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Equivalence of Control Systems on the
Pseudo-Orthogonal Group SO (2, 1)0

Rory Biggs and Claudiu C. Remsing

Abstract

We consider left-invariant control affine systems on the matrix Lie
group SO (2, 1)0. A classification, under state space equivalence, of all
such full-rank control systems is obtained. First, we identify certain
subsets on which the group of Lie algebra automorphisms act transi-
tively. We then systematically identify equivalence class representatives
(for single-input, two-input and three-input control systems). A brief
comparison of these classification results with existing results concludes
the paper.

1 Introduction

From a geometric viewpoint, a (smooth) control system is given by a family of
(smooth) vector fields parametrized by controls. An admissible trajectory of
such a system, associated to a piecewise-constant control, is an integral curve
of some vector field of the family or a finite concatenation of such curves.
The arbitrary admissible control case can be realized via an approximation
by piecewise-constant controls. Invariant control systems are control systems
evolving on (real, finite dimensional) Lie groups with dynamics invariant under
translations. Such systems were first considered in 1972 by Brockett [12] and
by Jurdjevic and Sussmann [17]. For more details about (invariant) control
systems see, e.g., [5], [16], [24], [6], [22].

Key Words: Left-invariant control system, state space equivalence, pseudo-orthogonal
group.

2010 Mathematics Subject Classification: Primary 93A10, 93B17; Secondary 93B29,
22E43.

Received: 01.04.2015
Accepted: 30.06.2015

45



EQUIVALENCE OF CONTROL SYSTEMS ON SO (2, 1)0 46

In order to understand the local geometry of control systems, one needs
to introduce some natural equivalence relations. The most natural equiva-
lence relation for control systems is equivalence up to coordinate changes in
the state space. This is called state space equivalence (cf. [15], [10]). Two
control systems are state space equivalent if they are related by a diffeomor-
phism (in which case their trajectories, corresponding to the same controls,
are also related by that diffeomorphism). This equivalence relation is very
strong. Consequently, there are so many equivalence classes that any general
classification appears to be very difficult if not impossible. However, there
is a chance for some reasonable classification in low dimensions. Another
important equivalence relation for control systems is that of feedback equiva-
lence (see, e.g., [23], [15]). Two feedback equivalent control systems have the
same set of trajectories (up to a diffeomorphism in the state space) which are
parametrized differently by admissible controls.

A systematic investigation of state space equivalence and feedback equiv-
alence, in the context of left-invariant control systems, was recently carried
out [10]. Incidentally, an appropriate specialization of feedback equivalence,
called detached feedback equivalence, was also introduced. A classification,
under state space equivalence, of invariant control systems evolving on the
Euclidean group SE (2) was obtained in [2]. Classifications, under detached
feedback equivalence, of various distinguished subclasses of invariant control
systems have also been obtained in recent years (see, e.g., [7], [8], [9], [3], [1],
[4]). Furthermore, an investigation of the equivalence of cost-extended control
systems has been carried out in [11].

In this paper we consider only left-invariant control affine systems, evolving
on a particular group, the pseudo-orthogonal group SO (2, 1)0. We classify,
under state space equivalence, all such full-rank control systems. Moreover, a
representative for each equivalence class is identified in a systematic manner.
A tabulation of these results is appended. Several problems related to control
systems on SO (2, 1)0 (like controllability, stability, explicit integration by el-
liptic functions, numerical integration, and the existence of periodic solutions)
have been considered in recent years (see [20], [19], [21], [13]).

2 Invariant control systems and equivalence

A left-invariant control affine system Σ is a control system of the form

ġ = g Ξ (1, u) = g (A+ u1B1 + · · ·+ u`B`) , g ∈ G, u ∈ R`.

Here G is a (real, finite-dimensional) matrix Lie group and the parametrization
map Ξ(1, ·) : R` → g is an affine injection (i.e., B1, . . . , B` are linearly
independent). The admissible controls are piecewise-continuous maps u(·) :



EQUIVALENCE OF CONTROL SYSTEMS ON SO (2, 1)0 47

[0, T ]→ R` and the trace of the system Γ = A+ Γ0 = A+ 〈B1, . . . , B`〉 is an
affine subspace of (the Lie algebra) g. A system Σ is called homogeneous if
A ∈ Γ0, and inhomogeneous otherwise. Furthermore, Σ has full rank provided
the Lie algebra generated by its trace equals the whole Lie algebra g. Note
that Σ is completely determined by the specification of its state space G and
its parametrization map Ξ (1, ·). Hence, for a fixed G, we shall specify Σ by
simply writing

Σ : A+ u1B1 + · · ·+ u`B`.

If the state space G of Σ is a three-dimensional matrix Lie group, then
the condition that Σ has full rank can be characterized as follows. No ho-
mogeneous single-input system has full rank. An inhomogeneous single-input
system has full rank if and only if A,B1, and [A,B1] are linearly indepen-
dent, whereas a homogeneous two-input system has full rank if and only if
B1, B2, and [B1, B2] are linearly independent. Also, it is clear that any in-
homogeneous two-input or (homogeneous) three-input system has full rank.
Henceforth we assume that all systems under consideration have full rank.

State space equivalence is well understood (cf. [5], [15]); it establishes a
one-to-one correspondence between the trajectories of equivalent systems. Let
G be a fixed connected matrix Lie group and let Σ and Σ′ be two (left-
invariant control affine) systems on G. We say that Σ and Σ′ are state space
equivalent if there exist a diffeomorphism φ : G→ G such that Tgφ ·Ξ (g, u) =
Ξ′ (φ(g), u) for all g ∈ G and u ∈ R`.

In this paper we shall refer to state space equivalence, simply, as equiva-
lence. We recall an algebraic characterization of this equivalence.

Proposition 1 ([10]). Systems Σ and Σ′ are equivalent if and only if there
exists a Lie algebra automorphism ψ ∈ dAut (G) such that ψ · Ξ (1, u) =
Ξ′ (1, u) for all u ∈ R`.

Here dAut (G) = {T1φ : φ ∈ Aut (G)} is the subgroup of Lie algebra auto-
morphisms, containing only linearized Lie group automorphisms.

It turns out that a classification of the (`+ 1)-input homogeneous systems
may be (partially) obtained from a classification of the `-input inhomogeneous
systems. Suppose {Ai+u1B

i
1 + · · ·+u`B

i
` : i ∈ I} is an exhaustive collection

of equivalence class representatives for `-input inhomogeneous systems.

Lemma. If Σ : A + u1B1 + · · · + u`+1B`+1 is a (` + 1)-input homogeneous
system, then Σ is equivalent to

Σ̂i,γ : γ1B
i
1 + · · ·+ γ`B

i
` + γ`+1A

i + u1B
i
1 + · · ·+ u`B

i
` + u`+1A

i

for some i ∈ I and some γ1, . . . , γ`+1 ∈ R.
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Proof. Σ′ : B`+1 + u1B1 + · · · + u`B` is a `-input inhomogeneous system.
Thus (by proposition 1) there exists an automorphism ψ ∈ dAut (G) such
ψ · B`+1 = Ai and ψ · Bj = Bij , 1 ≤ j ≤ ` for some i ∈ I. Therefore

Σ is state space equivalent to Σ′′ : ψ · A + u1B
i
1 + · · · + u`B

i
` + u`+1A

i.
However, as Σ is homogeneous, so is Σ′′. Hence ψ ·A is a linear combination
of Bi1, . . . , B

i
`, A

i, i.e., Σ′′ = Σ̂i,γ .

Accordingly, {Σ̂i,γ : i ∈ I, γ1, . . . , γ`+1 ∈ R} is an exhaustive collection of
equivalence class representatives for (` + 1)-input inhomogeneous systems.
However, some of these systems may be equivalent to one another.

3 The pseudo-orthogonal group SO (2, 1)0

The pseudo-orthogonal group

SO (2, 1) = {g ∈ R3×3 : g>Jg = J, det g = 1}

is a three-dimensional simple Lie group. Here J = diag(1, 1,−1). The iden-
tity component of SO (2, 1) is SO (2, 1)0 = {g ∈ SO (2, 1) : g33 > 0}. Its Lie
algebra

so (2, 1) = {A ∈ R3×3 : A>J + JA = 0}
has an ordered basis

E1 =

0 0 0
0 0 1
0 1 0

 E2 =

0 0 1
0 0 0
1 0 0

 E3 =

 0 1 0
−1 0 0
0 0 0

 .
The commutation operation is given by [E2, E3] = E1, [E3, E1] = E2, and
[E1, E2] = −E3. The group Aut (so (2, 1)) of automorphisms of so (2, 1) is
exactly SO (2, 1). Also, the group Inn (so (2, 1)) of inner automorphisms of
so (2, 1) is exactly SO (2, 1)0 (cf. [18]). (Here each automorphism ψ is iden-
tified with its corresponding matrix g with respect to the chosen basis.) We
have that SO (2, 1) is generated by

ρ2(t) =

cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

 ρ3(t) =

 cos t sin t 0
− sin t cos t 0

0 0 1


η(t) =

1− 1
2 t

2 t 1
2 t

2

−t 1 t
− 1

2 t
2 t 1 + 1

2 t
2

 ς =

−1 0 0
0 1 0
0 0 −1

 .
Remark. ρ2(t) = exp(tE2), ρ3(t) = exp(tE3), and η(t) = exp(t(E1 + E3)).
Also, ρ2(t), ρ3(t), η(t) ∈ Inn (so (2, 1)), whereas ς /∈ Inn (so (2, 1)).
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Proposition 2. The map d : Aut (SO (2, 1)0) → Aut (so (2, 1)), φ 7→ T1φ is
bijective.

Proof. As SO (2, 1)0 is connected, d is injective (see, e.g., [14]). Furthermore,
as ρ2(t), ρ3(t), η(t) ∈ Inn (so (2, 1)) and the elements ρ2(t), ρ3(t), η(t), and ς
generate SO (2, 1) = Aut (so (2, 1)), it suffices to show that
ς ∈ dAut (SO (2, 1)0). Let φ : SO (2, 1)0 → SO (2, 1)0, g 7→ ςgς. We claim
that φ is a Lie group automorphism such that T1φ = ς. Let g ∈ SO (2, 1)0.
Now (ςgς)> J (ςgς) = ςg>Jgς = J and det (ςgς) = det ς2 det g = 1. Thus
φ(g) ∈ SO (2, 1). Furthermore, the entry of the third column, third row of
g is fixed by φ. Thus φ(g) ∈ SO (2, 1)0. As φ ◦ φ is the identity map on
SO (2, 1)0, it follows that φ is bijective. Also, φ(gh) = ςghς = ςgςςhς =
φ(g)φ(h). Finally, a simple calculation shows that φ(exp(tE1)) = exp(ς · tE1),
φ(exp(tE2)) = exp(ς ·tE2), and φ(exp(tE3)) = exp(ς ·tE3). Thus T1φ = ς.

The (Lorentzian) product � on so (2, 1) is given by A � B = a1b1 +

a2b2 − a3b3. Here A =
∑3
i=1 aiEi and B =

∑3
i=1 biEi. Any automorphism

ψ preserves �, i.e., (ψ · A) � (ψ · B) = A � B. Consider the level sets
Hα = {A ∈ so (2, 1) : A�A = α, A 6= 0}. Hα is a hyperboloid of two sheets
when α < 0, a hyperboloid of one sheet when α > 0, and a (punctured) cone
when α = 0. As � is preserved by automorphisms, each level set Hα is also
preserved. Moreover,

Proposition 3. The group Aut (so (2, 1)) acts transitively on each level set
Hα.

Hence, for every A ∈ so (2, 1), there exists ψ ∈ Aut (so (2, 1)) such that ψ ·A
equals αE2, αE3, or E1+E3 for some α > 0. We now consider the subgroups
of automorphisms fixing these respective vectors.

Theorem 1.

(i) The subgroup of Aut (so (2, 1)) fixing E2 is {ρ2(t), ς ◦ ρ2(t) : t ∈ R}.

(ii) The subgroup of Aut (so (2, 1)) fixing E3 is {ρ3(t) : t ∈ R}.

(iii) The subgroup of Aut (so (2, 1)) fixing E1 + E3 is {η(t) : t ∈ R}.

Proof. Let ψ ∈ Aut (so (2, 1)) and let

ψ =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 .
Suppose ψ · E2 = E2. Then a2 = c2 = 0 and b2 = 1. The conditions

ψ> J ψ = J and detψ = 1 then yield b1 = b3 = 0 and

[
a1 a3
c1 c3

]
∈ SO (1, 1).
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Therefore ψ = ρ2(t) or ψ = ς ◦ρ2(t) for some t ∈ R. Clearly (ς ◦ρ2(t)) ·E2 =
E2 and ρ2(t) · E2 = E2 for every t ∈ R.

Suppose ψ · E3 = E3. Then a3 = b3 = 0 and c3 = 1. The conditions

ψ> J ψ = J and detψ = 1 then yield c1 = c2 = 0 and

[
a1 a2
b1 b2

]
∈ SO (2).

Therefore ψ = ρ3(t) for some t ∈ R. Clearly ρ3(t) ·E3 = E3 for every t ∈ R.
Suppose ψ · (E1 + E3) = E1 + E3. Then a3 = 1 − a1, b3 = −b1 and

c3 = 1 − c1. Again we impose the conditions ψ> J ψ = J and detψ = 1. A
straightforward but tedious calculation then shows that ψ = η(t) for some
t ∈ R. It is easy to verify that η(t) · (E1 + E3) = E1 + E3.

Remark. The ordered basis for so (2, 1) has been chosen so that
Aut (so (2, 1)) = SO (2, 1). Indeed, with respect to this choice of basis, we
have that the linear map adA = [A, ·] has matrix ς A ς. This accounts for
the convenient situation that the subgroup of automorphisms fixing E2, E3,
and E1 + E3, respectively, are exactly exp(RE2) ∪ (ς exp(RE2)), exp(RE3),
and exp(R(E1 + E3)), respectively.

Corollary 1. The only automorphism fixing at least two of E1, E2, E3, and
E1 + E3 is the identity automorphism.

The subgroups of automorphisms fixing E2, E3, and E1+E3, respectively,
preserve certain affine subspaces. Moreover, these subgroups are transitive on
certain subsets of these affine subspaces. Let A ∈ so (2, 1), A 6= 0, A =
a1E1 + a2E2 + a3E3 and let

Γ2 = a2E2 + 〈E3, E1〉 , a21 − a23 6= 0

Γ′2 = (a2E2 + 〈a1E1 + a3E3〉)\{a2E2}, a21 − a23 = 0

Γ3 = a3E3 + 〈E1, E2〉 , a21 + a22 6= 0

Γ13 = (a1 − a3)E1 + 〈E2, E1 + E3〉 , a1 6= a3

Γ′13 = a2E2 + 〈E1 + E3〉 , a1 = a3 and a2 6= 0.

(These sets are generated by considering the orthogonal compliments, with
respect to �, of 〈E2〉, 〈E3〉, and 〈E1 + E3〉.) If A 6∈ 〈E2〉, then A ∈ Γ2 or
A ∈ Γ′2. If A 6∈ 〈E3〉, then A ∈ Γ3. If A 6∈ 〈E1 + E3〉, then A ∈ Γ13 or
A ∈ Γ′13.

Proposition 4. Any automorphism ρ2(t) or ς ◦ ρ2(t) leaves Γ2 and Γ′2
invariant. Any automorphism ρ3(t) leaves Γ3 invariant. Any automorphism
η(t) leaves Γ13 and Γ′13 invariant.

Theorem 2.
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(i) The subgroup of Aut (so (2, 1)) fixing E2 acts transitively on Γ2∩HA�A
and Γ′2 ∩HA�A.

(ii) The subgroup of Aut (so (2, 1)) fixing E3 acts transitively on Γ3∩HA�A.

(iii) The subgroup of Aut (so (2, 1)) fixing E1 +E3 acts transitively on Γ13∩
HA�A and Γ′13 ∩HA�A.

We illustrate some of the typical cases in figures 1, 2, 3, and 4.
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Figure 1: Typical cases of Γ2 ∩HA�A
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Figure 2: Typical cases of Γ′2 ∩HA�A and Γ′13 ∩HA�A

Proof. (i) By proposition 1, any automorphism ψ fixing E2 is of the form

ψ =

k cosh t 0 k sinh t
0 1 0

k sinh t 0 k cosh t


where t ∈ R and k ∈ {−1, 1}.
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Figure 3: Typical cases of Γ3 ∩HA�A
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Figure 4: Typical cases of Γ13 ∩HA�A
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Suppose a21 − a23 6= 0. Let xE1 + yE2 + zE3 ∈ Γ2 ∩ HA�A. Then
y = a2 and x2 − z2 = a21 − a23. It suffices to show that there exists and
automorphism ψ fixing E2 such that ψ · A = xE1 + yE2 + zE3. Now
ψ · A = k (a3 sinh t+ a1 cosh t)E1 + a2E2 + k (a1 sinh t+ a3 cosh t)E3. Thus
ψ ·A = xE1 +yE2 +zE3 only if there exists k ∈ {−1, 1} and t ∈ R such that[

a1 a3
a3 a1

] [
k cosh t
k sinh t

]
=

[
x
z

]
.

Let

[
v1
v2

]
=

[
a1 a3
a3 a1

]−1 [
x
z

]
and let k = sgn v1. A simple calculation shows

that v21 − v22 = x2−z2
a21−a23

= 1 (and so v1 6= 0). There exists t ∈ R such that

k sinh t = v2. Therefore v21 = 1 − sinh2 t = cosh2 t. Hence, as k = sgn v1, it
follows that v1 = k cosh t.

Suppose a3 = a1 6= 0. Let xE1 + yE2 + zE3 ∈ Γ′2 ∩HA�A. Then y = a2
and x = z 6= 0 . Now ψ · A = keta1E1 + a2E2 + keta1E3. Hence there exists
k ∈ {−1, 1} and t ∈ R such that ψ ·A = xE1 + yE2 + zE3.

Suppose a3 = −a1 6= 0. Let xE1 +yE2 +zE3 ∈ Γ′2∩HA�A. Then y = a2
and x = −z 6= 0 . Now ψ · A = ke−ta1E1 + a2E2 − ke−ta1E3. Hence there
exists k ∈ {−1, 1} and t ∈ R such that ψ ·A = xE1 + yE2 + zE3.

If a1 = a3 = 0, then Γ′2 = ∅.
(ii) By proposition 1, any automorphism ψ fixing E3 is of the form ψ =

ρ3(t) for some t ∈ R. Let xE1 + yE2 + zE3 ∈ Γ3 ∩HA�A. Then z = a3,
x2 + y2 = a21 + a22 6= 0. Now ρ3(t) · A = (a2 sin t + a1 cos t)E1 + (a2 cos t −
a1 sin t)E2 + a3E3. Thus ρ3(t) · A = xE1 + yE2 + zE3 only if there exists
t ∈ R such that [

a1 a2
a2 −a1

] [
cos t
sin t

]
=

[
x
y

]
.

Let

[
v1
v2

]
=

[
a1 a2
a2 −a1

]−1 [
x
y

]
. Then v21 + v22 = x2+y2

a21+a
2
2

= 1. Thus there does

indeed exist a t ∈ R satisfying the above equation.
(iii) Again by proposition 1, any automorphism ψ fixing E1 +E3 is of the

form ψ = η(t) for some t ∈ R. Now

η(t) ·A = (a1 + a2t+ 1
2 (a3 − a1) t2)E1 + (a2 + (a3 − a1) t)E2

+ (a3 + a2t+ 1
2 (a3 − a1) t2)E3.

Suppose a1 6= a3 and let xE1 + yE2 + zE3 ∈ Γ13 ∩ HA�A. Then x =
a1−a3 +z and y2 = a21 +a22−a23 +z2−x2. Thus ρ3(t) ·A = xE1 +yE2 +zE3
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only if there exists t ∈ R such thata1 a2
1
2 (a3 − a1)

a2 a3 − a1 0
a3 a2

1
2 (a3 − a1)

 1
t
t2

 =

xy
z

 .
The determinant of the above matrix equals 1

2 (a1 − a3)
3

and so is nonzero.
We have v1v2

v3

 =

a1 a2
1
2 (a3 − a1)

a2 a3 − a1 0
a3 a2

1
2 (a3 − a1)

−1 a1 − a3 + z
y
z


=

 1
a2−y
a1−a3

2(a2(−y+a2)+(z−a3)(−a1+a3))
(a1−a3)2

 .
Let t = v2. It is then a simple matter to verify (using the identity y2 =
a21 + a22 − a23 + z2 − x2) that v3 = t2. Therefore η(t) ·A = xE1 + yE2 + zE3.

Suppose a1 = a3 and a2 6= 0. Let xE1 + yE2 + zE3 ∈ Γ′13 ∩HA�A. Then
y = a2 and x = z. Now η(t) ·A = (a1 + a2t)E1 + a2E2 + (a1 + a2t)E3. So if
t = x−a1

a2
, then η(t) ·A = xE1 + yE2 + zE3.

We shall find it useful to restate this result by identifying a typical point for
each intersection. (This allows for easier application to classifying systems.)

Corollary 2.

1. Suppose A /∈ 〈E2〉.

(a) If a21 − a23 6= 0, then there exists t ∈ R such that ρ2(t) · A or
(ς◦ρ2(t))·A equals (β+ 1

4 )E1+a2E2+(β− 1
4 )E3, where β = a21−a23.

(b) If a21 − a23 = 0, then there exists t ∈ R such that ρ2(t) · A or
(ς ◦ ρ2(t)) ·A equals E1 + a2E2 + kE3, where k = a3

a1
= ±1.

2. Suppose A /∈ 〈E3〉. Then there exists t ∈ R such that ρ3(t) · A =
αE1 + a3E3, where α =

√
a21 + a22 > 0.

3. Suppose A /∈ 〈E1 + E3〉.

(a) If a1 6= a3, then there exists t ∈ R such that η(t) ·A = (γ+β)E1 +

γE3, where γ = a3 +
a22

2a1−2a3 and β = a1 − a3.

(b) If a1 = a3, then there exists t ∈ R such that η(t) ·A = E1 +βE2 +
E3, where β = a2 6= 0.
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4 Classification

We now proceed to classify, under state space equivalence, all (full-rank) left-
invariant control affine systems on SO (2, 1)0. This reduces (by propositions 1
and 2) to an algebraic classification of the corresponding affine parametriza-
tion maps. More precisely, Σ and Σ′ are equivalent if an only if there exists
ψ ∈ dAut (SO (2, 1)0) = Aut (so (2, 1)) such that ψ · Ξ(1, ·) = Ξ′(1, ·). We
outline the approach to be used in classifying these systems. First, we dis-
tinguish between the number of controls involved and the homogeneity of the
systems; this yields four types of systems. For each of these types, we simplify
an arbitrary system by successively applying automorphisms. This simply in-
volves applying proposition 3 and corollary 2. Finally, we verify that all the
candidates for class representatives are distinct and not equivalent. Families
of these representatives are typically parametrized by some vectors α = (αi),
β = (βi), and γ = (γi), where αi > 0, βi 6= 0, and γi ∈ R.

When convenient, a system specified by

Σ :

3∑
i=1

aiEi + u1

3∑
i=1

biEi + u2

3∑
i=1

ciEi + u3

3∑
i=1

diEi

will be represented as  a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

 .
The evaluation ψ · Ξ (1, u) then becomes a matrix multiplication.

We start with single-input systems. (Only the inhomogeneous case need be
considered as the homogeneous systems do not have full rank). The two-input
homogeneous case follows as a corollary (by the lemma), although one still
needs to verify that the systems obtained are not equivalent. (This verification
shall be omitted as it is similar to the one made in the proof of the theorem.)

Theorem 3. Every single-input (inhomogeneous) system is equivalent to ex-
actly one of the following systems

Σ
(1,1)
1,αγ : α2E1 + γ1E3 + uα1E3

Σ
(1,1)
2,βγ : (γ1 + β1)E1 + γ1E3 + u(E1 + E3)

Σ
(1,1)
3,αβγ : (β1 + 1

4 )E1 + γ1E2 + (β1 − 1
4 )E3 + uα1E2.

Here αi > 0, β1 6= 0, and γ1 ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.
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Proof. Let Σ : A+ uB be a single-input system.
Suppose B�B < 0. Then (by proposition 3), there exists an automorphism

ψ such that ψ · B = α1E3 for some α1 > 0. Thus (by proposition 1) Σ is
equivalent to Σ′ : A′ + uα1E3, where A′ = ψ · A. Now, as A and B
are linearly independent, A′ /∈ 〈E3〉. Hence (by corollary 2) there exists an
automorphism ψ′ such that ψ′ · α1E3 = α1E3 and ψ′ · A′ = α2E1 + γ1E3

for some α2 > 0 and γ1 ∈ R. Therefore Σ′ (and so also Σ ) is equivalent to

Σ
(1,1)
1,αγ : α2E1 + γ1E3 + uα1E3.

Suppose B�B = 0. Then Σ is equivalent to Σ′ : A′+u(E1 +E3), where

A′ /∈ 〈E1 + E3〉. Hence, Σ is equivalent to either Σ
(1,1)
2,βγ : (γ1 + β1)E1 +

γ1E3 + u(E1 + E3) or Σ′′ : E1 + β1E2 + E3 + u(E1 + E3) for some γ1 ∈ R
and β1 6= 0. However, Σ′′ does not have full rank. As the full rank property

is preserved by equivalence, it follows that Σ is equivalent to Σ
(1,1)
2,βγ .

Suppose B � B > 0. Then Σ is equivalent to Σ′ : A′ + uα1E2 for

some α1 > 0, where A′ /∈ 〈E2〉. Hence, Σ is equivalent to either Σ
(1,1)
3,αβγ :

(β1 + 1
4 )E1 + γ1E2 + (β1 − 1

4 )E3 + uα1E2 or Σ′′ : E1 + γ1E2 +E3 + uα1E2

for some γ1 ∈ R and β1 6= 0. However, Σ′′ does not have full rank and so Σ

is equivalent to Σ
(1,1)
3,αβγ .

It remains to be shown that no two of these equivalence representatives are

equivalent. Let Σ : A + uB. If Σ = Σ
(1,1)
1,αγ , then B � B < 0. If Σ = Σ

(1,1)
2,βγ ,

then B � B = 0. If Σ = Σ
(1,1)
3,αβγ , then B � B > 0. Thus, as � is preserved

by any automorphism, Σ
(1,1)
1,αγ is not equivalent to either Σ

(1,1)
2,βγ or Σ

(1,1)
3,αβγ .

Likewise Σ
(1,1)
2,βγ is not equivalent to Σ

(1,1)
3,αβγ .

Suppose Σ
(1,1)
1,αγ is equivalent to Σ

(1,1)
1,α′γ′ . Then there exists an automor-

phism ψ such that

ψ ·

 α2 0
0 0
γ1 α1

 =

 α′2 0
0 0
γ′1 α′1

 .
Thus −α2

1 = α1E3 � α1E3 = α′1E3 � α′1E3 = −α′21 . Hence, as α1, α
′
1 > 0,

α = α′. Thus ψ · E3 = E3. Therefore (by proposition 1) ψ = ρ3(t) for some

t > 0. Then it follows that γ1 = γ′1 and α2 = α′2. That is to say Σ
(1,1)
1,αγ and

Σ
(1,1)
1,α′γ′ are equivalent only if α = α′ and γ1 = γ′1.

Suppose Σ
(1,1)
2,βγ is equivalent to Σ

(1,1)
2,β′γ′ . Then there exists an automor-

phism ψ such that

ψ ·

 β1 + γ1 1
0 0
γ1 1

 =

 β′1 + γ′1 1
0 0
γ′1 1

 .
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Hence, as ψ · (E1 + E3) = E1 + E3, ψ = η(t) for some t ∈ R. We have

η(t) ·

 β1 + γ1 1
0 0
γ1 1

 =

 β1 − t2β1

2 + γ1 1
−tβ1 0

− t
2β1

2 + γ1 1

 .
Therefore t = 0 and so ψ is the identity automorphism. Consequently Σ

(1,1)
2,βγ

and Σ
(1,1)
2,β′γ′ are equivalent only if β1 = β′1 and γ1 = γ′1.

Similar computations show that Σ
(1,1)
3,αβγ is equivalent to Σ

(1,1)
3,α′β′γ′ only if

α = α′, β = β′ and γ = γ′.

Corollary 3. Every two-input homogeneous system is equivalent to exactly
one of the following systems

Σ
(2,0)
1,αγ : γ3E1 + γ2E3 + u1(α2E1 + γ1E3) + u2 α1E3

Σ
(2,0)
2,βγ : γ3E1 + γ2E3 + u1((γ1 + β1)E1 + γ1E3) + u2(E1 + E3)

Σ
(2,0)
3,αβγ : γ2(β1 + 1

4 )E1 + γ3E2 + γ2(β1 − 1
4 )E3

+ u1((β1 + 1
4 )E1 + γ1E2 + (β1 − 1

4 )E3) + u2 α1E2.

Here αi > 0, β1 6= 0, and γi ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.

Next we deal with the two-input inhomogeneous systems. The three-input
case then follows as a corollary (as all three-input systems are clearly homo-
geneous).

Theorem 4. Every two-input inhomogeneous system is equivalent to exactly
one of the following systems

Σ
(2,1)
1,αβγ : γ3E1 + β1E2 + γ2E3 + u1(α2E1 + γ1E3) + u2 α1E3

Σ
(2,1)
2,βγ : γ3E1 + β2E2 + γ2E3 + u1((γ1 + β1)E1 + γ1E3) + u2(E1 + E3)

Σ
(2,1)
3,βγ : γ1E1 + γ2E2 + (β2 + γ1)E3 + u1(E1 + β1E2 + E3) + u2(E1 + E3)

Σ
(2,1)
4,αβγ :

(
β2(β1 − 1

4 ) + γ2(β1 + 1
4 )
)
E1 +

(
β2(β1 + 1

4 ) + γ2(β1 − 1
4 )
)
E3

+ γ3E2 + u1
(
(β1 + 1

4 )E1 + γ1E2 + (β1 − 1
4 )E3

)
+ u2 α1E2

Σ
(2,1)
5,αβγ : γ3E1 + γ2E2 + (β1 + γ3)E3 + u1(E1 + γ1E2 + E3) + u2 α1E2.

Here αi > 0, βi 6= 0, and γi ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.
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Proof. Let Σ : A+ u1B1 + u2B2 be a two-input system.
Suppose B2 � B2 < 0. Then Σ is equivalent to Σ′ : A′ + u1B

′
1 + α1E3

for some α1 > 0, where B′1 /∈ 〈E3〉. Hence Σ is equivalent to Σ
(2,1)
1,αβγ :

γ3E1 + β1E2 + γ2E3 + u1(α2E1 + γ1E3) + u2 α1E3 for some α2 > 0 and

γ1, γ2, γ3, β1 ∈ R. As Σ
(2,1)
1,αβγ is inhomogeneous, it follows that β1 6= 0.

Suppose B2�B2 = 0. Then Σ is equivalent to Σ′ : A′+ u1B
′
1 + u2(E1 +

E3), where B′ /∈ 〈E1 + E3〉. Hence, Σ is equivalent to either Σ
(2,1)
2,βγ : γ3E1 +

β2E2+γ2E3+u1((γ1+β1)E1+γ1E3)+u2(E1+E3) or Σ
(2,1)
3,βγ : γ1E1+γ2E2+

(β2 + γ1)E3 + u1(E1 + β1E2 +E3) + u2(E1 +E3) for some γ1, γ2, γ3, β2 ∈ R
and β1 6= 0. As Σ

(2,1)
2,βγ and Σ

(2,1)
3,βγ are inhomogeneous, it follows that β2 6= 0.

Suppose B2 �B2 > 0. Then Σ is equivalent to Σ̃ : Ã+ u1B̃1 + u2 α1E2

for some α1 > 0, where B̃1 /∈ 〈E2〉. Hence, Σ is equivalent to either Σ′ :
A′ + u1((β1 + 1

4 )E1 + γ1E2 + (β1 − 1
4 )E3) + u2 α1E2 or Σ′′ : A′′ + u1(E1 +

γ1E2 + E3) + u2 α1E2 for some γ1 ∈ R and β1 6= 0. We require that A′,
(β1 + 1

4 )E1 + γ1E2 + (β1 − 1
4 )E3, and α1E2 are linearly independent. We

have that (β1 − 1
4 )E1 + (β1 + 1

4 )E3, (β1 + 1
4 )E1 + (β1 − 1

4 )E3, and α3E3

are linearly independent. Thus A′ =
(
β2(β1 − 1

4 ) + γ2(β1 + 1
4 )
)
E1 + γ3E2 +(

β2(β1 + 1
4 ) + γ2(β1 − 1

4 )
)
E3 for some γ2, γ3 ∈ R and β2 6= 0. Hence Σ′ =

Σ
(2,1)
4,αβγ . We also require that A′′, E1 + γ1E2 + E3, and α1E2 are linearly

independent. Thus A′′ = γ3E1 +γ2E2 + (β1 +γ3)E3 for some γ2, γ3 ∈ R and

β1 6= 0. Therefore Σ′′ = Σ
(2,1)
5,αβγ .

It remains to be shown that no two of these equivalence representatives are

equivalent. As � is preserved by any automorphism, it follows that Σ
(2,1)
1,αβγ

is not equivalent to Σ
(2,1)
2,βγ , Σ

(2,1)
3,βγ , Σ

(2,1)
4,αβγ , or Σ

(2,1)
5,αβγ . Likewise, Σ

(2,1)
2,βγ is

not equivalent to Σ
(2,1)
4,αβγ or Σ

(2,1)
5,αβγ ; Σ

(2,1)
3,βγ is not equivalent to Σ

(2,1)
4,αβγ or

Σ
(2,1)
5,αβγ .

Suppose Σ
(2,1)
3,βγ is equivalent to Σ

(2,1)
2,β′γ′ . Then there exists an automor-

phism η(t) fixing E1 + E3 such that

η(t) ·

 γ1 1 1
γ2 β1 0

β2 + γ1 1 1

 =

 γ3 β1 + γ1 1
β2 0 0
γ2 γ1 1


i.e.,  t2β2

2 + γ1 + tγ2 1 + tβ1 1
tβ2 + γ2 β1 0

1
2

(
2 + t2

)
β2 + γ1 + tγ2 1 + tβ1 1

 =

 γ3 β1 + γ1 1
β2 0 0
γ2 γ1 1

 .



EQUIVALENCE OF CONTROL SYSTEMS ON SO (2, 1)0 59

Thus β1 = 0, a contradiction. Hence Σ
(2,1)
3,βγ is not equivalent to Σ

(2,1)
2,β′γ′ (for

any admissible parameters). Similarly, Σ
(2,1)
4,αβγ is not equivalent to Σ

(2,1)
5,α′β′γ′ .

Suppose Σ
(2,1)
1,αβγ is equivalent to Σ

(2,1)
1,α′β′γ′ . Then there exists an automor-

phism ψ such that

ψ ·

 γ3 α2 0
β1 0 0
γ2 γ1 α1

 =

 γ′3 α′2 0
β′1 0 0
γ′2 γ′1 α′1

 .
Thus −α2

1 = −α′21 and so α1 = α′1. Therefore ψ fixes E3. Hence ψ = ρ3(t)
for some t ∈ R. Now

ρ3(t) ·

 γ3 α2 0
β1 0 0
γ2 γ1 α1

 =

 β1 sin t+ γ3 cos t α2 cos t 0
β1 cos t− γ3 sin t −α2 sin t 0

γ2 γ1 α1

 .
Thus γ1 = γ′1. Therefore α2

2 = α′22 and so α2 = α′2. Hence ψ · α2E1 = α2E1,
i.e., ψ fixes E1. Hence, (by corollary 1) ψ is the identity automorphism.

Accordingly Σ
(2,1)
1,αβγ is equivalent to Σ

(2,1)
1,α′β′γ′ only if α = α′, β1 = β′1, and

γ = γ′.

Suppose Σ
(2,1)
4,αβγ is equivalent to Σ

(2,1)
4,α′β′γ′ . Then there exists an automor-

phism ψ such that

ψ ·

 (β1 − 1
4

)
β2 +

(
β1 + 1

4

)
γ2 β1 + 1

4 0
γ3 γ1 α1(

β1 + 1
4

)
β2 +

(
β1 − 1

4

)
γ2 β1 − 1

4 0


=

 (β′1 − 1
4

)
β′2 +

(
β′1 + 1

4

)
γ′2 β′1 + 1

4 0
γ′3 γ′1 α′1(

β′1 + 1
4

)
β′2 +

(
β′1 − 1

4

)
γ′2 β′1 − 1

4 0

.
Thus −α2

1 = −α′21 and so α1 = α′1. Therefore ψ fixes E2. Hence ψ = ρ2(t)
or ψ = ς ◦ ρ2(t) for some t ∈ R. Now

ρ2(t) ·

 1
4 + β1
γ1

− 1
4 + β1

 =

 e−θ

4 + eθβ1
γ1

− e
−θ

4 + eθβ1


(ς ◦ ρ2(t)) ·

 1
4 + β1
γ1

− 1
4 + β1

 =

− e
−θ

4 − e
θβ1

γ1
e−θ

4 − e
θβ1


Thus γ1 = γ′1. Hence β1 = (β1 + 1

4 )2− (β1− 1
4 )2 = (β′1 + 1

4 )2− (β′1− 1
4 )2 = β′1.

For ψ = ς◦ρ2(t) we then get
(
− e
−θ

4 − e
θβ1

)
+
(
e−θ

4 − e
θβ1

)
= −2eθβ1 = 2β1,
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a contradiction. Therefore ψ = ρ2(t). Then
(
e−θ

4 + eθβ1

)
+
(
− e
−θ

4 + eθβ1

)
=

2eθβ1 = 2β1. Thus θ = 0 and so ψ is the identity automorphism. Therefore

Σ
(2,1)
4,αβγ is equivalent to Σ

(2,1)
4,α′β′γ′ only if α1 = α′1, β = β′, and γ = γ′.

Likewise, Σ
(2,1)
2,βγ is equivalent to Σ

(2,1)
2,β′γ′ , Σ

(2,1)
3,βγ is equivalent to Σ

(2,1)
3,β′γ′ ,

and Σ
(2,1)
5,αβγ is equivalent to Σ

(2,1)
5,α′β′γ′ , respectively, only if α = α′, β = β′,

and γ = γ′.

Corollary 4. Every three-input (homogeneous) system is equivalent to exactly
one of the following systems

Σ
(3,0)
1,αβγ : γ6E1 + γ5E2 + γ4E3 + u1(γ3E1 + β1E2 + γ2E3)

+ u2(α2E1 + γ1E3) + u3 α1E3

Σ
(3,0)
2,βγ : γ6E1 + γ5E2 + γ4E3 + u1(γ3E1 + β2E2 + γ2E3)

+ u2((γ1 + β1)E1 + γ1E3) + u3(E1 + E3)

Σ
(3,0)
3,βγ : γ6E1 + γ5E2 + γ4E3 + u1(γ1E1 + γ2E2 + (β2 + γ1)E3)

+ u2(E1 + β1E2 + E3) + u3(E1 + E3)

Σ
(3,0)
4,αβγ : γ4E1 + γ4E2 + γ3E3 + u2((β1 + 1

4 )E1 + γ1E2 + (β1 − 1
4 )E3)

+ u3 α1E2 + u1

( (
β2(β1 − 1

4 ) + γ2(β1 + 1
4 )
)
E1

+
(
β2(β1 + 1

4 ) + γ2(β1 − 1
4 )
)
E3 + γ3E2

)
Σ

(3,0)
5,αβγ : γ6E1 + γ5E2 + γ4E3 + u1(γ3E1 + γ2E2 + (β1 + γ3)E3)

+ u2(E1 + γ1E2 + E3) + u3 α1E2.

Here αi > 0, βi 6= 0, and γi ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.

5 Conclusion

Two systems (on a connected Lie group G)

Σ : Ξ (1, u) and Σ′ : Ξ′ (1, u)

are detached feedback equivalent (shortly DF -equivalent) if there exists a
diffeomorphism Φ : G× R` → G× R`, (g, u) 7→ (φ(g), ϕ(u)) such that

Tgφ · Ξ(g, u) = Ξ′(φ(g), ϕ(u))
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for g ∈ G and u ∈ R`. It turns out that Σ and Σ′ are detached feedback
equivalent if and only if there exists a Lie algebra automorphism ψ ∈ dAut (G)
such that ψ · Γ = Γ′ (cf. [10]). Detached feedback equivalence is a weaker
equivalence relation than state space equivalence.

A classification, under detached feedback equivalence, of systems evolv-
ing on SO (2, 1)0 was obtained in [7]. Furthermore a full list of (detached
feedback) equivalence representatives was identified. We now compare this
classification (under DF -equivalence) to the classification obtained in this
paper. Specifically, we match (families of) state space equivalence class repre-
sentatives to detached feedback equivalence class representatives.

For the single-input systems we have

• Σ
(1,1)
1,αγ :

 α2 0
0 0
γ1 α1

 is DF -equivalent to Σ : α2E2 + uE3;

• Σ
(1,1)
2,βγ :

 β1 + γ1 1
0 0
γ1 1

 is DF -equivalent to Σ : E3 + u(E2 + E3);

• Σ
(1,1)
3,αβγ :

 β1 + 1
4 0

γ1 α1

β1 − 1
4 0

 is

– DF -equivalent to Σ :
√
β1E1 + uE2 if β1 > 0

– DF -equivalent to Σ :
√
−β1E3 + uE2 if β1 < 0.

For the two-input homogeneous systems we have

• Σ
(2,0)
1,αγ :

 γ3 α2 0
0 0 0
γ2 γ1 α1

 and Σ
(2,0)
1,αγ :

 β1 + γ1 1
0 0
γ1 1

 are

DF -equivalent to Σ : u1E2 + u2E3;

• Σ
(2,0)
3,αβγ :

 (β1 + 1
4 )γ2 β1 + 1

4 0
γ3 γ1 α1

(β1 − 1
4 )γ2 β1 − 1

4 0

 is

– DF -equivalent to Σ : u1E2 + u2E3 if β1 < 0

– DF -equivalent to Σ : u1E1 + u2E2 if β1 > 0.
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For the two-input inhomogeneous systems we have

• Σ
(2,1)
1,αβγ :

 γ3 α2 0
β1 0 0
γ2 γ1 α1

 is DF -equivalent to Σ : |β1|E1 + u1E2 +

u2E3;

• Σ
(2,1)
2,βγ :

 γ3 β1 + γ1 1
β2 0 0
γ2 γ1 1

 is DF -equivalent to Σ : |β2|E1 +u1E2 +

u2E3;

• Σ
(2,1)
3,βγ :

 γ1 1 1
γ2 β1 0

β2 + γ1 1 1

 and Σ
(2,1)
4,βγ :

 γ3 1 0
γ2 γ1 α1

β1 + γ3 1 0

 are

DF -equivalent to Σ : E3 + u1E1 + u2(E2 + E3);

• Σ
(2,1)
5,αβγ :

 (β1 − 1
4 )β2 + (β1 + 1

4 )γ2 β1 + 1
4 0

γ3 γ1 α1

(β1 + 1
4 )β2 + (β1 − 1

4 )γ2 β1 − 1
4 0

 is

– DF -equivalent to Σ :
√
−β1β2

2E1 + u1E2 + u2E3 if β1 < 0

– DF -equivalent to Σ :
√
β1β2

2E3 + u1E1 + u2E2 if β1 > 0.

The three-input case is trivial; any three-input system is DF -equivalent
to Σ : u1E1 + u2E2 + u3E3.

A summary of the classification results (in matrix form) is appended as a
table.
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Type Equivalence representatives (αi > 0, βi 6= 0, γi ∈ R)

(1, 1)

 α2 0
0 0
γ1 α1

,

 β1 + γ1 1
0 0
γ1 1

,

 β1 + 1
4 0

γ1 α1

β1 − 1
4 0



(2, 0)

 γ3 α2 0
0 0 0
γ2 γ1 α1

 ,
 γ3 β1 + γ1 1

0 0 0
γ2 γ1 1


 (β1 + 1

4 )γ2 β1 + 1
4 0

γ3 γ1 α1

(β1 − 1
4 )γ2 β1 − 1

4 0



(2, 1)

 γ3 α2 0
β1 0 0
γ2 γ1 α1

 ,
 γ3 β1 + γ1 1
β2 0 0
γ2 γ1 1


 γ1 1 1

γ2 β1 0
β2 + γ1 1 1

 ,
 γ3 1 0

γ2 γ1 α1

β1 + γ3 1 0


 (β1 − 1

4 )β2 + (β1 + 1
4 )γ2 β1 + 1

4 0
γ3 γ1 α1

(β1 + 1
4 )β2 + (β1 − 1

4 )γ2 β1 − 1
4 0



(3, 0)

 γ6 γ3 α2 0
γ5 β1 0 0
γ4 γ2 γ1 α1

 ,
 γ6 γ3 β1 + γ1 1
γ5 β2 0 0
γ4 γ2 γ1 1


 γ5 γ1 1 1
γ4 γ2 β1 0
γ3 β2 + γ1 1 1

 ,
 γ6 γ3 1 0
γ5 γ2 γ1 α1

γ4 β1 + γ3 1 0


 γ6 (β1 − 1

4 )β2 + (β1 + 1
4 )γ2 β1 + 1

4 0
γ5 γ3 γ1 α1

γ4 (β1 + 1
4 )β2 + (β1 − 1

4 )γ2 β1 − 1
4 0


[
A B1 · · · B`

]
←→ A+ u1B1 + · · ·+ u`B`

Classification of systems on SO (2, 1)0 (matrix form)
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