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Computing abelian subalgebras for linear
algebras of upper-triangular matrices from an

algorithmic perspective

Manuel Ceballos, Juan Núñez and Ángel F. Tenorio

Abstract

In this paper, the maximal abelian dimension is algorithmically and
computationally studied for the Lie algebra hn, of n×n upper-triangular
matrices. More concretely, we define an algorithm to compute abelian
subalgebras of hn besides programming its implementation with the
symbolic computation package MAPLE. The algorithm returns a maxi-
mal abelian subalgebra of hn and, hence, its maximal abelian dimension.
The order n of the matrices hn is the unique input needed to obtain
these subalgebras. Finally, a computational study of the algorithm is
presented and we explain and comment some suggestions and comments
related to how it works.

1 Introduction

The maximal abelian dimension of a given finite-dimensional Lie algebra g is
the maximum α(g) among the dimensions of its abelian subalgebras. This
topic has been previously studied by considering both abelian ideals (e.g.,
see [6, 13]) and abelian subalgebras (e.g. see [4, 5, 12]). Indeed, Ceballos et
al. [8] studied both approaches at once. When ideals are taken into consid-
eration, more restrictive hypotheses are necessary. In the present paper, we
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study the least restrictive problem and we consider all the subalgebras of the
Lie algebra g.

When computing the maximal abelian dimensions for finite-dimensional
Lie algebras, it is very useful the Schur-Jacobson’s upper bound for this value:
given the matrix Lie algebra Mn(K), of n × n square matrices over a field

K, the dimension of its abelian subalgebras is upper bounded by
⌊
n2

4

⌋
+ 1,

where b·c denotes the floor function. Indeed, abelian subalgebra with this
dimension can be found. The result was proved by Schur [11] over the complex
number field C and, later, by Jacobson [10] over a general field K. Since every
finite-dimensional subalgebra can be faithfully represented by a subalgebra of

Mn(C), the maximal abelian dimension of g is upper bounded by
⌊
n2

4

⌋
+ 1.

Regarding this, we have previously studied in [2, 3] the maximal abelian
dimension of the Lie algebra gn, of n × n strictly upper-triangular matrices,
giving an algorithmic procedure to reach an abelian subalgebra of dimension
α(gn) and showing that Schur-Jacobson’s bound was not reached for these
algebras.

In this paper, we study the maximal dimension of abelian subalgebras for
the Lie algebra hn, of n×n upper-triangular matrices. The exact value of the
maximal abelian dimension α(hn) was already computed by Ceballos et al. [7],
showing that Schur-Jacobson’s upper bound is reached and conjecturing the
existence of, at most, two abelian subalgebras of dimension α(hn) depending
on the parity of n. Additionally, the algorithmic procedure given in [2] can
be adapted and adjusted to the case of the Lie algebra hn. In this way, the
main goal of this paper consists in defining an algorithm which computes
the value of α(hn) and a list of abelian subalgebras, including those being of
dimension α(hn). Moreover, the algorithm has been implemented with the
symbolic computation package MAPLE and computationally studied starting
from running.

At this point, we should ask ourselves if the algorithm presented here
provides some advantages over any other already existing in the literature.
More concretely, Ceballos et al. [8] introduced an algorithm to compute all
the abelian subalgebras (and ideals) of a given Lie algebra g starting from its
law. This algorithm also returned the value of α(g) and the list of abelian
subalgebras (and ideals) of dimension α(g). However, the algorithm was de-
signed and implemented to be run over any given Lie algebra and, hence, did
not take advantage of properties and results previously known for particular
types of Lie algebras. Indeed, the algorithm presented in [8] only runs for Lie
algebras hn with n ≤ 5 (i.e. a Lie algebra of dimension 15), appearing compu-
tational problems in practice for higher values of n (since h6 is a Lie algebra of
dimension 21). The algorithm which we are presenting in this paper, allows us
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the computation of the maximal abelian dimension and an abelian subalgebra
of this dimension for the Lie algebra hn with n < 2000.

Lie algebra hn is interesting from both theoretical and applied viewpoints.
From a theoretical perspective, every finite-dimensional solvable Lie algebra
is isomorphic to a suitable subalgebra of hn for some n ∈ N [14, Proposition
3.7.3]. With respect to its applications, we must take into consideration that
solvable Lie algebras are very useful for studying problems related to black
holes and for giving an alternative description of the scalar manifold in a
broad class of supergravity theories (e.g. [1, 9]).

2 Preliminaries

Some preliminary notions on Lie algebras are recalled in this section, bearing
in mind that the reader can consult [14] for a general overview on solvable Lie
algebras. From here on, we only consider finite-dimensional Lie algebras over
the complex number field C.

Given a Lie algebra g, its maximal abelian dimension, α(g), is the maxi-
mum among the dimensions of its abelian subalgebras.

An abelian subalgebra (indeed, an ideal) of g is given by the center Cen(g),
defined as

Cen(g) = {v ∈ g|[v,u] = 0,∀u ∈ g}.

Obviously, Cen(g) is contained in any abelian subalgebra of dimension α(g).
Throughout the paper, we work with the solvable Lie algebra hn, consisting

of the n× n upper-triangular matrices with the following form:

hn(xr,s) =


x11 x12 · · · x1n
0 x22 · · · x2n
...

...
. . .

...
0 · · · 0 xnn


where n ∈ N and xij ∈ C, for all i, j ∈ N, with 1 ≤ i ≤ j ≤ n. We can obtain
a basis Bn of hn by considering the vectors Xij = hn(xr,s) such that:

xr,s =

{
1, if (r, s) = (i, j),
0, if (r, s) 6= (i, j),

where 1 ≤ i ≤ j ≤ n. Hence, the law of hn with respect to basis Bn is as
follows

[Xi,j , Xj,k] = Xi,k, ∀ 1 ≤ i < j < k ≤ n;
[Xi,i, Xi,j ] = Xi,j , ∀ 1 ≤ i < j ≤ n;
[Xk,i, Xi,i] = Xk,i, ∀ 1 ≤ k < i ≤ n.
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Note that Cen(hn) is spanned by
∑n
i=1Xi,i, which is the vector considering

the whole main diagonal. Therefore, this vector has to belong to every abelian
subalgebra of dimension α(hn).

3 Algorithm to obtain abelian subalgebras

Next, we show an algorithm to compute abelian subalgebras of the Lie algebra
hn, including those of maximum dimension α(hn). First, we give the general
structure for the algorithm, stating and explaining its different steps in detail.
Then, we show some examples of application for low values of n.

Given a Lie algebra hn for an arbitrary n ∈ N, the algorithm only needs
the value of n as input. Although we show its design starting from inserting
the input, the parity of n has influence on both which is the last step before
stopping and which is the structure of the abelian subalgebra of dimension
α(hn) returned as output. Indeed, this algorithm returns the subalgebras
conjectured in [7] as the only ones existing in hn with dimension α(hn).

The general reasoning is based on considering column-by-column the vec-
tors in the basis Bn of hn. Additionally, we must bear in mind that the vectors
from the ith column do not commute with those from the ith row. Therefore,
to avoid nonzero brackets, every vector coming from the ith row has to be
removed.

Step 1: nth column.

Let consider the n vectors coming from the nth column for the basis of
the subalgebra. Hence, the vector Xn,n coming from the nth row must
be removed, obtaining the abelian subalgebra span(X1,n, . . . , Xn−1,n).

Step n− i+ 1: ith column for n > i ≥
[
n
2

]
+ ξodd(n) + 1, where ξodd is

the indicator function of odd numbers.

There are i vectors coming from the ith column. They are added to the
generators obtained in the previous step, but removing the 2k − (i− 1)
vectors coming from the ith row too. Consequently, the dimension of the
abelian subalgebra increases i−(n−(i−1)) = 2i−n−1 with respect to the
previous step. This dimension really increases if and only if 2i−n−1 > 0.
Since the previous inequality is equivalent to i > n+1

2 =
[
n
2

]
+ ξodd(n),

we can assure that
[
n
2

]
+ ξodd(n) + 1 is the last column such that the

dimension increases with this adding-and-removing procedure.

Step
[
n
2

]
+1: Add the vector

∑n
i=1Xi,i to the previous basis, obtaining
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the abelian subalgebra of dimension
[
n2

4

]
+ 1 spanned by the vectors:

X1,[n
2 ]+ξodd(n)+1 . . . X1,n

X2,[n
2 ]+ξodd(n)+1 . . . X2,n

...
. . .

...
X[n

2 ]+ξodd(n),[n
2 ]+ξodd(n)+1 . . . X[n

2 ]+ξodd(n),n

n∑
i=1

Xi,i

Let us note that, for hn, we have obtained abelian subalgebras of dimension[
n2

4

]
+1. This dimension is the value of α(hn) because it corresponds to Schur-

Jacobson’s upper bound and, hence, we cannot find abelian subalgebras of
greater dimension. Moreover, our algorithm returns the abelian subalgebra
that Ceballos et al. [7] conjectured as the only one of dimension α(hn) when
n is even. Even more, when n is odd, the algorithm returns one of the two
abelian subalgebras conjectured as the only ones in the same reference. In
fact, if we run Step

[
n
2

]
+ 1 of our algorithm for n odd, we obtain the other

algebra conjectured. In this way, this algorithmic procedure would compute
all the abelian subalgebras of dimension α(hn) if the conjecture is proved.

To conclude this section, we want to show how works the algorithm for low
values of the input n. Since the algebra h1 is abelian, we assume n ≥ 2 for the
examples, although the algorithm also works for this value of n.

Example 3.1. If n = 2, then Step 1 generates the abelian subalgebra span(X1,2).
Step 2 adds the vector X1,1 +X2,2 to obtain the abelian subalgebra span(X1,2,
X1,1 +X2,2) of dimension α(h1) = 2.

Example 3.2. If n = 3, then Step 1 considers the abelian subalgebra
span(X1,3, X2,3), consisting in taking the three vectors coming from the 3rd

column and removing X3,3 corresponding to the 3rd row. Then, Step 2 adds the
vector X1,1+X2,2+X3,3 and we obtain the abelian subalgebra span(X1,3, X2,3,
X1,1 +X2,2 +X3,3) of dimension α(h3).

Let us assume that we run an additional step in the adding-and-removing
procedure. In that case, we would add the vectors from the 2nd column, but re-
moving all those coming from the 2nd row (including X2,3 previously inserted).
Hence, we would obtain the abelian subalgebra span(X1,2, X1,3, X1,1 + X2,2 +
X3,3) of dimension 3 as output.

4 Implementing the algorithm with MAPLE

This section is devoted to explain a step-by-step implementation of the algo-
rithm previously shown. This algorithm only needs a unique input; namely,
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the order n of the matrices belonging to hn. As outputs, the algorithm returns
both the maximal abelian dimension α(hn) and one abelian subalgebras of di-
mension α(hn). According to the conjecture shown in [7], there exists only one
for n even and two for n odd. Indeed, for n odd, if we run an additional step
in the adding-and-removing procedure, our algorithm return also the second
abelian subalgebra of dimension α(hn).

To start running the implementation, three libraries are loaded: linalg

(to activate some commands related to Linear Algebra), ListTools (to apply
commands like union or minus) and numtheory (to use the command iquo).

The implementation consists of programming a main routine with two
subroutines. The main routine mas (from maximum of abelian subalgebras)
receives the order n of the matrices in hn and returns a basis of the abelian
subalgebra of dimension α(hn). Moreover, an implicit list with all the isomor-
phism classes of abelian subalgebras can be obtained starting from the second
output of the routine.

The first subroutine, add mas, determines the vectors to be added in each
step to the basis of the abelian subalgebra of dimension α(hn). Its input is a
natural number j corresponding to the column considered in the routine mas.
A list L is also defined as a local variable and its elements are the vectors to
be added to the basis. The final output of this subroutine returns is the list
L with the vectors considered.

> add_mas:=proc(j)

> local L;

> L:=[];

> for k from 1 to j do L:=[op(L),X[k,j]]; end do;

> return op(L[1..nops(L)]);

> end proc:

The second subroutine, remove mas, determines which vectors have to be
removed in each step of the algorithm. Starting from its two inputs (the
natural numbers i and n), the subroutine removes the vectors coming from
the ith row. This subroutine needs a local variable M , which is a list saving
the vectors to be removed in each step. This list is the final output of the
subroutine.

> remove_mas:=proc(i,n)

> local M;

> M:=[];

> for k from i to n do M:=[op(M),X[i,k]]; end do;

> return op(M[1..nops(M)]);

> end proc:

Finally, the routine mas returns two different outputs: the basis of the
abelian subalgebra of dimension α(hn) and the value of α(hn) itself. Only the
order n of the matrices in hn is needed as input. To implement this routine,
the local variables L, M , P , Q and i have to be defined. L and M are two sets
formed by the vectors which have to be added and removed, respectively. The
set difference L \M is saved in the variable P , whereas Q is a singleton with
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the generator of Cen(hn). In this way, the routine mas computes these sets in
each step and returns both the union P ∪Q and its cardinal; i.e. the maximal
abelian dimension α(hn) and the abelian subalgebra of that dimension.

> mas:=proc(n)

> local L,M,P,i,Q;

> L:={};M:={};P:={};i:=n;Q:={X[1,1]};

> while i>iquo(n,2) do

> L:={op(L),add_mas(i)};M:={op(M),remove_mas(i,n)};i:=i-1;P:=L minus M;

> end do;

> for j from 2 to n do Q:={op(Q)+X[j,j]}; end do;

> Q:=P union Q;

> return {Q,nops(Q)};

> end proc;

5 Computational study

To conclude this paper, we summarize some computational data related to the
algorithm previously implemented. The implementation was programmed by
using MAPLE 12 or higher and was run in an Intel Core 2 Duo T 5600 with a
1.83 GHz processor and 2.00 GB of RAM. Table 1 shows both the computing
time and the used used memory to return the outputs in terms of the value n
inserted as input.

Table 1: Computing time and used memory.
Input (n) dim(hn) Comp. time Used memory

2 3 0 s 0 MB
50 1275 0 s 0 MB
100 5050 0.046 s 3.31 MB
150 11325 0.109 s 5.69 MB
200 20100 0.266 s 7.56 MB
250 31375 0.562 s 11.88 MB
300 45150 0.969 s 15.19 MB
350 61425 1.609 s 16.31 MB
400 80200 2.453 s 18.75 MB
450 101475 3.641 s 24.06 MB
500 125250 5.468 s 40.99 MB
600 180300 9.796 s 63.55 MB
700 245350 16.407 s 101.8 MB
800 320400 27 s 157.04 MB
900 405450 42.205 s 271.45 MB
1000 500500 59.266 s 353.81 MB
1100 605550 83.876 s 423.55 MB
1250 781875 156.641 s 645.26 MB
1500 1125750 303.499 s 1071.24 MB
1750 1532125 522.061 s 1701.19 MB

As we can observe in Table 1, computations have been carried out for n <
2000, obtaining both the maximal abelian dimension α(hn) and the abelian
subalgebra of this dimension. The computing time is apparently doubling
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when the order n increases fifty units. In this way, for n = 1000, the routine
runs about 1 minute to compute the basis of a maximal abelian subalgebra
of h1000.

Let us note that the computational data shown in Table 1 provides sig-
nificant improvements to the computation of the maximal abelian dimension
of hn and its abelian subalgebras of this dimension. This is so because the
algorithm introduced by Ceballos et al. [8] to compute both objects for an
arbitrary Lie algebras provides worse computing times. In this way, for Lie
algebras of dimension 11, that algorithm requires of running during 1 minute.
Moreover, if we consider Lie algebras of dimension 13, the computing time
increases up to 805 seconds. Table 1 shows that the computing time of the
present algorithm is lower than 1 minute for hn with n ≤ 1000 (i.e. the
dimension is 500,500). Moreover, no value of n in Table 1 requires of comput-
ing time being higher that 525 seconds (and we are considering Lie algebras
of dimension 1,532,125). Consequently, the algorithm shown here presents a
lower complexity and is more efficient for carrying out the computations when
considering a Lie algebra hn.

For order closer to 2000, some problems appear in relation with an insuf-
ficient computational capacity for the computer. These problems entail that
the implementation cannot finish the computations involved for n and the
routine cannot return us the corresponding outputs. Indeed, these problems
are motivated by the very high capacity of memory (almost 2 GB) needed for
the computations. In any case, it does not suppose a serious problem because
the dimension of the Lie algebra h2000 is about 2 · 106 (which is not useful in
practice).

Now, we show some brief statistics about the relationship between the
computing time and the memory used by the algorithm to compute a maximal
abelian subalgebra of hn in terms of the order n.

In Figure 1, we can observe how the used memory works with respect to the
computing time, giving a graphic representation of their dependency relation.
This is given by a very strong positive linear correlation.

Figure 2 shows how the computational time and the used memory is chang-
ing as a function of the matrix order n of hn. Note that the used memory
increases more quickly than the computational time. Moreover, both of them
show an exponential-type behavior.

Finally, Figure 3 represents the frequency diagram for the quotients be-
tween used memory and computing time. In this case, the behavior of these
quotients resembles a negative exponential function.
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Figure 1: Memory used depending on computing time.

Figure 2: Computing time and used memory with respect to order n.

Figure 3: Frequency diagram for quotients used memory/computational time.
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