ON 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

Hojjat Mostafanasab, Ece Yetkin, Ünsal Tekir and Ahmad Yousefian Darani*

Abstract

All rings are commutative with $1 \neq 0$, and all modules are unital. The purpose of this paper is to investigate the concept of 2 -absorbing primary submodules generalizing 2 -absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever $a, b \in R$ and $m \in M$ and $a b m \in N$, then $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in$ $\left(N:_{R} M\right)$. It is shown that a proper submodule N of M is a 2 -absorbing primary submodule if and only if whenever $I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M, then $I_{1} I_{2} \subseteq\left(N:_{R} M\right)$ or $I_{1} K \subseteq M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M-\operatorname{rad}(N)$. We prove that for a submodule N of an R-module M if $M-\operatorname{rad}(N)$ is a prime submodule of M, then N is a 2 -absorbing primary submodule of M. If N is a 2 -absorbing primary submodule of a finitely generated multiplication R-module M, then $\left(N:_{R} M\right)$ is a 2-absorbing primary ideal of R and $M-\operatorname{rad}(N)$ is a 2-absorbing submodule of M.

1 Introduction and Preliminaries

Throughout this paper all rings are commutative with a nonzero identity and all modules are considered to be unitary. Prime submodules have an important

[^0]role in the theory of modules over commutative rings. Let M be a module over a commutative ring R. A prime (resp. primary) submodule is a proper submodule N of M with the property that for $a \in R$ and $m \in M, a m \in N$ implies that $m \in N$ or $a \in\left(N:_{R} M\right)$ (resp. $a^{k} \in\left(N:_{R} M\right)$ for some positive integer $k)$. In this case $p=\left(N:_{R} M\right)$ (resp. $\left.p=\sqrt{\left(N:_{R} M\right)}\right)$ is a prime ideal of R. There are several ways to generalize the concept of prime submodules. Weakly prime submodules were introduced by Ebrahimi Atani and Farzalipour in [16]. A proper submodule N of M is weakly prime if for $a \in R$ and $m \in M$ with $0 \neq a m \in N$, either $m \in N$ or $a \in\left(N:_{R} M\right)$. Behboodi and Koohi in [13] defined another class of submodules and called it weakly prime. Their paper is on the basis of some recent papers devoted to this new class of submodules. Let R be a ring and M an R-module. A proper submodule N of M is said to be weakly prime when for $a, b \in R$ and $m \in M, a b m \in N$ implies that $a m \in N$ or $b m \in N$. To avoid the ambiguity, Behboodi renamed this concept and called submodules introduced in [13], classical prime submodule.

Badawi in [9] generalized the concept of prime ideals in a different way. He defined a nonzero proper ideal I of R to be a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. This definition can obviously be made for any ideal of R. This concept has a generalization, called weakly 2 -absorbing ideals, which has studied in [10]. A proper ideal I of R to be a weakly 2-absorbing ideal of R if whenever $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. Anderson and Badawi [6] generalized the concept of 2-absorbing ideals to n-absorbing ideals. According to their definition, a proper ideal I of R is called an n-absorbing (resp. strongly n-absorbing) ideal if whenever $x_{1} \cdots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$ (resp. $I_{1} \cdots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R), then there are n of the x_{i} 's (resp. n of the I_{i} 's) whose product is in I. They proved that a proper ideal I of R is 2-absorbing if and only if I is strongly 2 -absorbing.

In [26], the concept of 2 -absorbing and weakly 2 -absorbing ideals generalized to submodules of a module over a commutative ring. Let M be an R-module and N a proper submodule of $M . N$ is said to be a 2-absorbing submodule (resp. weakly 2-absorbing submodule) of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in N$ (resp. $0 \neq a b m \in N$), then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. Badawi et. al. in [11] introduced the concept of 2-absorbing primary ideals, where a proper ideal I of R is called 2-absorbing primary if whenever $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$.

Let R be a ring, M an R-module and N a submodule of M. We will denote by $\left(N:_{R} M\right)$ the residual of N by M, that is, the set of all $r \in R$ such that $r M \subseteq N$. The annihilator of M which is denoted by $\operatorname{ann}_{R}(M)$ is $\left(0:_{R} M\right)$. An R-module M is called a multiplication module if every submodule N of M has
the form $I M$ for some ideal I of R. Note that, since $I \subseteq\left(N:_{R} M\right)$ then $N=$ $I M \subseteq\left(N:_{R} M\right) M \subseteq N$. So that $N=\left(N:_{R} M\right) M$ [17]. Finitely generated faithful multiplication modules are cancellation modules [25, Corollary to Theorem 9], where an R-module M is defined to be a cancellation module if $I M=J M$ for ideals I and J of R implies $I=J$. It is well-known that if R is a commutative ring and M a nonzero multiplication R-module, then every proper submodule of M is contained in a maximal submodule of M and K is a maximal submodule of M if and only if there exists a maximal ideal \mathfrak{m} of R such that $K=\mathfrak{m} M$ [17, Theorem 2.5]. If M is a finitely generated faithful multiplication R-module (hence cancellation), then it is easy to verify that $\left(I N:_{R} M\right)=I\left(N:_{R} M\right)$ for each submodule N of M and each ideal I of R. For a submodule N of M, if $N=I M$ for some ideal I of R, then we say that I is a presentation ideal of N. Clearly, every submodule of M has a presentation ideal if and only if M is a multiplication module. Let N and K be submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product of N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. Then by [3, Theorem 3.4], the product of N and K is independent of presentations of N and K. Moreover, for $a, b \in M$, by $a b$, we mean the product of $R a$ and $R b$. Clearly, $N K$ is a submodule of M and $N K \subseteq N \cap K$ (see [3]). Let N be a proper submodule of a nonzero R-module M. Then the M-radical of N, denoted by $M-\operatorname{rad}(N)$, is defined to be the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then we say $M-\operatorname{rad}(N)=M$. It is shown in [17, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then $M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M$. In this paper we define the concept of 2 -absorbing primary submodules. We give some basic results of this class of submodules and discuss on the relations among 2-absorbing ideals, 2 -absorbing submodules, 2 -absorbing primary ideals and 2 -absorbing primary submodules.

2 Properties of 2-absorbing primary submodules

Definition 2.1. A proper submodule N of an R-module M is called a 2 absorbing primary submodule (resp. weakly 2-absorbing primary submodule) of M if whenever $a, b \in R$ and $m \in M$ and $a b m \in N($ resp. $0 \neq a b m \in N)$, then $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$.
Example 2.2. Let p be a fixed prime integer and $N_{0}=\mathbb{N} \cup\{0\}$. Each proper \mathbb{Z}-submodule of $\mathbb{Z}\left(p^{\infty}\right)$ is of the form $G_{t}=\left\langle 1 / p^{t}+\mathbb{Z}\right\rangle$ for some $t \in N_{0}$. In [15, Example 1] it was shown that every submodule G_{t} is not primary. For each $t \in N_{0},\left(G_{t}: \mathbb{Z} \mathbb{Z}\left(p^{\infty}\right)\right)=0$. Note that $p^{2}\left(\frac{1}{p^{t+2}}+\mathbb{Z}\right)=\frac{1}{p^{t}}+\mathbb{Z} \in G_{t}$, but neither $p^{2} \in\left(G_{t}: \mathbb{Z} \mathbb{Z}\left(p^{\infty}\right)\right)=0$ nor $p\left(\frac{1}{p^{t+2}}+\mathbb{Z}\right) \in G_{t}$. Hence $\mathbb{Z}\left(p^{\infty}\right)$ has
no 2-absorbing submodule. Since every prime submodule is 2 -absorbing, then $\mathbb{Z}\left(p^{\infty}\right)$ has no prime submodule. Therefore $\mathbb{Z}\left(p^{\infty}\right) \operatorname{-rad}\left(G_{t}\right)=\mathbb{Z}\left(p^{\infty}\right)$, and so G_{t} is a 2 -absorbing primary submodule of $\mathbb{Z}\left(p^{\infty}\right)$.

Theorem 2.3. Let N be a proper submodule of an R-module M. Then the following conditions are equivalent:

1. N is a 2-absorbing primary submodule of M;
2. For every elements $a, b \in R$ such that $a b \notin\left(N:_{R} M\right),\left(N:_{M} a b\right) \subseteq(M-$ $\left.\operatorname{rad}(N):_{M} a\right) \cup\left(M-\operatorname{rad}(N):_{M} b\right) ;$
3. For every elements $a, b \in R$ such that $a b \notin\left(N:_{R} M\right),\left(N:_{M} a b\right) \subseteq(M-$ $\left.\operatorname{rad}(N):_{M} a\right)$ or $\left(N:_{M} a b\right) \subseteq\left(M-\operatorname{rad}(N):_{M} b\right)$.

Proof. (1) $\Rightarrow(2)$ Suppose that $a, b \in R$ such that $a b \notin\left(N:_{R} M\right)$. Let $m \in$ $\left(N:_{M} a b\right)$. Then $a b m \in N$, and so either $m a \in M-r a d(N)$ or $b m \in M$ $\operatorname{rad}(N)$. Therefore either $m \in\left(M-\operatorname{rad}(N):_{M} a\right)$ or $m \in\left(M-\operatorname{rad}(N):_{M} b\right)$. Hence $\left(N:_{M} a b\right) \subseteq\left(M-r a d(N):_{M} a\right) \cup\left(M-r a d(N):_{M} b\right)$.
$(2) \Rightarrow(3)$ Notice to the fact that if a submodule (a subgroup) is a subset of the union of two submodules (two subgroups), then it is a subset of one of them. Thus we have $\left(N:_{M} a b\right) \subseteq\left(M-r a d(N):_{M} a\right)$ or $\left(N:_{M} a b\right) \subseteq(M-$ $\left.\operatorname{rad}(N):_{M} b\right)$.
$(3) \Rightarrow(1)$ is straightforward.
Lemma 2.4. Let M be a finitely generated multiplication R-module. Then for any submodule N of $M, \sqrt{\left(N:_{R} M\right)}=\left(M-\operatorname{rad}(N):_{R} M\right)$.

Proof. By [21, Theorem 4], $\left(M-\operatorname{rad}(N):_{R} M\right) \subseteq \sqrt{\left(N:_{R} M\right)}$. Now we prove the other containment without any assumption on M. Let K be a prime submodule of M containing N. Then clearly $(K: M)$ is a prime ideal that contains $(N: M)$. Therefore $\sqrt{\left(N:_{R} M\right)} \subseteq(K: M)$, so $\sqrt{\left(N:_{R} M\right)} \subseteq(M-$ $\left.\operatorname{rad}(N):_{R} M\right)$.

Proposition 2.5. Let M be a finitely generated multiplication R-module and N be a submodule of M. Then $M-r a d(N)$ is a primary submodule of M if and only if $M-\operatorname{rad}(N)$ is a prime submodule of M.

Proof. Suppose that $M-\operatorname{rad}(N)$ is a primary submodule of M. Let $a \in R$ and $m \in M$ be such that $a m \in M-\operatorname{rad}(N)$ and $m \notin M-\operatorname{rad}(N)$. Since $M-\operatorname{rad}(N)$ is primary, it follows $a \in \sqrt{\left(M-\operatorname{rad}(N):_{R} M\right)}=\sqrt{\sqrt{\left(N:_{R} M\right)}}=$
$\sqrt{\left(N:_{R} M\right)}=\left(M-\operatorname{rad}(N):_{R} M\right)$, by Lemma 2.4. Thus $M-\operatorname{rad}(N)$ is a prime submodule of M. The converse part is clear.

Theorem 2.6. Let M be a finitely generated multiplication R-module. If N is a 2-absorbing primary submodule of M, then

1. $\left(N:_{R} M\right)$ is a 2-absorbing primary ideal of R.
2. $M-\operatorname{rad}(N)$ is a 2-absorbing submodule of M.

Proof. (1) Let $a, b, c \in R$ be such that $a b c \in\left(N:_{R} M\right)$, $a c \notin \sqrt{\left(N:_{R} M\right)}$ and $b c \notin \sqrt{\left(N:_{R} M\right)}$. Since, by Lemma 2.4, $\sqrt{\left(N:_{R} M\right)}=\left(M-\operatorname{rad}(N):_{R} M\right)$, there exist $m_{1}, m_{2} \in M$ such that $a c m_{1} \notin M-\operatorname{rad}(N)$ and $b c m_{2} \notin M-\operatorname{rad}(N)$. But $a b\left(c m_{1}+c m_{2}\right) \in N$, because $a b c \in\left(N:_{R} M\right)$. So $a\left(c m_{1}+c m_{2}\right) \in M$ $\operatorname{rad}(N)$ or $b\left(c m_{1}+c m_{2}\right) \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$, since N is 2absorbing primary. If $a b \in\left(N:_{R} M\right)$, then we are done. Thus assume that $a\left(c m_{1}+c m_{2}\right) \in M-\operatorname{rad}(N)$. So $a c m_{2} \notin M-\operatorname{rad}(N)$, because $a c m_{1} \notin M-$ $\operatorname{rad}(N)$. Therefore $a b \in\left(N:_{R} M\right)$, since N is 2-absorbing primary and $a b c m_{2} \in N$. Similarly if $b\left(c m_{1}+c m_{2}\right) \in M-\operatorname{rad}(N)$, then $a b \in\left(N:_{R} M\right)$. Consequently $\left(N:_{R} M\right)$ is a 2-absorbing primary ideal.
(2) By [11, Theorem 2.3] we have two cases.

Case 1. $\sqrt{\left(N:_{R} M\right)}=p$ is a prime ideal of R. Since M is a multiplication module, $M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M=p M$, where $p M$ is a prime submodule of M by [17, Corollary 2.11]. Hence in this case $M-\operatorname{rad}(N)$ is a 2 -absorbing submodule of M.

Case 2. $\sqrt{\left(N:_{R} M\right)}=p_{1} \cap p_{2}$, where p_{1}, p_{2} are distinct prime ideals of R that are minimal over $\left(N:_{R} M\right)$. In this case, we have $M-\operatorname{rad}(N)=$ $\sqrt{\left(N:_{R} M\right)} M=\left(p_{1} \cap p_{2}\right) M=\left(\left[p_{1}+\operatorname{ann} M\right] \cap\left[p_{2}+\operatorname{ann} M\right]\right) M=p_{1} M \cap p_{2} M$, where $p_{1} M, p_{2} M$ are prime submodules of M by [17, Corollary 2.11, 1.7]. Consequently, $M-\operatorname{rad}(N)$ is a 2 -absorbing submodule of M by [26, Theorem 2.3].

Theorem 2.7. Let M be a (resp. finitely generated multiplication) R-module and N be a submodule of M. If $M-\operatorname{rad}(N)$ is a (resp. primary) prime submodule of M, then N is a 2-absorbing primary submodule of M.
Proof. Suppose that $M-\operatorname{rad}(N)$ is a prime submodule of M. Let $a, b \in R$ and $m \in M$ be such that $a b m \in N$, am $\notin M-\operatorname{rad}(N)$. Since $M-\operatorname{rad}(N)$ is a prime submodule and $a b m \in M-\operatorname{rad}(N)$, then $b \in\left(M-\operatorname{rad}(N):_{R} M\right)$. So $b m \in M$ $\operatorname{rad}(N)$. Consequently N is a 2 -absorbing primary submodule of M. Now assume that M is a finitely generated multiplication module and $M-\operatorname{rad}(N)$ is a primary submodule of M, then $M-\operatorname{rad}(N)$ is a prime submodule of M, by Proposition 2.5. Therefore N is 2-absorbing primary.

In $[2$, Theorem $1(3)]$, it was shown that for any faithful multiplication module M not necessary finitely generated, $M-\operatorname{rad}(I M)=\sqrt{I} M$ for any ideal I of R.

Theorem 2.8. Let M be a (resp. finitely generated faithful multiplication) faithful multiplication R-module. If $M-\operatorname{rad}(N)$ is a (resp. primary) prime submodule of M, then N^{n} is a 2-absorbing primary submodule of M for every positive integer $n \geq 1$.

Proof. Assume that M is a (resp. finitely generated faithful multiplication) faithful multiplication module and $M-\operatorname{rad}(N)$ is a (resp. primary) prime submodule of M. There exists an ideal I of R such that $N=I M$. Thus

$$
M-\operatorname{rad}\left(N^{n}\right)=\sqrt{I^{n}} M=M-\operatorname{rad}(N)
$$

which is a (resp. primary) prime submodule of M. Hence for every positive integer $n \geq 1, N^{n}$ is a 2 -absorbing primary submodule of M, by Theorem 2.7.

Recall that a commutative ring R with $1 \neq 0$ is called a divided ring if for every prime ideal p of R, we have $p \subseteq x R$ for every $x \in R \backslash p$. Generalizing this idea to modules we say that an R-module M is divided if for every prime submodule N of $M, N \subseteq R m$ for all $m \in M \backslash N$.

Theorem 2.9. If M is a divided R-module, then every proper submodule of M is a 2-absorbing primary submodule of M. In particular, every proper submodule of a chained module is a 2-absorbing primary submodule.

Proof. Let N be a proper submodule of M. Since the prime submodules of a divided module are linearly ordered, we conclude that $M-\operatorname{rad}(N)$ is a prime submodule of M. Hence N is a 2-absorbing primary submodule of M by Theorem 2.7.

Remark 2.10. Let $I=\left(0:_{R} M\right)$ and $R^{\prime}=R / I$. It is easy to see that N is a 2-absorbing primary R-submodule of M if and only if N is a 2 -absorbing primary R^{\prime}-submodule of M. Also, $\left(N:_{R} M\right)$ is a 2-absorbing primary ideal of R if and only if $\left(N:_{R^{\prime}} M\right)$ is a 2-absorbing primary ideal of R^{\prime}.

Theorem 2.11. Let S be a multiplicatively closed subset of R and M be an R module. If N is a 2-absorbing primary submodule of M and $S^{-1} N \neq S^{-1} M$, then $S^{-1} N$ is a 2-absorbing primary submodule of $S^{-1} M$.

Proof. If $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \frac{m}{s} \in S^{-1} N$, then $u a_{1} a_{2} m \in N$ for some $u \in S$. It follows that $u a_{1} m \in M-\operatorname{rad}(N)$ or $u a_{2} m \in M-\operatorname{rad}(N)$ or $a_{1} a_{2} \in\left(N:_{R} M\right)$, so we conclude that $\frac{a_{1}}{s_{1}} \frac{m}{s}=\frac{u a_{1} m}{u s_{1} s} \in S^{-1}(M-\operatorname{rad}(N)) \subseteq S^{-1} M-\operatorname{rad}\left(S^{-1} N\right)$ or $\frac{a_{2}}{s_{2}} \frac{m}{s}=\frac{u a_{2} m}{u s_{2} s} \in$ $S^{-1} M-\operatorname{rad}\left(S^{-1} N\right)$ or $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}}=\frac{a_{1} a_{2}}{s_{1} s_{2}} \in S^{-1}\left(N:_{R} M\right) \subseteq\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)$.

Theorem 2.12. Let I be a 2-absorbing primary ideal of a ring R and $M a$ faithful multiplication R-module such that $\operatorname{Ass}_{R}(M / \sqrt{I} M)$ is a totally ordered set. Then abm $\in I M$ implies that $a m \in \sqrt{I} M$ or $b m \in \sqrt{I} M$ or $a b \in I$ whenever $a, b \in R$ and $m \in M$.

Proof. Let $a, b \in R, m \in M$ and $a b m \in I M$. If $\left(\sqrt{I} M:_{R} a m\right)=R$ or $\left(\sqrt{I} M:_{R} b m\right)=R$, we are done. Suppose that $\left(\sqrt{I} M:_{R} a m\right)$ and $\left(\sqrt{I} M:_{R}\right.$ $b m$) are proper ideals of R. Since $\operatorname{Ass}_{R}(M / \sqrt{I} M)$ is a totally ordered set, $\left(\sqrt{I} M:_{R} a m\right) \cup\left(\sqrt{I} M:_{R} b m\right)$ is an ideal of R, and so there is a maximal ideal \mathfrak{m} such that $\left(\sqrt{I} M:_{R} a m\right) \cup\left(\sqrt{I} M:_{R} b m\right) \subseteq \mathfrak{m}$. We have am \notin $\mathrm{T}_{\mathfrak{m}}(M):=\left\{m^{\prime} \in M:(1-x) m^{\prime}=0\right.$, for some $\left.x \in \mathfrak{m}\right\}$, since $a m \in \mathrm{~T}_{\mathfrak{m}}(M)$ implies that $(1-x) a m=0$ for some $x \in \mathfrak{m}$, thus $(1-x) a m \in \sqrt{I} M$ and so $1-x \in\left(\sqrt{I} M:_{R} a m\right) \subseteq \mathfrak{m}$, a contradiction. So by [17, Theorem 1.2], there are $x \in \mathfrak{m}$ and $m^{\prime} \in M$ such that $(1-x) M \subseteq R m^{\prime}$. Thus, $(1-x) m=r m^{\prime}$ some $r \in R$. Moreover, $(1-x) a b m=s m^{\prime}$ for some $s \in I$, because $a b m \in I M$. Hence $(a b r-s) m^{\prime}=0$ and so $(1-x)(a b r-s) M \subseteq(a b r-s) R m^{\prime}=0$. Thus $(1-x)(a b r-s)=0$, because M is faithful. Therefore, $(1-x) a b r=(1-x) s \in I$. Then $(1-x) a r \in \sqrt{I}$ or $(1-x) b \in \sqrt{I}$ or $a b r \in I$, since I is 2-absorbing primary. If $(1-x) a r \in \sqrt{I}$, then $(1-x) a \in \sqrt{I}$ or $(1-x) r \in \sqrt{I}$ or ar $\in \sqrt{I}$, because by [11, Theorem 2.2] \sqrt{I} is a 2 -absorbing ideal of R. If $(1-x) a \in \sqrt{I}$, then $(1-x) a m \in \sqrt{I} M$ and so $1-x \in\left(\sqrt{I} M:_{R} a m\right) \subseteq \mathfrak{m}$ that is a contradiction. If $(1-x) r \in \sqrt{I}$, then $(1-x)^{2} m=(1-x) r m^{\prime} \in \sqrt{I} M$ which implies that $(1-x)^{2} \in\left(\sqrt{I} M:_{R} m\right) \subseteq\left(\sqrt{I} M:_{R} a m\right) \subseteq \mathfrak{m}$, a contradiction. Similarly we can see that $(1-x) b \notin \sqrt{I}$. Now, ar $\in \sqrt{I}$ implies that $(1-x) a m=a r m^{\prime} \in$ $\sqrt{I} M$ and so $1-x \in\left(\sqrt{I} M:_{R} a m\right) \subseteq \mathfrak{m}$ which is a contradiction.
If $a r b \in I$, then $a r \in \sqrt{I}$ or $b r \in \sqrt{I}$ or $a b \in I$ which the first two cases are impossible, thus $a b \in I$.

Let R be a ring with the total quotient ring K. A nonzero ideal I of R is said to be invertible if $I I^{-1}=R$, where $I^{-1}=\{x \in K \mid x I \subseteq R\}$. The concept of an invertible submodule was introduced in [23] as a generalization of the concept of an invertible ideal. Let M be an R-module and let $S=$ $R \backslash\{0\}$. Then $T=\{t \in S \mid t m=0$ for some $m \in M$ implies $m=0\}$ is a multiplicatively closed subset of R. Let N be a submodule of M and $N^{\prime}=$ $\left\{x \in R_{T} \mid x N \subseteq M\right\}$. A submodule N is said to be invertible in M, if $N^{\prime} N=M$, [23]. A nonzero R-module M is called Dedekind provided that each nonzero submodule of M is invertible.

We recall from [20] that, a finitely generated torsion-free multiplication module M over a domain R is a Dedekind module if and only if R is a Dedekind domain.

Theorem 2.13. Let R be a Noetherian domain, M a torsion-free multiplication R-module. Then the following statements are equivalent:

1. M is a Dedekind module;

2. If N is a nonzero 2-absorbing primary submodule of M, then either $N=\mathfrak{M}^{n}$ for some maximal submodule \mathfrak{M} of M and some positive integer $n \geq 1$ or $N=\mathfrak{M}_{1}^{n} \mathfrak{M}_{2}^{m}$ for some maximal submodules \mathfrak{M}_{1} and \mathfrak{M}_{2} of M and some positive integers $n, m \geq 1$;
3. If N is a nonzero 2-absorbing primary submodule of M, then either $N=P^{n}$ for some prime submodule P of M and some positive integer $n \geq 1$ or $N=P_{1}^{n} P_{2}^{m}$ for some prime submodules P_{1} and P_{2} of M and some positive integers $n, m \geq 1$.

Proof. By the fact that every multiplication module over a Noetherian ring is a Noetherian module, M is Noetherian and so finitely generated.
$(1) \Rightarrow(2)$ Let N be a 2-absorbing primary submodule of M. There exists a proper ideal I of R such that $N=I M$. So $\left(N:_{R} M\right)=I$ is a 2 -absorbing primary ideal of R, by Theorem 2.6. Since R is a Dedekind domain, then we have either $I=\mathfrak{m}^{n}$ for some maximal ideal \mathfrak{m} of R and some positive integer $n \geq 1$ or $I=\mathfrak{m}_{1}^{n} \mathfrak{m}_{2}^{m}$ for some maximal ideals \mathfrak{m}_{1} and \mathfrak{m}_{2} of R and some positive integers $n, m \geq 1$, by [9, Theorem 2.11]. Thus, either $N=\mathfrak{m}^{n} M=(\mathfrak{m} M)^{n}$ or $N=\left(\mathfrak{m}_{1} M\right)^{n}\left(\mathfrak{m}_{2} M\right)^{m}$ as desired.
$(2) \Rightarrow(3)$ is clear.
$(3) \Rightarrow(1)$ It is sufficient to show that R is a Dedekind domain, for this let \mathfrak{m} be a maximal ideal of R. Let I be an ideal of R such that $\mathfrak{m}^{2} \subset I \subset \mathfrak{m}$. So $\sqrt{I}=\mathfrak{m}$ and then $M-\operatorname{rad}(I M)=\mathfrak{m} M$, since M is a faithful multiplication R-module. Then $I M$ is a 2 -absorbing primary submodule of M, Theorem 2.7. By assumption, either $I M=P^{n}$ for some prime submodule P of M and some positive integer $n \geq 1$ or $I M=P_{1}^{n} P_{2}^{m}$ for some prime submodules P_{1} and P_{2} of M and some positive integers $n, m \geq 1$. Now, since M is cancellation, either $I=\mathfrak{p}^{n}$ for some prime ideal \mathfrak{p} of R or $I=\mathfrak{p}_{1}^{n} \mathfrak{p}_{2}^{m}$ for some prime ideals \mathfrak{p}_{1} and \mathfrak{p}_{2} of R, which any two cases have a contradiction. Hence there are no ideals properly between \mathfrak{m}^{2} and \mathfrak{m}. Consequently R is a Dedekind domain by [19, Theorem 39.2, p. 470].

Proposition 2.14. Let M be a multiplication R-module and K, N be submodules of M. Then

1. $\sqrt{\left(K N:_{R} M\right)}=\sqrt{\left(K:_{R} M\right)} \cap \sqrt{\left(N:_{R} M\right)}$.
2. $M-\operatorname{rad}(K N)=M-\operatorname{rad}(K) \cap M-\operatorname{rad}(N)$.
3. $M-\operatorname{rad}(K \cap N)=M-\operatorname{rad}(K) \cap M-\operatorname{rad}(N)$.

Proof. (1) By hypothesis there exist ideals I, J of R such that $K=I M$ and $N=J M$. Now assume $r \in \sqrt{\left(K:_{R} M\right)} \cap \sqrt{\left(N:_{R} M\right)}$. Therefore there exist positive integers m, n such that $r^{m} M \subseteq I M$ and $r^{n} M \subseteq J M$. Hence $r^{m+n} M \subseteq r^{m} J M \subseteq I J M=K N$. So $r \in \sqrt{\left(K N:_{R} M\right)}$. Consequently $\sqrt{\left(K:_{R} M\right)} \cap \sqrt{\left(N:_{R} M\right)} \subseteq \sqrt{\left(K N:_{R} M\right)}$. The other inclusion trivially holds.
(2) By part (1) and [17, Corollary 1.7],

$$
\begin{aligned}
M-\operatorname{rad}(K N) & =\sqrt{\left(K N:_{R} M\right)} M=\left(\sqrt{\left(K:_{R} M\right)} \cap \sqrt{\left(N:_{R} M\right)}\right) M \\
& =\left(\left[\sqrt{\left(K:_{R} M\right)}+\operatorname{ann} M\right] \cap\left[\sqrt{\left(N:_{R} M\right)}+\operatorname{annM}\right]\right) M \\
& =\sqrt{\left(K:_{R} M\right)} M \cap \sqrt{\left(N:_{R} M\right)} M \\
& =M-\operatorname{rad}(K) \cap M-\operatorname{rad}(N) .
\end{aligned}
$$

(3) See $[1$, Theorem 15(3)].

Theorem 2.15. Let M be a multiplication R-module and $N_{1}, N_{2}, \ldots, N_{n}$ be 2-absorbing primary submodules of M with the same M-radical. Then $N=$ $\cap_{i=1}^{n} N_{i}$ is a 2-absorbing primary submodule of M.

Proof. Notice that $M-\operatorname{rad}(N)=\cap_{i=1}^{n} M-\operatorname{rad}\left(N_{i}\right)$, by Proposition 2.14. Suppose that $a b m \in N$ for some $a, b \in R$ and $m \in M$ and $a b \notin\left(N:_{R} M\right)$. Then $a b \notin\left(N_{i}:_{R} M\right)$ for some $1 \leq i \leq n$. Hence $a m \in M-\operatorname{rad}\left(N_{i}\right)$ or $b m \in M$ $\operatorname{rad}\left(N_{i}\right)$.

Lemma 2.16. Let M be an R-module and N a 2-absorbing primary submodule of M. Suppose that $a b K \subseteq N$ for some elements $a, b \in R$ and some submodule K of M. If $a b \notin\left(N:_{R} M\right)$, then $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$.

Proof. Suppose that $a K \nsubseteq M-\operatorname{rad}(N)$ and $b K \nsubseteq M-\operatorname{rad}(N)$. Then $a k_{1} \notin M$ $\operatorname{rad}(N)$ and $b k_{2} \notin M-\operatorname{rad}(N)$ for some $k_{1}, k_{2} \in K$. Since $a b k_{1} \in N$ and $a b \notin\left(N:_{R} M\right)$ and $a k_{1} \notin M-\operatorname{rad}(N)$, we have $b k_{1} \in M-\operatorname{rad}(N)$. Since $a b k_{2} \in N$ and $a b \notin\left(N:_{R} M\right)$ and $b k_{2} \notin M-\operatorname{rad}(N)$, we have $a k_{2} \in M-\operatorname{rad}(N)$. Now, since $a b\left(k_{1}+k_{2}\right) \in N$ and $a b \notin\left(N:_{R} M\right)$, we have $a\left(k_{1}+k_{2}\right) \in M$ $\operatorname{rad}(N)$ or $b\left(k_{1}+k_{2}\right) \in M-\operatorname{rad}(N)$. Suppose that $a\left(k_{1}+k_{2}\right)=a k_{1}+a k_{2} \in M-$ $\operatorname{rad}(N)$. Since $a k_{2} \in M-\operatorname{rad}(N)$, we have $a k_{1} \in M-\operatorname{rad}(N)$, a contradiction. Suppose that $b\left(k_{1}+k_{2}\right)=b k_{1}+b k_{2} \in M-\operatorname{rad}(N)$. Since $b k_{1} \in M-\operatorname{rad}(N)$, we have $b k_{2} \in M-\operatorname{rad}(N)$, a contradiction again. Thus $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$.

The following theorem offers a characterization of 2-absorbing primary submodules.

Theorem 2.17. Let M be an R-module and N be a proper submodule of M. The following conditions are equivalent:

1. N is a 2-absorbing primary submodule of M;
2. If $I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M, then either $I_{1} I_{2} \subseteq\left(N:_{R} M\right)$ or $I_{1} K \subseteq M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M-\operatorname{rad}(N)$;
3. If $N_{1} N_{2} N_{3} \subseteq N$ for some submodules N_{1}, N_{2} and N_{3} of M, then either $N_{1} N_{2} \subseteq N$ or $N_{1} N_{3} \subseteq M-\operatorname{rad}(N)$ or $N_{2} N_{3} \subseteq M-\operatorname{rad}(N)$.

Proof. (1) \Rightarrow (2) Suppose that N is a 2-absorbing primary submodule of M and $I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M and $I_{1} I_{2} \nsubseteq\left(N:_{R} M\right)$. We show that $I_{1} K \subseteq M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M$ $\operatorname{rad}(N)$. Suppose that $I_{1} K \nsubseteq M-\operatorname{rad}(N)$ and $I_{2} K \nsubseteq M-\operatorname{rad}(N)$. Then there are $a_{1} \in I_{1}$ and $a_{2} \in I_{2}$ such that $a_{1} K \nsubseteq M-\operatorname{rad}(N)$ and $a_{2} K \nsubseteq M-\operatorname{rad}(N)$. Since $a_{1} a_{2} K \subseteq N$ and neither $a_{1} K \subseteq M-\operatorname{rad}(N)$ nor $a_{2} K \subseteq M-\operatorname{rad}(N)$, we have $a_{1} a_{2} \in\left(N:_{R} M\right)$ by Lemma 2.16.
Since $I_{1} I_{2} \nsubseteq\left(N:_{R} M\right)$, we have $b_{1} b_{2} \notin\left(N:_{R} M\right)$ for some $b_{1} \in I_{1}$ and $b_{2} \in I_{2}$. Since $b_{1} b_{2} K \subseteq N$ and $b_{1} b_{2} \notin\left(N:_{R} M\right)$, we have $b_{1} K \subseteq M-\operatorname{rad}(N)$ or $b_{2} K \subseteq M-\operatorname{rad}(N)$ by Lemma 2.16. We consider three cases.

Case 1. Suppose that $b_{1} K \subseteq M-\operatorname{rad}(N)$ but $b_{2} K \nsubseteq M-\operatorname{rad}(N)$. Since $a_{1} b_{2} K \subseteq N$ and neither $b_{2} K \subseteq M-\operatorname{rad}(N)$ nor $a_{1} K \subseteq M-\operatorname{rad}(N)$, we conclude that $a_{1} b_{2} \in\left(N:_{R} M\right)$ by Lemma 2.16. Since $b_{1} K \subseteq M-\operatorname{rad}(N)$ but $a_{1} K \nsubseteq M$ $\operatorname{rad}(N)$, we conclude that $\left(a_{1}+b_{1}\right) K \nsubseteq M-\operatorname{rad}(N)$. Since $\left(a_{1}+b_{1}\right) b_{2} K \subseteq N$ and neither $b_{2} K \subseteq M-\operatorname{rad}(N)$ nor $\left(a_{1}+b_{1}\right) K \subseteq M-\operatorname{rad}(N)$, we conclude that $\left(a_{1}+b_{1}\right) b_{2} \in\left(N:_{R} M\right)$ by Lemma 2.16. Since $\left(a_{1}+b_{1}\right) b_{2}=a_{1} b_{2}+b_{1} b_{2} \in$ $\left(N:_{R} M\right)$ and $a_{1} b_{2} \in\left(N:_{R} M\right)$, we conclude that $b_{1} b_{2} \in\left(N:_{R} M\right)$, a contradiction.

Case 2. Suppose that $b_{2} K \subseteq M-\operatorname{rad}(N)$ but $b_{1} K \nsubseteq M-\operatorname{rad}(N)$. Similar to the previous case we reach to a contradiction.

Case 3. Suppose that $b_{1} K \subseteq M-\operatorname{rad}(N)$ and $b_{2} K \subseteq M-\operatorname{rad}(N)$. Since $b_{2} K \subseteq M-\operatorname{rad}(N)$ and $a_{2} K \nsubseteq M-\operatorname{rad}(N)$, we conclude that $\left(a_{2}+b_{2}\right) K \nsubseteq$ $M-\operatorname{rad}(N)$. Since $a_{1}\left(a_{2}+b_{2}\right) K \subseteq N$ and neither $a_{1} K \subseteq M-\operatorname{rad}(N)$ nor $\left(a_{2}+b_{2}\right) K \subseteq M-\operatorname{rad}(N)$, we conclude that $a_{1}\left(a_{2}+b_{2}\right)=a_{1} a_{2}+a_{1} b_{2} \in$ $\left(N:_{R} M\right)$ by Lemma 2.16. Since $a_{1} a_{2} \in\left(N:_{R} M\right)$ and $a_{1} a_{2}+a_{1} b_{2} \in$ $\left(N:_{R} M\right)$, we conclude that $a_{1} b_{2} \in\left(N:_{R} M\right)$. Since $b_{1} K \subseteq M-\operatorname{rad}(N)$ and $a_{1} K \nsubseteq M-\operatorname{rad}(N)$, we conclude that $\left(a_{1}+b_{1}\right) K \nsubseteq M-\operatorname{rad}(N)$. Since $\left(a_{1}+b_{1}\right) a_{2} K \subseteq N$ and neither $a_{2} K \subseteq M-\operatorname{rad}(N)$ nor $\left(a_{1}+b_{1}\right) K \subseteq M$ $\operatorname{rad}(N)$, we conclude that $\left(a_{1}+b_{1}\right) a_{2}=a_{1} a_{2}+b_{1} a_{2} \in\left(N:_{R} M\right)$ by Lemma 2.16. Since $a_{1} a_{2} \in\left(N:_{R} M\right)$ and $a_{1} a_{2}+b_{1} a_{2} \in\left(N:_{R} M\right)$, we conclude that $b_{1} a_{2} \in\left(N:_{R} M\right)$. Now, since $\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) K \subseteq N$ and neither $\left(a_{1}+b_{1}\right) K \subseteq M-\operatorname{rad}(N)$ nor $\left(a_{2}+b_{2}\right) K \subseteq M-\operatorname{rad}(N)$, we conclude that
$\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)=a_{1} a_{2}+a_{1} b_{2}+b_{1} a_{2}+b_{1} b_{2} \in\left(N:_{R} M\right)$ by Lemma 2.16. Since $a_{1} a_{2}, a_{1} b_{2}, b_{1} a_{2} \in\left(N:_{R} M\right)$, we have $b_{1} b_{2} \in\left(N:_{R} M\right)$, a contradiction. Consequently $I_{1} K \subseteq M-\operatorname{rad}(N)$ or $I_{2} K \subseteq M-\operatorname{rad}(N)$.
$(2) \Rightarrow(1)$ is trivial.
$(2) \Rightarrow(3)$ Let $N_{1} N_{2} N_{3} \subseteq N$ for some submodules N_{1}, N_{2} and N_{3} of M such that $N_{1} N_{2} \nsubseteq N$. Since M is multiplication, there are ideals I_{1}, I_{2} of R such that $N_{1}=I_{1} M, N_{2}=I_{2} M$. Clearly $I_{1} I_{2} N_{3} \subseteq N$ and $I_{1} I_{2} \nsubseteq\left(N:_{R}\right.$ $M)$. Therefore $I_{1} N_{3} \subseteq M-\operatorname{rad}(N)$ or $I_{2} N_{3} \subseteq M-\operatorname{rad}(N)$, which implies that $N_{1} N_{3} \subseteq M-\operatorname{rad}(N)$ or $N_{2} N_{3} \subseteq M-\operatorname{rad}(N)$.
$(3) \Rightarrow(2)$ Suppose that $I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M. It is sufficient to set $N_{1}:=I_{1} M, N_{2}:=I_{2} M$ and $N_{3}=K$ in part (3).

Theorem 2.18. Let M be a multiplication R-module and N a submodule of M. If $\left(N:_{R} M\right)$ is a 2-absorbing primary ideal of R, then N is a 2-absorbing primary submodule of M.

Proof. Let $I_{1} I_{2} K \subseteq N$ for some ideals I_{1}, I_{2} of R and some submodule K of M. Since M is multiplication, then there is an ideal I_{3} of R such that $K=$ $I_{3} M$. Hence $I_{1} I_{2} I_{3} \subseteq\left(N:_{R} M\right)$ which implies that either $I_{1} I_{2} \subseteq\left(N:_{R} M\right)$ or $I_{1} I_{3} \subseteq \sqrt{\left(N:_{R} M\right)}$ or $I_{2} I_{3} \subseteq \sqrt{\left(N:_{R} M\right)}$, by [11, Theorem 2.19]. If $I_{1} I_{2} \subseteq$ $\left(N:_{R} M\right)$, then we are done. So, suppose that $I_{1} I_{3} \subseteq \sqrt{\left(N:_{R} M\right)}$. Thus $I_{1} I_{3} M=I_{1} K \subseteq \sqrt{\left(N:_{R} M\right)} M=M-\operatorname{rad}(N)$. Similary if $I_{2} I_{3} \subseteq \sqrt{\left(N:_{R} M\right)}$, then we have $I_{2} K \subseteq M-\operatorname{rad}(N)$. It completes the proof, by Theorem 2.17.

The following example shows that Theorem 2.18 is not satisfied in general.
Example 2.19. Consider the \mathbb{Z}-module $M=\mathbb{Z} \times \mathbb{Z}$ and $N=6 \mathbb{Z} \times 0$ a submodule of M. Observe that $\mathbb{Z} \times 0,2 \mathbb{Z} \times \mathbb{Z}$ and $3 \mathbb{Z} \times \mathbb{Z}$ are some of the prime submodules of M containing N. Also $(N: \mathbb{Z} M)=0$ is a 2-absorbing primary ideal of \mathbb{Z}. On the other hand, since 2.3. $(1,0)=(6,0) \in N, 2.3 \notin(N: \mathbb{Z} M)$, $2 .(1,0)=(2,0) \notin M-\operatorname{rad}(N) \subseteq(\mathbb{Z} \times 0) \cap(2 \mathbb{Z} \times \mathbb{Z}) \cap(3 \mathbb{Z} \times \mathbb{Z})=6 \mathbb{Z} \times 0=N$ and $3 .(1,0)=(3,0) \notin M-\operatorname{rad}(N)=N$, so N is not a 2-absorbing primary submodule of M.

Theorem 2.20. Let M be a multiplication R-module and N_{1} and N_{2} be primary submodules of M. Then $N_{1} \cap N_{2}$ is a 2-absorbing primary submodule of M. If in addition M is finitely generated faithful, then $N_{1} N_{2}$ is a 2-absorbing primary submodule of M.

Proof. Since N_{1} and N_{2} are primary submodules of M, then $\left(\begin{array}{ll}N_{1}:_{R} & M\end{array}\right)$ and $\left(N_{2}:_{R} M\right)$ are primary ideals of R. Hence $\left(N_{1}:_{R} M\right)\left(N_{2}:_{R} M\right)$ and $\left(N_{1} \cap N_{2}:_{R} M\right)=\left(N_{1}:_{R} M\right) \cap\left(N_{2}:_{R} M\right)$ are 2-absorbing primary ideals
of R, by [11, Theorem 2.4]. Therefore, Theorem 2.18 implies that $N_{1} \cap N_{2}$ is a 2 -absorbing primary submodule of M. If M is a finitely generated faithful multiplication R-module, then $\left(N_{1} N_{2}:_{R} M\right)=\left(N_{1}:_{R} M\right)\left(N_{2}:_{R} M\right)$. So, again by Theorem 2.18 we deduce that $N_{1} N_{2}$ is a 2 -absorbing primary submodule of M.

Let M be a multiplication R-module and N a primary submodule of M. We know that $\sqrt{\left(N:_{R} M\right)}$ is a prime ideal of R and so $P=M-\operatorname{rad}(N)=$ $\sqrt{\left(N:_{R} M\right)} M$ is a prime submodule of M. In this case we say that N is a P-primary submodule of M.

Corollary 2.21. Let M be a multiplication R-module and P_{1} and P_{2} be prime submodules of M. Suppose that P_{1}^{n} is a P_{1}-primary submodule of M for some positive integer $n \geq 1$ and P_{2}^{m} is a P_{2}-primary submodule of M for some positive integer $m \geq 1$.

1. $P_{1}^{n} \cap P_{2}^{m}$ is a 2-absorbing primary submodule of M.
2. If in addition M is finitely generated faithful, then $P_{1}^{n} P_{2}^{m}$ is a 2-absorbing primary submodule of M.

Theorem 2.22. Let M be a multiplication R-module and N be a submodule of M that has a primary decomposition. If $M-\operatorname{rad}(N)=\mathfrak{M}_{1} \cap \mathfrak{M}_{2}$ where \mathfrak{M}_{1} and \mathfrak{M}_{2} are two maximal submodules of M, then N is a 2-absorbing primary submodule of M.

Proof. Assume that $N=N_{1} \cap \cdots \cap N_{n}$ is a primary decomposition. By Proposition 2.14(3), $M-\operatorname{rad}(N)=M-\operatorname{rad}\left(N_{1}\right) \cap \cdots \cap M-\operatorname{rad}\left(N_{n}\right)=\mathfrak{M}_{1} \cap \mathfrak{M}_{2}$. Since $M-\operatorname{rad}\left(N_{i}\right)$'s are prime submodules of M, then $\left\{M-\operatorname{rad}\left(N_{1}\right), \ldots, M\right.$ $\left.\operatorname{rad}\left(N_{n}\right)\right\}=\left\{\mathfrak{M}_{1}, \mathfrak{M}_{2}\right\}$, by $[3$, Theorem 3.16]. Without loss of generality we may assume that for some $1 \leq t<n,\left\{M-\operatorname{rad}\left(N_{1}\right), \ldots, M-\operatorname{rad}\left(N_{t}\right)\right\}=\left\{\mathfrak{M}_{1}\right\}$ and $\left\{M-\operatorname{rad}\left(N_{t+1}\right), \ldots, M-\operatorname{rad}\left(N_{n}\right)\right\}=\left\{\mathfrak{M}_{2}\right\}$. Set $K_{1}:=N_{1} \cap \cdots \cap N_{t}$ and $K_{2}:=N_{t+1} \cap \cdots \cap N_{n}$. By [8, Lemma 1.2.2], K_{1} is an \mathfrak{M}_{1}-primary submodule and K_{2} is an \mathfrak{M}_{2}-primary submodule of M. Therefore, by Theorem 2.20, $N=K_{1} \cap K_{2}$ is 2-absorbing primary.

Lemma 2.23. ([22, Corollary 1.3]) Let M and M^{\prime} be R-modules with f : $M \rightarrow M^{\prime}$ an R-module epimorphism. If N is a submodule of M containing $\operatorname{Ker}(f)$, then $f(M-\operatorname{rad}(N))=M^{\prime}-\operatorname{rad}(f(N))$.

Theorem 2.24. Let $f: M \rightarrow M^{\prime}$ be a homomorphism of R-modules.

1. If N^{\prime} is a 2-absorbing primary submodule of M^{\prime}, then $f^{-1}\left(N^{\prime}\right)$ is a 2absorbing primary submodule of M.
2. If f is epimorphism and N is a 2-absorbing primary submodule of M containing $\operatorname{Ker}(f)$, then $f(N)$ is a 2-absorbing primary submodule of M^{\prime}.

Proof. (1) Let $a, b \in R$ and $m \in M$ such that $a b m \in f^{-1}\left(N^{\prime}\right)$. Then $a b f(m) \in$ N^{\prime}. Hence $a b \in\left(N^{\prime}:_{R} M^{\prime}\right)$ or $a f(m) \in M^{\prime}-\operatorname{rad}\left(N^{\prime}\right)$ or $b f(m) \in M^{\prime}-\operatorname{rad}\left(N^{\prime}\right)$, and thus $a b \in\left(f^{-1}\left(N^{\prime}\right):_{R} M\right)$ or $a m \in f^{-1}\left(M^{\prime}-\operatorname{rad}\left(N^{\prime}\right)\right)$ or $b m \in f^{-1}\left(M^{\prime}\right.$ $\left.\operatorname{rad}\left(N^{\prime}\right)\right)$. By using the inclusion $f^{-1}\left(M^{\prime}-\operatorname{rad}\left(N^{\prime}\right)\right) \subseteq M-\operatorname{rad}\left(f^{-1}\left(N^{\prime}\right)\right)$, we conclude that $f^{-1}\left(N^{\prime}\right)$ is a 2 -absorbing primary submodule of M.
(2) Let $a, b \in R, m^{\prime} \in M^{\prime}$ and $a b m^{\prime} \in f(N)$. By assumption there exists $m \in M$ such that $m^{\prime}=f(m)$ and so $f(a b m) \in f(N)$. Since $\operatorname{Ker}(f) \subseteq N$, we have $a b m \in N$. It implies that $a b \in\left(N:_{R} M\right)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M$ $\operatorname{rad}(N)$. Hence $a b \in\left(f(N):_{R} M^{\prime}\right)$ or $a m^{\prime} \in f(M-\operatorname{rad}(N))=M^{\prime}-\operatorname{rad}(f(N))$ or $b m^{\prime} \in f(M-\operatorname{rad}(N))=M^{\prime}-\operatorname{rad}(f(N))$. Consequently $f(N)$ is a 2-absorbing primary submodule of M^{\prime}.

As an immediate consequence of Theorem $2.24(2)$ we have the following Corollary.

Corollary 2.25. Let M be an R-module and $L \subseteq N$ be submodules of M. If N is a 2-absorbing primary submodule of M, then N / L is a 2-absorbing primary submodule of M / L.

Theorem 2.26. Let K and N be submodules of M with $K \subset N \subset M$. If K is a 2-absorbing primary submodule of M and N / K is a weakly 2-absorbing primary submodule of M / K, then N is a 2-absorbing primary submodule of M.

Proof. Let $a, b \in R, m \in M$ and $a b m \in N$. If $a b m \in K$, then $a m \in M$ $\operatorname{rad}(K) \subseteq M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(K) \subseteq M-\operatorname{rad}(N)$ or $a b \in\left(K:_{R} M\right) \subseteq$ $\left(N:_{R} M\right)$ as it is needed.
So suppose that $a b m \notin K$. Then $0 \neq a b(m+K) \in N / K$ that implies, $a(m+K) \in M / K-\operatorname{rad}(N / K)=\frac{M-\operatorname{rad}(N)}{K}$ or $b(m+K) \in M / K-\operatorname{rad}(N / K)$ or $a b \in\left(N / K:_{R} M / K\right)$. It means that $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$, which completes the proof.

Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module, for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module and each submodule of M is of the form $N=N_{1} \times N_{2}$ for some submodules N_{1} of M_{1} and N_{2} of M_{2}. In addition, if M_{i} is a multiplication R_{i}-module, for $i=1,2$, then M is a multiplication R-module. In this case, for each submodule $N=N_{1} \times N_{2}$ of M we have $M-\operatorname{rad}(N)=M_{1}-\operatorname{rad}\left(N_{1}\right) \times M_{2}-\operatorname{rad}\left(N_{2}\right)$.

Theorem 2.27. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ where M_{1} is a multiplication R_{1}-module and M_{2} is a multiplication R_{2}-module.

1. A proper submodule K_{1} of M_{1} is a 2-absorbing primary submodule if and only if $N=K_{1} \times M_{2}$ is a 2-absorbing primary submodule of M.
2. A proper submodule K_{2} of M_{2} is a 2-absorbing primary submodule if and only if $N=M_{1} \times K_{2}$ is a 2-absorbing primary submodule of M.
3. If K_{1} is a primary submodule of M_{1} and K_{2} is a primary submodule of M_{2}, then $N=K_{1} \times K_{2}$ is a 2-absorbing primary submodule of M.

Proof. (1) Suppose that $N=K_{1} \times M_{2}$ is a 2-absorbing primary submodule of M. From our hypothesis, N is proper, so $K_{1} \neq M_{1}$. Set $M^{\prime}=\frac{M}{\{0\} \times M_{2}}$. Hence $N^{\prime}=\frac{N}{\{0\} \times M_{2}}$ is a 2 -absorbing primary submodule of M^{\prime} by Corollary 2.25 . Also observe that $M^{\prime} \cong M_{1}$ and $N^{\prime} \cong K_{1}$. Thus K_{1} is a 2-absorbing primary submodule of M_{1}. Conversely, if K_{1} is a 2 -absorbing primary submodule of M_{1}, then it is clear that $N=K_{1} \times M_{2}$ is a 2-absorbing primary submodule of M.
(2) It can be easily verified similar to (1).
(3) Assume that $N=K_{1} \times K_{2}$ where K_{1} and K_{2} are primary submodules of M_{1} and M_{2}, respectively. Hence $\left(K_{1} \times M_{2}\right) \cap\left(M_{1} \times K_{2}\right)=K_{1} \times K_{2}=N$ is a 2 -absorbing primary submodule of M, by parts (1) and (2) and Theorem 2.20.

Theorem 2.28. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ be a finitely generated multiplication R-module where M_{1} is a multiplication R_{1}-module and M_{2} is a multiplication R_{2}-module. If $N=N_{1} \times N_{2}$ is a proper submodule of M, then the followings are equivalent.

1. N is a 2-absorbing primary submodule of M.
2. $N_{1}=M_{1}$ and N_{2} is a 2-absorbing primary submodule of M_{2} or $N_{2}=M_{2}$ and N_{1} is a 2-absorbing primary submodule of M_{1} or N_{1}, N_{2} are primary submodules of M_{1}, M_{2}, respectively.

Proof. (1) $\Rightarrow(2)$ Suppose that $N=N_{1} \times N_{2}$ is a 2-absorbing primary submodule of M. Then $(N: M)=\left(N_{1}: M_{1}\right) \times\left(N_{2}: M_{2}\right)$ is a 2 -absorbing primary ideal of $R=R_{1} \times R_{2}$ by Theorem 2.6. From Theorem 2.3 in [11], we have $\left(N_{1}: M_{1}\right)=R_{1}$ and $\left(N_{2}: M_{2}\right)$ is a 2-absorbing primary ideal of R_{2} or $\left(N_{2}: M_{2}\right)=R_{2}$ and $\left(N_{1}: M_{1}\right)$ is a 2-absorbing primary ideal of R_{1} or $\left(N_{1}: M_{1}\right)$ and $\left(N_{2}: M_{2}\right)$ are primary ideals of R_{1}, R_{2}, respectively. Assume that $\left(N_{1}: M_{1}\right)=R_{1}$ and $\left(N_{2}: M_{2}\right)$ is a 2 -absorbing primary ideal of R_{2}.

Thus $N_{1}=M_{1}$ and N_{2} is a 2-absorbing primary submodule of M_{2} by Theorem 2.18. Similarly if $\left(N_{2}: M_{2}\right)=R_{2}$ and $\left(N_{1}: M_{1}\right)$ is a 2 -absorbing primary ideal of R_{1}, then $N_{2}=M_{2}$ and N_{1} is a 2-absorbing primary submodule of M. And if the last case hold, then clearly we conclude that N_{1}, N_{2} are primary submodules of M_{1}, M_{2}, respectively.
$(2) \Rightarrow(1)$ It is clear from Theorem 2.27.

References

[1] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra, 36 (2008), 4620-4642.
[2] M. M. Ali, Invertiblity of Multiplication Modules III, New Zeland J. Math., 39 (2009), 193-213.
[3] R. Ameri, On the prime submodules of multiplication modules, Inter. J. Math. Math. Sci., 27 (2003), 1715-1724.
[4] D. D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36 (2008), 686-696.
[5] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831-840.
[6] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
[7] F. Anderson and K. Fuller, Rings and categories of modules. New-York: Springer-Verlag, 1992.
[8] R. B. Ash, A course in commutative algebra. University of Illinois, 2006.
[9] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417-429.
[10] A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39 (2013), 441-452.
[11] A. Badawi, Ü. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51 (4) (2014), 1163-1173.
[12] A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 174-178.
[13] M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math., 32 (2) (2004), 185-195.
[14] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra, 33 (2005), 43-49.
[15] S. Ebrahimi Atani, F. Çallialp and Ü. Tekir, A Short note on the primary submodules of multiplication modules, Inter. J. Algebra, 8 (1) (2007), 381-384.
[16] S. Ebrahimi Atani and F. Farzalipour, On weakly prime submodules, Tamk. J. Math., 38 (3) (2007), 247-252.
[17] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755-779.
[18] C. Faith, Algebra: Rings, modules and categories I, Springer-Verlag Berlin Heidelberg New York 1973.
[19] R. Gilmer, Multiplicative ideal theory. Queens Papers Pure Appl. Math. 90, Queens University, Kingston (1992).
[20] M. Khoramdel and S. Dolati Pish Hesari, Some notes on Dedekind modules, Hacettepe J. Math. Stat., 40 (2011), 627-634.
[21] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29 (1986), 37-39.
[22] R. L. McCasland and M. E. Moore, Radicals of submodules, Comm. Algebra, 19 (1991), 1327-1341.
[23] A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24 (2)(1996), 397-412.
[24] Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq., 19 (2012), 913-920.
[25] P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50 (1988), 223-235.
[26] A. Yousefian Darani and F. Soheilnia, On 2-absorbing and weakly 2absorbing submodules, Thai J. Math., 9 (2011), 577-584
[27] A. Yousefian Darani and F. Soheilnia, On n-absorbing submodules, Math. Commun., 17 (2012), 547-557.

[^1]Ece Yetkin,
Department of Mathematics,
Marmara University,
Ziverbey, Goztepe, Istanbul 34722, Turkey.
Email: ece.yetkin@marmara.edu.tr
Ünsal Tekir,
Department of Mathematics,
Marmara University,
Ziverbey, Goztepe, Istanbul 34722, Turkey.
Email: utekir@marmara.edu.tr
Ahmad Yousefian Darani,
Department of Mathematics and Applications, University of Mohaghegh Ardabili,
P. O. Box 179, Ardabil, Iran.

Email: yousefian@uma.ac.ir

[^0]: Key Words: Multiplication module, Primary submodule, Prime submodule, 2-absorbing submodule, n-absorbing submodule.

 2010 Mathematics Subject Classification: Primary 13A15; Secondary 13F05, 13G05.
 Received: 08.09.2014.
 Accepted: 20.10.2014.

[^1]: Hojjat Mostafanasab,
 Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran.

 Email: h.mostafanasab@uma.ac.ir

