sortable sets. Here, we shall focus
on those subsets of S, ¢ which constitute an interval under the lexicographic
or the reverse lexicographic order on S, 4. Among them, we shall determine
precisely those which are sortable.

Recall the definition of the lexicographic order on S, 4. Given
a=(ai,...,an), b=(b1,...,b,) € N* such that ). a; = Y. b; = d, we write
T2t >0, xlil cooghe
if and only if the leftmost nonzero coordinate of a—b is positive. Equivalently,

let
U=y, - Tiy, V=05, T, € Snd

with 47 < -+ <y, j1 < -+ < jg. Then u >, v if and only if the leftmost
nonzero coordinate of (i1 —j1,. .., 44— jq) is negative. Actually, we shall mostly
omit the subscript and simply write > instead of >;.

We now recall the notions of lex-segments and lex-intervals.

Definition 1.2. Forv € S, 4, the lex-segment L(v) is the set of all monomials
u € Sp,a satisfying u > v. More generally, for vi > vy € Sy 4, the lex-interval
L(v1,v2) is the set of all monomials u € Sy, 4 satisfying vi > u > vs.

Here is a short description of the content of this paper. In Section 2,
we establish properties of the sort operator which will help us compare the
monomial pair (u,v) with sort(u,v). In Section 3, we define sets Biy(v),
consisting of all monomials u € S, 4 which are indez-wise smaller than or
equal to a given v € S, 4, and we show that these sets are always sortable. In
Section 4, we show that for v € S, 4, the lex-segment L(v) is sortable if and
only if L(v) coincides with Biy(v). This necessary and sufficient condition is
then turned into a simple criterion in Section 5, thereby answering the problem
of characterizing sortable lex-segments originally formulated in [2]. In order to
go further and study the sortability of lex-intervals, we shall need the notion of
greatest common prefir discussed in Section 6. This allows us to determine all
sortable lex-intervals in Section 7. Finally, in Section 8, we obtain analogous
sortability criteria for revlex-intervals.
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2 Some properties of the sort operator

We first introduce some terminology. Given a monomial u € S), 4, written as
U= -2y, with 1 <143 <-.. <ig < n, we shall usually denote its index
multiset by the corresponding capital letter, that is

U= [’L'l,...7id].
Actually, we shall rather write
U=liy < <g),

since knowing the ordering of the elements of U is useful in the present context.
Note that for u,v € Sy, q, with index multisets U, V, the index multiset of their
product uv € Sy, 24 is given by the multiset sum*

Uy

We now establish a few properties of the sort operator. For any u,v € Sy, 4,
we shall keep the notation

(u',v") = sort(u,v)
throughout the rest of this section.
Lemma 2.1. For all u,v € S, 4, we have uv = u'v’.

Proof. This is immediate, since the index multiset of u'v’ is, by construction,
the same as that of uv. O

Lemma 2.2. For all u,v € S, 4 such that uw > v, there are only two possibil-
ities:
,UI

v

either v > '

U?
! !
or u > u v,

Vv IV
AV,

Proof. Assume for a contradiction that v > v’ and v > v’. Then we get
uv > u'v’, in contradiction with Lemma 2.1. The proof for the other case is
similar. O

In order to determine which of these alternatives the pair (u,v) satisfies,
we introduce a key index r = §(u,v) and three types of monomial pairs.

*For finite multisets U = [i1,...,%p],V = [j1,...,]q], their multiset sum is defined as
U&JV:[il,‘..,ip,jl,...,jq].
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Definition 2.3. Let u,v € S, 4 such that w > v. Denote u = z;, -~ z;,,
v=xj Ty, withip <---<ig and j1 < --- < jg, and set ig = jo = 0. We
shall denote by 6(u,v) the maximal integer r such that 0 <r < d and

io < jJo <4 <j1<... < <
Still with r = §(u,v), we say that the pair (u,v) is of
o type 0 ifr=d,

b type 1 Zf’f’ <d and jr < Z"r‘+1 < ir+2 < jr+1;

A

o type 2 ifr <dand jr < Jrg1 < Gpy1.

Observe that, by construction, every pair of monomials (u,v) with u > v
s of one of the above three types, and uniquely so.

Proposition 2.4. Let u,v € S,, ¢ with u > v. Then the pair (u,v) is of
o type 0 if and only if (uv/',v') = (u,v);
o type 1 if and only if u >u' >v' >wv;
o type 2 if and only if u >u>v>v.

Proof. Denote u = x;, -+~ 3, v = xj, -+ x5, with i3 < ip < -+ < jg and
J1 <o <--- < jg. If (u,v) is of type 0, i.e. if r = d, we have

i1 < g1 < .0 <ig < g,

whence v/ =« and v/ = v by definition of the sorting operator. Assume now
r < d. We examine in turn the cases where (u,v) is of type 1 and of type 2.
We shall denote by U’, V' the index multiset of u’, v, respectively.

Type 1. We have j, < 4,411 < 4pyo < jr+1. Thus, in the process of construct-
ing (U, V'), we get

U\ [ ir oo iy odpg1 .
v’ 3 R R P .

Since 449 < jri1, we have v’ > v, and hence u > v’ by Lemma 2.2, as stated.
Incidentally, we must have r < d — 2 in this case.

Type 2. We have j, < jr41 < ir41. Then here, in the process of constructing
U, v"), we get

<U’)<i1 i e )
V' TR '
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Since jr41 < %r21, we have u’ > u, whence v > v’ by Lemma 2.2. Incidentally,
we cannot have r = 0 in this case, since 71 < j; by the assumption u > v.

Finally, since types 0, 1 and 2 cover all possibilities, the implications proven
so far are in fact equivalences. O

3 Sortable sets

Definition 3.1. Let B C S, 4 be a set of monomials of degree d in x1,...,x,.
We say that B is sortable if B x B is stable under the sort operator, i.e. if

sort(B x B) C B x B.
Here is a known class of sortable sets. Given a = (ay,...,a,) € N”, let
md =12 xy € Spal i < aj for all i}

Then Sy ; is sortable for all a = (ay,...,a,) € N". (See Proposition 6.11 in
2, p. 105].)

We now construct a new class of sortable sets. To this end, we introduce a
partial order between monomials in S, 4, denoted <jy, and referred to as the
index-wise partial order.

Definition 3.2. Let u = x;, ---x;,, v = xj, ---;, be monomials of degree d
with i1 <o < - <ig and j1 < jo < -+ < jg. We shall write

U Sjw U
if and only if iq < jo foralla=1,...,d.
Definition 3.3. Letv € S,, 4 be @ monomial in x1,...,x, of degree d. Define
Biw(v) ={u € Spa|u <iw v}

For instance, for any v € S, 4, it is plain that Biy(v) contains x‘f. Note
that if u,v € S, 4 and v <iy v, then v > v under the lexicographical order.
This amounts to the set inclusion

Biw(v) C L(v).

(See Lemma 4.1 below).

Observe that Biy(v) is nothing else than the set of minimal generators of
the principal Borel ideal (v) generated by v, see e.g. [6].

We now show that the sets Biy(v) constitute yet another class of sortable
sets in Sy, 4.
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Proposition 3.4. Let v € Sy, 4. Then Biyw(v) is sortable.

Proof. Let the index multiset of v be V = [j; < -+ < j4]. Let uy, us € Biw(v),
with index multisets

U= <--<hgl, Us=1[i1 <---<iygl,
respectively. By hypothesis, we have
hasia < Ja (1)
for all = 1,...,d. Let the index multiset of ujus = uju} be
W=Tlk <--- < ko,

where W = Uy WU, is the multiset sum of Uy, Us. By definition of the sorting
operator, the index multisets of u}, u), are

k1 <ks <---<kog1], [ka <ka<- - <kogl,

respectively. We must show that u},uh <;, v. Since kog_1 < kog for all 3,
this will follow at once from the following claim.

Claim. For all 8 =1,...,d, we have
kas < Jjs-
Indeed, it follows from (1) that
hayia < Ja < Jg

for all 1 < a < . Thus, the multiset W = Uy W Us contains at least 23
elements which are bounded above by jg, namely [h1,141, ..., hg,ig]. But since
ki,ka, ..., kog are the 28 smallest elements in W = Uy W Uy, it follows that

k17...7k2B S jﬂ.
This proves the claim which, in turn, implies u}, u%y € Biw(v). O
Note that the sets Biw(v) need not coincide with the sets Sy 4+ Indeed,
let v = zyx3 € S32. Then Biy(v) = {2%, 2122, 2123}, Thus, if we had

Biw(v) = 5%, for some a = (a1,a2,a3) € N*, we would then necessarily have
a=(2,1,1). But now, observe that

Tols € S:E),zél’l) \Biw(ﬂ?ll’g).

Hence Biy(2173) # 5%, for all a € N?, as claimed.
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4 When is a lex-segment sortable?

In this section, we shall characterize all those lex-segments L(v) which are
sortable. We start by formalizing as a lemma an earlier observation comparing
Biyw(v) and L(v).

Lemma 4.1. Let v € S, 4 be a monomial in x1,...,z, of degree d. Then
Biw(v) C L(v).

Proof. Let V = [j1 < --- < jg] be the index multiset of v. Let u € S, 4 such
that u <jy v, with index multiset U = [i; < -+ < i4]. Then we have

la < Ja
forall « =1,...,d. It follows that u > v, as desired. O

Example 4.2. Let v =13 € Ss.3. Then we have

Biw(v) = {xif, xf:@, xlxg, x%}7

3 2 2 2 2 .3
L(v) = {ay, 2722, x7T3, 125, T122T3, T1X3, T5 ).
We are now ready to state and prove our promised characterization.

Theorem 4.3. Let v € S, 4. Then L(v) is sortable if and only if L(v) =
Biw(l}).

Proof.

o If L(v) = Bjy(v), then L(v) is sortable by Proposition 3.4.

e Conversely, assume that L(v) # Bjy(v). Since Bjy (v) C L(v) by Lemma 4.1,
there exists some u € L(v) \ Biw(v), i.e. such that v > v and u % v.
Denote u = x;, ---@;, with 4y < dp < -+ < g, and v = x;, ---x;, with
j1 < ja < -+ < jg. Since u > v, there is an index s > 1 such that

la = Ja foralll<a<s-—1,
is < Js-

(2)

Moreover, since u Ly v, there is an index ¢ > 1 such that

ig < jg foralll<pg<t—1, (3)

it > i
It follows from the definition of s,t that s < t. Since we do not know how jz
compares with ig41 for s+1 < 5 < ¢—1, we have no precise control on §(u,v)
and we cannot determine the type of (u,v).
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To get around this problem, we shall construct a new monomial @ € L(v)\
Biw(v), by suitably increasing all indices ig with s +1 < g <t — 1, and for
which the type of (,v) will be easier to determine’. So, let us define

- s ifs41<B<t—1,
= ig  otherwise,

and let w = AR 7 We first claim that

i1 <ip < - <ig. (4)

since in those cases it reduces to either iy, < iq41 O jo < jat+1. Now, for
a = s, we have

Indeed, the inequality i, < in41 clearly holds for all a € [1,d — 1]\ {s,t — 1},

Es == is < js S js+1 == gs+17
and for o =t — 1, we have
Go1 = Jio1 < i < iy =g

This proves (4). Next, we claim that 6(w,v) =t — 1. Indeed, relations (2) and
(3) become

la = Ja foralll<a<s-—1, (5)
is < Js
and
Eﬁ = Jp foralls+1<f<t—1, (©)
123 > Jts

respectively. As a first consequence, observe that © > uw > v. Moreover, by
(5), (6) and the fact that the j, are nondecreasing, we have
=51 <ipg=Jo < <ip1=j1 < i <ip.

Thus, we have 6(u,v) = ¢t — 1 by definition of this index, and the pair (,v)
is of type 2 since 7;_1 < ji—1 < ji < 4¢. It follows from Proposition 2.4 that
u >7u>wv>v'. Hence L(v) is not sortable, as claimed. O

fIf s+1>t—1,ie. if s=t—1since s < t, we simply end up with 7@ = u.
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5 A simple criterion

We shall now derive from Theorem 4.3 a simple criterion for recognizing when
a given monomial v € S, 4 has the property that L(v) is sortable or not.

Definition 5.1. Let w be a monomial in the variables x1,...,x,. If w # 1,
we denote by min(w), max(w) the smallest, respectively the largest, index of
the variables dividing w. For w =1, we set min(1) = oo and max(1) = 0.

For instance, if w = x3z3x4, then min(w) = 2 and max(w) = 4.

Theorem 5.2. Let v be a monomial in the variables x1,...,x,. Then L(v)
is not sortable if and only if v has a factor w of degree 2 in xo, ..., Typ_1.

Proof. Denote v = xj, ...xj, with j; <--- < jg, and assume first that L(v) is
not sortable. By Theorem 4.3, there exists a monomial u € L(v) \ B;,(v), i.e.
satisfying u > v and u %, v. Thus, denoting u = =;, ...x;, withi; <--- <ig,
there exist indices 1 < s < t < d such that

la = Jo foralll<a<s-—1,

is < j57 (7)
g < Jg foralls<pg<t-—1,

it > jt7

as in (2), (3) in the proof of Theorem 4.3. This implies

2<js <jr<n-—1,
since 1 < i5 < js < j¢ < i < n by (7). Hence, the monomial w = z;,x;, is a
factor of v of degree 2 in the variables x5, ..., 2, _1.

Conversely, assume that v has a factor w of degree 2 in x5, ...,x,_1. Then
there is a decomposition
UV = V1Th ThyV2

with 2 < hy < he < n—1 and with v1, v possibly trivial monomialst satisfying
max(vy) < hy; < he < min(ve). We now set

b
U = V1Thy—-1Ty,

where b = d — deg(v1) — 1, so that deg(u) = d. Note that u > v. Let us now
start the computation of (u’,v") = sort(u,v). On the level of index multisets,

we have
U’ _ Vi hi—1 hy ...
%4 o i h1 eee o)

fRecall our conventions max(1) = 0 and min(1) = co.
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Since hy < n, it follows that u' > u, whence also v > v by Lemma 2.2.
Summarizing, we found that L(v) contains u,v but not v’. Therefore L(v) is
not sortable, as stated. [

Corollary 5.3. Letv € S,, 4. Then L(v) is sortable if and only if v = x$z;z?
for some a,b € N and some index j such that 1 < j <n. ]

Compare with Proposition 3.2 (i) of [6], a closely related statement.

6 The greatest common prefix

In order to extend our sortability criterion to arbitrary lex-intervals of mono-
mials, we shall need the notion of greatest common prefiz of two or more
monomials. Analogous notions appear in various contexts such as computer
science, combinatorics on words, computational molecular biology and braid
theory.

Definition 6.1. Let u € S be a monomial in xq,...,x,. A prefix of u is any
factor w of u satisfying

max(w) < min(u/w).

Equivalently, if w = x;, -+ - x;, with i1 < --- <4, a prefix of u is a factor w
of the form

w = xil...xik

for some 0 < k < d.

Note that for each 0 < k < deg(u), there is a unique prefix w of u of
degree k. We now consider the case of two monomials; the extension to more
monomials is straightforward.

Definition 6.2. Let u,v € S be monomials in x1,...,T,. The greatest com-
mon prefix of u, v, denoted

gep(u, v),

1s the common prefix of u,v of highest degree.

Note that gep(u, v) divides ged(u, v), the usual greatest common divisor of
u,v. For example, if u = xlmg:ﬁg and v = xlmgxg, then

gep(u,v) = xixe, ged(u,v) = x1x23.

Here is an equivalent characterization of gep(u,v).
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Remark 6.3. Let u,v be monomials in x1,...,x,. Then gep(u,v) is the
common factor w of u,v of highest degree satisfying

max(w) < min(u/w), max(w) < min(v/w).

Finally, let us observe that the notion of gcp allows a useful equivalent
formulation of the lexicographical order.

Proposition 6.4. Let vy # vy € Sy q. Let vg = gep(vy,v2). Then vy >pep U2

if and only min(v1/vp) < min(vz/vg). ™

7 The case of lex-intervals

Given vy > vg in Sy, 4, we denote by L(v1,v2) the lez-interval determined by
v1, U2 With respect to the lexicographical order, namely

L(vy,v2) = {u € Spa|vi>u> v}
Of course, lex-segments are lex-intervals: if v € S, 4, then
L(v) = L(z¢,v).

In this section, we generalize Theorem 5.2 and determine which lex-intervals
in S, 4 are not sortable. Even though Theorem 5.2 will follow as an immedi-
ate corollary, we have treated it separately with an independent and simpler
proof.

The case of arbitrary lex-intervals requires the notion of greatest common
prefix introduced in the preceding section. Note L(v,v) = {v} is sortable, since
sort(v,v) = (v,v). Thus, we only need to examine the case where v1 > vs.

Theorem 7.1. Let v1 > vy be monomials in x1,...,x, of degree d. Let
vo = gep(vy,va). Then L(vy,ve) is not sortable if and only if the monomial
va2/vg has a factor w of degree 2 such that max(w) < n.

Proof. e Assume first that ve/vg has a factor w = xp, xp, with hy < he < n.
Since v1 > w9, there are decompositions

U1 = VoW1, V2 = VW2

with max(vg) < min(w;) < min(wsz). Without loss of generality, we may
assume that w is the prefix of degree 2 in ws. Thus, we may further decompose

W9 = Th, Thy W
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with h; = min(wsy) and min(@wz) > hy. We shall now find a special monomial
w in L(vy,v2) such that sort(u, vy) falls outside L(vi,ve) x L(v1,v3). Set

b
U = V9Th;—1Tp

with b = d — deg(vg) — 1, so that deg(u) = d.
We first show, using Proposition 6.4, that u belongs to L(v1,v2). Indeed,
on the one hand we have
u > v,

since vg is a common prefix of u, vy and since by — 1 = min(ws) — 1. On the
other hand, in order to show
U1 Z u,

we need to determine the greatest common prefix of vi,u. First note that
min(wy) < hy — 1, since min(w;) < min(wsz) = hy. We get:

Vo if min(wl) < hy — 1,
gep(vy, u) = VoL, —1 if min(w;) =hy — 1 and wy > zp,, 122,
voxh, 12t if min(w;) =h; — 1 and wy = x5, 128,

In either case, we easily conclude with Proposition 6.4 that v; > u. Therefore
u € L(v1,v2), as stated.
Let us now apply the sort operator to the pair (u, v2). On the level of index

multisets, we have
U\ (Vo hi—1 hy ...
Vo )\ W h1 e )0
Since hy < n, it follows that ' > u, whence also vy > v4 by Lemma 2.2. Thus

L(v1,vy) contains u,ve but not v5. It follows that L(vy,vs) is not sortable, as
stated.

e Conversely, assume that v /vg has no factor w of degree 2 satisfying
max(w) < n. It follows that either deg(ve/vo) = 1, or else

b
ve/vg = T,

with max(vg) < j <nand b > 1. We now show that, in each case, the interval
L(v1,v2) is sortable.

(1) Assume first deg(va/vg) = 1. Then, since vy > vq, there are indices
max(vg) < hy; < ha < n such that

V1 = VoTh,, V2 = V9T hy-
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It follows that L(vi,ve) = vo{®p,,Thy+1,---,Thy - But then, it is clear that
for any indices 7, j such that hy < i < j < hg, we have

sort(vox;, vox;) = (voxs, VoT;).

Thus, L(v1,v9) is sortable in this case.
(2) Assume now vg/vy = z;2° with max(vg) < j < n and b > 1. Since
V1 > Vg = voxjxi’l, there is a decomposition

V1 = VgXpU1

with max(vg) < h < j and h < min(77). Note that the equality h = j is
excluded by our assumption gep(vy,v) = vg. With these values of vy, vy, we
now describe all monomials in the lex-interval L(vy,v2).

Claim. Let u € S, 4. Then we have

VoTRUL = U > voxsz

if and only if u = voz;u for some monomial @ and some index ¢ such that
h <i < j, and either

(i) h =1 and 77 > @, or else
(ii) h <i < j and @ is any monomial in x;, ..., z, of appropriate degree.

Checking the claim is straightforward and left to the reader.
We now prove that L(vq,vs) is sortable. So let uy > ug € L(v1,v2). Since
v1 > U1 > Ug > Vg, there are decompositions

Ul = VT4, UL, U2 = VT U2

such that h < i3 < iy < j. Let us start the computation of (u},u)) =
sort(uy,uz). On the level of index multisets, we have

U{ I A N T
u, )]~ \ Vo 42 ... )"
It follows that u}, admits vox;, as a prefix. Recalling the equality vo = f(}ng:rl,’L7
we now show that uf > vs.
(i) If ia < 7, then clearly ub > vo.

(i) If i3 = j, then u}, > vy since vq, by its specific structure, is the smallest
monomial of its degree having voz; as a prefix.



ON SORTABLE INTERVALS OF MONOMIALS 100

It follows from Lemma 2.2 that vy > u} > u), > vo, and hence that uf, uf still
belong to L(vi,vse). Therefore L(vy,vs) is sortable, as stated. O

Corollary 7.2. The only sortable lex-intervals L(v1,v2) C Sp,qa with vy > vy
are those such that (v1,vs) = (vowr,vox;2b), where b = d — deg(vo) — 1 and
where vy, w1 are monomials satisfying

max(vp) <min(wy) <j<n. m

8 From lex to revlex

Our aim here is to establish the analogue of Theorem 7.1 for intervals of mono-
mials under the reverse lezicographical order on Sy, 4. Instead of adapting our
earlier proofs to this new setting, we shall develop tools allowing us to transfer
knowledge between the lex and the revlex orders. The desired analogue will
then directly follow from Theorem 7.1 using those tools.

Recall first the definition of the revlex order. Given a = (aq,...,a,),
b= (b1,...,b,) € N” such that ) . a; =), b = d, we write

TPz >, :Ell)l oo
if and only if the rightmost nonzero coordinate of a — b is negative. Equiva-
lently, let
U=T *Tiy, V==4, Tj, € Snd

with i1 <+ <ig, j1 < -+ < jg. Then u >,¢, v if and only if the rightmost
nonzero coordinate of (i1 — j1,...,4iq — jq) is negative.

Informally, the lex order gives a premium in priority to x1, then to x5 and
so on, whereas the revlex order puts a penalty in priority to z,, then to x,_1
and so on. In S5 5 for instance, we have

T123 >lex m% but 123 <;ey .Z‘%
Note also that x1 > --- > x,, for both orders.

8.1 The automorphism o

A convenient way to compare the lex and revlex orders is through the K-
algebra automorphism

o:Klxy,...,zn] — Klx1,..., 2]
T; = Tpii-—i Vi:L...,n.
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Indeed, for any monomials u,v € S,, 4, we have

U Ser UV <= 0(U) <pep 0(V). (8)

1

Since 07" = o, this equivalence may as well be written in the form

V >pep U = 0(U) <jez 0(V). (9)

8.2 Revlex-intervals

We now define intervals in S, 4 under the revlex order.

Definition 8.1. Given v1 >,e, v2 in Sy 4, we denote by R(v1,ve) the revlex-
interval determined by vy, ve, namely

R(vi,v2) = {u € Sp,a | V1 Zpev U Zpey U2}
Lex-intervals and revlex-intervals may be compared as follows.
Lemma 8.2. For any v1 >yey V2 in Sy 4, we have
o(R(v1,v9)) = L(o(vg),0(v1)).

Proof. Let w € Sp 4. Then u € R(v1,v2) if and only if v1 >,ep U >pey vo.
Applying ¢ and using (9) this in turn is equivalent to

o(v1) <tex 0(u) <jez o(v2),

i.e. too(u) € L(o(va),o(v1)). It follows that R(vy,ve) = o~ (L(co(v2),0(v1))),
whence the stated formula. O

8.3 Sort and o

Here we describe how sort and o interact with each other.
Lemma 8.3. For any u,v € S, 4, let (v',v") = sort(u,v). Then
sort(o(u),o(v)) = (a(v'),o(u’)).

Proof. Denote uv = xy, T, ... Tk,, With nondecreasing indices k;. Then by
construction, we have

(% = Tk Tkg -+ Thkog_1s
v = TkoTky -+ - Thog-
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Now o(u)o(v) = o(uv) = Tpi1—keyTntl—key 1 - - Tntl—k,, NETE again with
nondecreasing indices. Applying sort to the pair (o(u),o(v)), it follows that

U(u)l = Tntl—kegTnt+l—kog_o - Tnt+l—ko = U(U/)
U(U)/ = Tntl—kog_1Tn+l—kog_3 - -Tn+l-k — U(u/)v

as stated. O

A useful consequence is that o preserves the sortability property.

Proposition 8.4. Let B be a subset of S, 4. Then B is sortable if and only
if o(B) is sortable.

Proof. Since 0~ = o, it suffices to prove one direction. So assume that B is
sortable. Any element in o(B) X o(B) is of the form (o(u),o(v)) for some pair
(u,v) € B x B. We claim that sort(c(u),o(v)) still belongs to o(B) x o(B).
Indeed, by Lemma 8.3, we have

sort(o(u),o(v)) = (a(v'),o(u’)).

But (u/,v’) € B x B since B is sortable, whence (o(v'),o(u')) € o(B) x o(B).
This shows that sort(o(u),o(v)) € o(B) x o(B), as claimed. Therefore o(B)
is sortable. O

8.4 The greatest common suffix

Definition 8.5. Let u = z;, - - - x;, be a monomial in x1,...,x, of degree d
with i1 < --- <igq. Let 1 <k <d. The k-suffix of u is the degree k monomial

Ligyr—p """ Lig-

It may be characterized as the unique monomial ug of degree k such that ug
divides u and min(ug) > max(u/ug).

We now introduce the analogue for suffixes of the greatest common prefix.

Definition 8.6. Let u,v € S be monomials in x1,...,T,. The greatest com-
mon suffix of u,v, denoted

ges(u, v),

s the common suffix of u,v of highest degree.

Note that ges(u, v) divides ged(u, v), as was the case for gep(u, v). Taking
our earlier example, if u = xlgc%acg and v = xlxgx?)), we have

ges(u,v) = x3.
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Moreover, ges(u,v) may be characterized as the common factor w of u,v of
highest degree satisfying

min(w) > max(u/w), min(w) > max(v/w).
The following result shows that ¢ transforms gcs into gep.
Lemma 8.7. For all v1,ve € Sy, 4, we have o(ges(v1,v2))=gep(o(va), o(v1)).

Proof. This follows from the observation that, for any monomial v, a monomial
vp is a suffix of v if and only if o(vg) is a prefix of o(v). O

8.5 Sortable revlex-intervals

We are now ready to determine which revlex-intervals are sortable and which
are not. The results will follow from Theorem 7.1, Corollary 7.2 and the above
properties of the automorphism o.

Theorem 8.8. Let v1 >,y v2 be monomials in x1,...,x, of degree d. Let
vo = ges(v1,v2). Then R(vi,vs) is not sortable if and only if vi/vy has a
factor w of degree 2 such that min(w) > 1.

Proof. By Proposition 8.4, the non-sortability of R(vy,vs) is equivalent to that
of o(R(v1,v2)). Now o(R(v1,v2)) = L(o(vz),0(v1)) by Lemma 8.2, and the
non-sortability of this lex-interval may be determined using Theorem 7.1. By
Lemma 8.7, we have gep(o(vz),o(v1)) = o(vg), where vy = ges(vi, v2). By
Theorem 7.1, L(o(vs),0(v1)) is non-sortable if and only if o(v1)/0(vg) has a
factor w’ of degree 2 such that max(w’) < n. Let w = o(w’). Now

max(w') <n <= min(w) > 1.

Thus, applying o, we have that L(o(vs),0(v1)) is non-sortable if and only if
v1/vp has a factor w of degree 2 such that min(w) > 1. It follows that R(v1,v2)
is not sortable if and only if the latter condition holds, as stated. O

Corollary 8.9. The only sortable reviez-intervals R(v1,v2) C Sp.q with vy >rey
vy are those such that (v1,v2) = (282 jv9, w1vp), where b = d—deg(vg) — 1 and
where vy, w1 are monomials satisfying

1 <j <max(w;) <min(vg). M
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