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Flat local morphisms of rings with prescribed
depth and dimension

Cristodor Ionescu

Abstract

For any pairs of integers (n,m) and (d, e) such that 0 ≤ n ≤ m, 0 ≤
d ≤ e, d ≤ n, e ≤ m and n − d ≤ m − e we construct a local flat
ring morphism of noetherian local rings u : A→ B such that dim(A) =
n,depth(A) = d, dim(B) = m and depth(B) = e.

1 Introduction

While preparing [3], the present author was looking for an example of a flat
local ring homomorphism of noetherian local rings u : (A,m) → (B,n) such
that A and B/mB are almost Cohen-Macaulay, while B is not almost Cohen-
Macaulay. This means that, for example, one should construct such a mor-
phism with depth(B) = depth(A) = 0,dim(B) = 2 and dim(A) = 1. Note
that actually the flatness of the homomorphism u is the non-trivial point in
the construction. After asking several people without obtaining a satisfactory
answer, he decided to let it as an open question in [3]. The answer came soon,
an example with the desired features being constructed by Tabaâ [6]. Using
his idea, we construct a quite general example of this type, construction that
can be useful in various situations.
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2 The construction

We start by pointing out the following easy and well-known fact.

Lemma 2.1. Let k be a field, n, d ∈ N such that 0 ≤ d ≤ n. Then there
exists m ∈ N,m ≥ n and a monomial ideal I ⊂ S := k[X1, . . . , Xm] such that
dim(S/I)(X1,...,Xm) = n and depth(S/I)(X1,...,Xm) = d.

Proof: Let r = n−d. If r = 0 the assertion is clear. Assume that r > 0. If d =
0 let S = k[X0, X1, . . . , Xr] and if d > 0 let S = k[X0, X1, . . . , Xr, T1, . . . , Td].
Consider for example the monomial ideal I = (X0) ∩ (X0, . . . , Xr)r+1. Then
we have Ass(S/I) = {(X0), (X0, . . . , Xr)}, hence dim(S/I) = r + d = n and
depth(S/I) = d. Now taking m = r+1+d and renumbering the indeterminates
we get the desired relations.

Remark 2.2. Clearly there are also many other choices for a monomial ideal
with the properties of the above lemma. For more about this kind of construc-
tion one can see [5].

Theorem 2.3. Let 0 ≤ d1 ≤ n1 and 0 ≤ d2 ≤ n2 be natural numbers such
that n1 ≤ n2, d1 ≤ d2 and n1 − d1 ≤ n2 − d2. Then there exists a local flat
morphism of noetherian local rings u : (A,m)→ (B,n) such that depth(A) =
d1,dim(A) = n1,depth(B) = d2 and dim(B) = n2.

Proof: Let k be a field and A = (k[X]/I)(X), X = (X1, . . . , Xm) be a local
ring obtained cf. 2.1 with depth(A) = d1 and dim(A) = n1. Let s = d2 − d1
and t = n2−n1. By assumption we have s ≤ t. Hence let C = (k[Y ]/J)(Y ), Y =
(Y1, . . . , Yp) be a local ring obtained cf. 2.1 with depth(C) = s and dim(C) = t.
Now let

D := A⊗k C = k[X]/I ⊗k k[Y ]/J = k[X,Y ](Ik[X,Y ] + Jk[X,Y ])

and let B := D(X,Y ). Then obviously the canonical morphism u : A → B is
flat and local, being a localisation of the base change of the flat morphism
k → C. We need the following probably well-known fact:

Lemma 2.4. Let k be a field and m, p ∈ N. Let also I and J be monomial
ideals in k[X] = k[X1, . . . , Xm] and k[Y ] = k[Y1, . . . , Yp] respectively and set
S := k[X,Y ]. Then Min(IS + JS) = {PS + QS |P ∈ Min(I), Q ∈ Min(J)}.
Consequently

dim(S/(IS + JS)) = dim(k[X]/I) + dim(k[Y ]/J).

Proof: Using [2], 3.4 we obtain

Min(IS + JS) = Min(
√
IS + JS) = Min(

√√
IS +

√
JS) =
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= Min(
√
IS +

√
JS) = {PS + QS | P ∈ Min(I), Q ∈ Min(J)}.

Returning at the proof of the Theorem, by 2.4 we get dim(B) = dim(A) +
dim(C) = n1 + t = n2 and by [1], Lemma 2 we have that depth(B) =
depth(A) + depth(C) = s + d1 = d2. This concludes the proof of 2.3.

Example 2.5. Let k be a field, let A = C = (k[X,Y ]/(X2, XY ))(X,Y ) and
let B = A ⊗k C = (k[X,Y, U, V ]/(X2, XY, U2, UV ))(X,Y,U,V ). The canonical
morphism u : A→ B is the morphism obtained performing the above construc-
tion. This is the example from [6], namely we have dim(A) = 1,dim(B) =
2,depth(A) = depth(B) = 0.

Remark 2.6. Let (A,m) be a noetherian local ring. Then the natural number
cmd(A) = dim(A)−depth(A) is called the Cohen-Macaulay defect of A. Thus
A is Cohen-Macaulay if and only if cmd(A) = 0 and A is almost Cohen-
Macaulay if and only if cmd(A) ≤ 1(see [3]).

Example 2.7. Using the above construction, one can also get examples of flat
local morphisms of noetherian local rings, whose closed fiber has prescribed
Cohen-Macaulay defect, or even more general, has prescribed dimension n
and depth d ≤ n. Indeed, by ([4], 15.1, 23.3), the flatness of u implies that
n = dim(B/mB) = n2 − n1 and d = depth(B/mB) = d2 − d1, so that it is
enough to choose appropriate values for n1 ≤ n2 and d1 ≤ d2 and perform the
above construction.
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