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ON 2-ABSORBING PRIMARY
SUBMODULES OF MODULES OVER

COMMUTATIVE RINGS
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Abstract

All rings are commutative with 1 6= 0, and all modules are unital.
The purpose of this paper is to investigate the concept of 2-absorbing
primary submodules generalizing 2-absorbing primary ideals of rings.
Let M be an R-module. A proper submodule N of an R-module M is
called a 2-absorbing primary submodule of M if whenever a, b ∈ R and
m ∈M and abm ∈ N , then am ∈M -rad(N) or bm ∈M -rad(N) or ab ∈
(N :R M). It is shown that a proper submodule N of M is a 2-absorbing
primary submodule if and only if whenever I1I2K ⊆ N for some ideals
I1, I2 of R and some submodule K of M , then I1I2 ⊆ (N :R M) or
I1K ⊆M -rad(N) or I2K ⊆M -rad(N). We prove that for a submodule
N of an R-module M if M -rad(N) is a prime submodule of M , then
N is a 2-absorbing primary submodule of M . If N is a 2-absorbing
primary submodule of a finitely generated multiplication R-module M ,
then (N :R M) is a 2-absorbing primary ideal of R and M -rad(N) is a
2-absorbing submodule of M .

1 Introduction and Preliminaries

Throughout this paper all rings are commutative with a nonzero identity and
all modules are considered to be unitary. Prime submodules have an important
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role in the theory of modules over commutative rings. Let M be a module
over a commutative ring R. A prime (resp. primary) submodule is a proper
submodule N of M with the property that for a ∈ R and m ∈ M , am ∈ N
implies that m ∈ N or a ∈ (N :R M) (resp. ak ∈ (N :R M) for some positive
integer k). In this case p = (N :R M) (resp. p =

√
(N :R M)) is a prime ideal

of R. There are several ways to generalize the concept of prime submodules.
Weakly prime submodules were introduced by Ebrahimi Atani and Farzalipour
in [16]. A proper submodule N of M is weakly prime if for a ∈ R and m ∈M
with 0 6= am ∈ N , either m ∈ N or a ∈ (N :R M). Behboodi and Koohi in [13]
defined another class of submodules and called it weakly prime. Their paper
is on the basis of some recent papers devoted to this new class of submodules.
Let R be a ring and M an R-module. A proper submodule N of M is said
to be weakly prime when for a, b ∈ R and m ∈ M , abm ∈ N implies that
am ∈ N or bm ∈ N . To avoid the ambiguity, Behboodi renamed this concept
and called submodules introduced in [13], classical prime submodule.

Badawi in [9] generalized the concept of prime ideals in a different way. He
defined a nonzero proper ideal I of R to be a 2-absorbing ideal of R if whenever
a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. This definition can
obviously be made for any ideal of R. This concept has a generalization, called
weakly 2-absorbing ideals, which has studied in [10]. A proper ideal I of R to
be a weakly 2-absorbing ideal of R if whenever a, b, c ∈ R and 0 6= abc ∈ I, then
ab ∈ I or ac ∈ I or bc ∈ I. Anderson and Badawi [6] generalized the concept
of 2-absorbing ideals to n-absorbing ideals. According to their definition, a
proper ideal I of R is called an n-absorbing (resp. strongly n-absorbing) ideal
if whenever x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R (resp. I1 · · · In+1 ⊆ I for
ideals I1, . . . , In+1 of R), then there are n of the xi’s (resp. n of the Ii’s)
whose product is in I. They proved that a proper ideal I of R is 2-absorbing
if and only if I is strongly 2-absorbing.

In [26], the concept of 2-absorbing and weakly 2-absorbing ideals gener-
alized to submodules of a module over a commutative ring. Let M be an
R-module and N a proper submodule of M . N is said to be a 2-absorbing
submodule (resp. weakly 2-absorbing submodule) of M if whenever a, b ∈ R
and m ∈ M with abm ∈ N (resp. 0 6= abm ∈ N), then ab ∈ (N :R M)
or am ∈ N or bm ∈ N . Badawi et. al. in [11] introduced the concept of
2-absorbing primary ideals, where a proper ideal I of R is called 2-absorbing
primary if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I or ac ∈

√
I or

bc ∈
√
I.

Let R be a ring, M an R-module and N a submodule of M . We will denote
by (N :R M) the residual of N by M , that is, the set of all r ∈ R such that
rM ⊆ N . The annihilator of M which is denoted by annR(M) is (0 :R M). An
R-module M is called a multiplication module if every submodule N of M has
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the form IM for some ideal I of R. Note that, since I ⊆ (N :R M) then N =
IM ⊆ (N :R M)M ⊆ N . So that N = (N :R M)M [17]. Finitely generated
faithful multiplication modules are cancellation modules [25, Corollary to
Theorem 9], where an R-module M is defined to be a cancellation module if
IM = JM for ideals I and J of R implies I = J . It is well-known that if R
is a commutative ring and M a nonzero multiplication R-module, then every
proper submodule of M is contained in a maximal submodule of M and K is
a maximal submodule of M if and only if there exists a maximal ideal m of
R such that K = mM [17, Theorem 2.5]. If M is a finitely generated faithful
multiplication R-module (hence cancellation), then it is easy to verify that
(IN :R M) = I(N :R M) for each submodule N of M and each ideal I of
R. For a submodule N of M , if N = IM for some ideal I of R, then we
say that I is a presentation ideal of N . Clearly, every submodule of M has a
presentation ideal if and only if M is a multiplication module. Let N and K
be submodules of a multiplication R-module M with N = I1M and K = I2M
for some ideals I1 and I2 of R. The product of N and K denoted by NK is
defined by NK = I1I2M . Then by [3, Theorem 3.4], the product of N and K
is independent of presentations of N and K. Moreover, for a, b ∈ M , by ab,
we mean the product of Ra and Rb. Clearly, NK is a submodule of M and
NK ⊆ N ∩K (see [3]). Let N be a proper submodule of a nonzero R-module
M . Then the M -radical of N , denoted by M -rad(N), is defined to be the
intersection of all prime submodules of M containing N . If M has no prime
submodule containing N , then we say M -rad(N) = M . It is shown in [17,
Theorem 2.12] that if N is a proper submodule of a multiplication R-module
M , then M -rad(N) =

√
(N :R M)M . In this paper we define the concept of

2-absorbing primary submodules. We give some basic results of this class of
submodules and discuss on the relations among 2-absorbing ideals, 2-absorbing
submodules, 2-absorbing primary ideals and 2-absorbing primary submodules.

2 Properties of 2-absorbing primary submodules

Definition 2.1. A proper submodule N of an R-module M is called a 2-
absorbing primary submodule (resp. weakly 2-absorbing primary submodule)
of M if whenever a, b ∈ R and m ∈ M and abm ∈ N (resp. 0 6= abm ∈ N),
then am ∈M -rad(N) or bm ∈M -rad(N) or ab ∈ (N :R M).

Example 2.2. Let p be a fixed prime integer and N0 = N∪{0}. Each proper
Z-submodule of Z(p∞) is of the form Gt = 〈1/pt + Z〉 for some t ∈ N0. In
[15, Example 1] it was shown that every submodule Gt is not primary. For

each t ∈ N0, (Gt :Z Z(p∞)) = 0. Note that p2
(

1
pt+2 + Z

)
= 1

pt + Z ∈ Gt,

but neither p2 ∈ (Gt :Z Z(p∞)) = 0 nor p
(

1
pt+2 + Z

)
∈ Gt. Hence Z(p∞) has
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no 2-absorbing submodule. Since every prime submodule is 2-absorbing, then
Z(p∞) has no prime submodule. Therefore Z(p∞)-rad(Gt) = Z(p∞), and so
Gt is a 2-absorbing primary submodule of Z(p∞).

Theorem 2.3. Let N be a proper submodule of an R-module M . Then the
following conditions are equivalent:

1. N is a 2-absorbing primary submodule of M ;

2. For every elements a, b ∈ R such that ab /∈ (N :R M), (N :M ab) ⊆ (M -
rad(N) :M a) ∪ (M -rad(N) :M b);

3. For every elements a, b ∈ R such that ab /∈ (N :R M), (N :M ab) ⊆ (M -
rad(N) :M a) or (N :M ab) ⊆ (M -rad(N) :M b).

Proof. (1)⇒(2) Suppose that a, b ∈ R such that ab /∈ (N :R M). Let m ∈
(N :M ab). Then abm ∈ N , and so either ma ∈ M -rad(N) or bm ∈ M -
rad(N). Therefore either m ∈ (M -rad(N) :M a) or m ∈ (M -rad(N) :M b).
Hence (N :M ab) ⊆ (M -rad(N) :M a) ∪ (M -rad(N) :M b).
(2)⇒(3) Notice to the fact that if a submodule (a subgroup) is a subset of
the union of two submodules (two subgroups), then it is a subset of one of
them. Thus we have (N :M ab) ⊆ (M -rad(N) :M a) or (N :M ab) ⊆ (M -
rad(N) :M b).
(3)⇒(1) is straightforward.

Lemma 2.4. Let M be a finitely generated multiplication R-module. Then
for any submodule N of M ,

√
(N :R M) = (M -rad(N) :R M).

Proof. By [21, Theorem 4], (M -rad(N) :R M) ⊆
√

(N :R M). Now we prove
the other containment without any assumption on M . Let K be a prime
submodule of M containing N . Then clearly (K : M) is a prime ideal that
contains (N : M). Therefore

√
(N :R M) ⊆ (K : M), so

√
(N :R M) ⊆ (M -

rad(N) :R M).

Proposition 2.5. Let M be a finitely generated multiplication R-module and
N be a submodule of M . Then M -rad(N) is a primary submodule of M if
and only if M -rad(N) is a prime submodule of M .

Proof. Suppose that M -rad(N) is a primary submodule of M . Let a ∈ R and
m ∈ M be such that am ∈ M -rad(N) and m 6∈ M -rad(N). Since M -rad(N)

is primary, it follows a ∈
√

(M -rad(N) :R M) =
√√

(N :R M) =√
(N :R M) = (M -rad(N) :R M), by Lemma 2.4. Thus M -rad(N) is a prime

submodule of M. The converse part is clear.
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Theorem 2.6. Let M be a finitely generated multiplication R-module. If N
is a 2-absorbing primary submodule of M , then

1. (N :R M) is a 2-absorbing primary ideal of R.

2. M -rad(N) is a 2-absorbing submodule of M .

Proof. (1) Let a, b, c ∈ R be such that abc ∈ (N :R M), ac 6∈
√

(N :R M) and

bc 6∈
√

(N :R M). Since, by Lemma 2.4,
√

(N :R M) = (M -rad(N) :R M),
there exist m1,m2 ∈M such that acm1 6∈M -rad(N) and bcm2 6∈M -rad(N).
But ab(cm1 + cm2) ∈ N , because abc ∈ (N :R M). So a(cm1 + cm2) ∈ M -
rad(N) or b(cm1 + cm2) ∈ M -rad(N) or ab ∈ (N :R M), since N is 2-
absorbing primary. If ab ∈ (N :R M), then we are done. Thus assume that
a(cm1 + cm2) ∈ M -rad(N). So acm2 6∈ M -rad(N), because acm1 6∈ M -
rad(N). Therefore ab ∈ (N :R M), since N is 2-absorbing primary and
abcm2 ∈ N . Similarly if b(cm1 + cm2) ∈ M -rad(N), then ab ∈ (N :R M).
Consequently (N :R M) is a 2-absorbing primary ideal.
(2) By [11, Theorem 2.3] we have two cases.

Case 1.
√

(N :R M) = p is a prime ideal of R. Since M is a multiplication

module, M -rad(N) =
√

(N :R M)M = pM , where pM is a prime submodule
of M by [17, Corollary 2.11]. Hence in this case M -rad(N) is a 2-absorbing
submodule of M .

Case 2.
√

(N :R M) = p1 ∩ p2, where p1, p2 are distinct prime ideals
of R that are minimal over (N :R M). In this case, we have M -rad(N) =√

(N :R M)M = (p1 ∩ p2)M = ([p1 + annM ]∩ [p2 + annM ])M = p1M ∩ p2M ,
where p1M , p2M are prime submodules of M by [17, Corollary 2.11, 1.7].
Consequently, M -rad(N) is a 2-absorbing submodule of M by [26, Theorem
2.3].

Theorem 2.7. Let M be a (resp. finitely generated multiplication) R-module
and N be a submodule of M . If M -rad(N) is a (resp. primary) prime sub-
module of M , then N is a 2-absorbing primary submodule of M .

Proof. Suppose that M -rad(N) is a prime submodule of M . Let a, b ∈ R and
m ∈M be such that abm ∈ N , am 6∈M -rad(N). Since M -rad(N) is a prime
submodule and abm ∈ M -rad(N), then b ∈ (M -rad(N) :R M). So bm ∈ M -
rad(N). Consequently N is a 2-absorbing primary submodule of M . Now
assume that M is a finitely generated multiplication module and M -rad(N) is
a primary submodule of M , then M -rad(N) is a prime submodule of M , by
Proposition 2.5. Therefore N is 2-absorbing primary.

In [2, Theorem 1(3)], it was shown that for any faithful multiplication
module M not necessary finitely generated, M -rad(IM) =

√
IM for any ideal

I of R.
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Theorem 2.8. Let M be a (resp. finitely generated faithful multiplication)
faithful multiplication R-module. If M -rad(N) is a (resp. primary) prime
submodule of M , then Nn is a 2-absorbing primary submodule of M for every
positive integer n ≥ 1.

Proof. Assume that M is a (resp. finitely generated faithful multiplication)
faithful multiplication module and M -rad(N) is a (resp. primary) prime sub-
module of M . There exists an ideal I of R such that N = IM . Thus

M − rad(Nn) =
√
InM = M − rad(N),

which is a (resp. primary) prime submodule of M . Hence for every positive
integer n ≥ 1, Nn is a 2-absorbing primary submodule of M , by Theorem
2.7.

Recall that a commutative ring R with 1 6= 0 is called a divided ring if for
every prime ideal p of R, we have p ⊆ xR for every x ∈ R\p. Generalizing
this idea to modules we say that an R-module M is divided if for every prime
submodule N of M , N ⊆ Rm for all m ∈M\N .

Theorem 2.9. If M is a divided R-module, then every proper submodule of
M is a 2-absorbing primary submodule of M . In particular, every proper
submodule of a chained module is a 2-absorbing primary submodule.

Proof. Let N be a proper submodule of M . Since the prime submodules of a
divided module are linearly ordered, we conclude that M -rad(N) is a prime
submodule of M . Hence N is a 2-absorbing primary submodule of M by
Theorem 2.7.

Remark 2.10. Let I = (0 :R M) and R′ = R/I. It is easy to see that N is
a 2-absorbing primary R-submodule of M if and only if N is a 2-absorbing
primary R′-submodule of M . Also, (N :R M) is a 2-absorbing primary ideal
of R if and only if (N :R′ M) is a 2-absorbing primary ideal of R′.

Theorem 2.11. Let S be a multiplicatively closed subset of R and M be an R-
module. If N is a 2-absorbing primary submodule of M and S−1N 6= S−1M ,
then S−1N is a 2-absorbing primary submodule of S−1M .

Proof. If a1

s1
a2

s2
m
s ∈ S−1N , then ua1a2m ∈ N for some u ∈ S. It follows that

ua1m ∈M -rad(N) or ua2m ∈M -rad(N) or a1a2 ∈ (N :R M), so we conclude
that a1

s1
m
s = ua1m

us1s
∈ S−1(M -rad(N)) ⊆ S−1M -rad(S−1N) or a2

s2
m
s = ua2m

us2s
∈

S−1M -rad(S−1N) or a1

s1
a2

s2
= a1a2

s1s2
∈ S−1(N :R M) ⊆ (S−1N :S−1R S−1M).
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Theorem 2.12. Let I be a 2-absorbing primary ideal of a ring R and M a
faithful multiplication R-module such that AssR(M/

√
IM) is a totally ordered

set. Then abm ∈ IM implies that am ∈
√
IM or bm ∈

√
IM or ab ∈ I

whenever a, b ∈ R and m ∈M .

Proof. Let a, b ∈ R, m ∈ M and abm ∈ IM . If (
√
IM :R am) = R or

(
√
IM :R bm) = R, we are done. Suppose that (

√
IM :R am) and (

√
IM :R

bm) are proper ideals of R. Since AssR(M/
√
IM) is a totally ordered set,

(
√
IM :R am) ∪ (

√
IM :R bm) is an ideal of R, and so there is a maximal

ideal m such that (
√
IM :R am) ∪ (

√
IM :R bm) ⊆ m. We have am /∈

Tm(M) := {m′ ∈ M : (1 − x)m′ = 0, for some x ∈ m}, since am ∈ Tm(M)
implies that (1 − x)am = 0 for some x ∈ m, thus (1 − x)am ∈

√
IM and so

1 − x ∈ (
√
IM :R am) ⊆ m, a contradiction. So by [17, Theorem 1.2], there

are x ∈ m and m′ ∈ M such that (1 − x)M ⊆ Rm′. Thus, (1 − x)m = rm′

some r ∈ R. Moreover, (1− x)abm = sm′ for some s ∈ I, because abm ∈ IM .
Hence (abr − s)m′ = 0 and so (1 − x)(abr − s)M ⊆ (abr − s)Rm′ = 0. Thus
(1−x)(abr−s) = 0, because M is faithful. Therefore, (1−x)abr = (1−x)s ∈ I.
Then (1−x)ar ∈

√
I or (1−x)b ∈

√
I or abr ∈ I, since I is 2-absorbing primary.

If (1− x)ar ∈
√
I, then (1− x)a ∈

√
I or (1− x)r ∈

√
I or ar ∈

√
I, because

by [11, Theorem 2.2]
√
I is a 2-absorbing ideal of R. If (1 − x)a ∈

√
I, then

(1− x)am ∈
√
IM and so 1− x ∈ (

√
IM :R am) ⊆ m that is a contradiction.

If (1 − x)r ∈
√
I, then (1 − x)2m = (1 − x)rm′ ∈

√
IM which implies that

(1 − x)2 ∈ (
√
IM :R m) ⊆ (

√
IM :R am) ⊆ m, a contradiction. Similarly we

can see that (1 − x)b 6∈
√
I. Now, ar ∈

√
I implies that (1 − x)am = arm′ ∈√

IM and so 1− x ∈ (
√
IM :R am) ⊆ m which is a contradiction.

If arb ∈ I, then ar ∈
√
I or br ∈

√
I or ab ∈ I which the first two cases are

impossible, thus ab ∈ I.

Let R be a ring with the total quotient ring K. A nonzero ideal I of R
is said to be invertible if II−1 = R, where I−1 = {x ∈ K | xI ⊆ R}. The
concept of an invertible submodule was introduced in [23] as a generalization
of the concept of an invertible ideal. Let M be an R-module and let S =
R\{0}. Then T = {t ∈ S | tm = 0 for some m ∈ M implies m = 0} is a
multiplicatively closed subset of R. Let N be a submodule of M and N ′ =
{x ∈ RT | xN ⊆ M}. A submodule N is said to be invertible in M , if
N ′N = M , [23]. A nonzero R-module M is called Dedekind provided that
each nonzero submodule of M is invertible.

We recall from [20] that, a finitely generated torsion-free multiplication
module M over a domain R is a Dedekind module if and only if R is a Dedekind
domain.

Theorem 2.13. Let R be a Noetherian domain, M a torsion-free multiplica-
tion R-module. Then the following statements are equivalent:
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1. M is a Dedekind module;

2. If N is a nonzero 2-absorbing primary submodule of M , then either
N = Mn for some maximal submodule M of M and some positive integer
n ≥ 1 or N = Mn

1M
m
2 for some maximal submodules M1 and M2 of M

and some positive integers n,m ≥ 1;

3. If N is a nonzero 2-absorbing primary submodule of M , then either
N = Pn for some prime submodule P of M and some positive integer
n ≥ 1 or N = Pn

1 P
m
2 for some prime submodules P1 and P2 of M and

some positive integers n,m ≥ 1.

Proof. By the fact that every multiplication module over a Noetherian ring is
a Noetherian module, M is Noetherian and so finitely generated.
(1) ⇒ (2) Let N be a 2-absorbing primary submodule of M . There exists a
proper ideal I of R such that N = IM . So (N :R M) = I is a 2-absorbing
primary ideal of R, by Theorem 2.6. Since R is a Dedekind domain, then we
have either I = mn for some maximal ideal m of R and some positive integer
n ≥ 1 or I = mn

1m
m
2 for some maximal ideals m1 and m2 of R and some positive

integers n,m ≥ 1, by [9, Theorem 2.11]. Thus, either N = mnM = (mM)n or
N = (m1M)n(m2M)m as desired.
(2)⇒ (3) is clear.
(3) ⇒ (1) It is sufficient to show that R is a Dedekind domain, for this let
m be a maximal ideal of R. Let I be an ideal of R such that m2 ⊂ I ⊂ m.
So
√
I = m and then M -rad(IM) = mM , since M is a faithful multiplication

R-module. Then IM is a 2-absorbing primary submodule of M , Theorem 2.7.
By assumption, either IM = Pn for some prime submodule P of M and some
positive integer n ≥ 1 or IM = Pn

1 P
m
2 for some prime submodules P1 and

P2 of M and some positive integers n,m ≥ 1. Now, since M is cancellation,
either I = pn for some prime ideal p of R or I = pn1p

m
2 for some prime ideals

p1 and p2 of R, which any two cases have a contradiction. Hence there are no
ideals properly between m2 and m. Consequently R is a Dedekind domain by
[19, Theorem 39.2, p. 470].

Proposition 2.14. Let M be a multiplication R-module and K, N be sub-
modules of M . Then

1.
√

(KN :R M) =
√

(K :R M) ∩
√

(N :R M).

2. M -rad(KN) = M -rad(K) ∩M -rad(N).

3. M -rad(K ∩N) = M -rad(K) ∩M -rad(N).
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Proof. (1) By hypothesis there exist ideals I, J of R such that K = IM
and N = JM . Now assume r ∈

√
(K :R M) ∩

√
(N :R M). Therefore there

exist positive integers m, n such that rmM ⊆ IM and rnM ⊆ JM . Hence
rm+nM ⊆ rmJM ⊆ IJM = KN . So r ∈

√
(KN :R M). Consequently√

(K :R M) ∩
√

(N :R M) ⊆
√

(KN :R M). The other inclusion trivially
holds.
(2) By part (1) and [17, Corollary 1.7],

M − rad(KN) =
√

(KN :R M)M = (
√

(K :R M) ∩
√

(N :R M))M

= ([
√

(K :R M) + annM ] ∩ [
√

(N :R M) + annM ])M

=
√

(K :R M)M ∩
√

(N :R M)M

= M − rad(K) ∩M − rad(N).

(3) See [1, Theorem 15(3)].

Theorem 2.15. Let M be a multiplication R-module and N1, N2, . . . , Nn be
2-absorbing primary submodules of M with the same M -radical. Then N =
∩ni=1Ni is a 2-absorbing primary submodule of M .

Proof. Notice that M -rad(N) = ∩ni=1M -rad(Ni), by Proposition 2.14. Sup-
pose that abm ∈ N for some a, b ∈ R and m ∈ M and ab 6∈ (N :R M). Then
ab 6∈ (Ni :R M) for some 1 ≤ i ≤ n. Hence am ∈ M -rad(Ni) or bm ∈ M -
rad(Ni).

Lemma 2.16. Let M be an R-module and N a 2-absorbing primary submodule
of M . Suppose that abK ⊆ N for some elements a, b ∈ R and some submodule
K of M . If ab 6∈ (N :R M), then aK ⊆M -rad(N) or bK ⊆M -rad(N).

Proof. Suppose that aK * M -rad(N) and bK * M -rad(N). Then ak1 6∈ M -
rad(N) and bk2 6∈ M -rad(N) for some k1, k2 ∈ K. Since abk1 ∈ N and
ab 6∈ (N :R M) and ak1 6∈ M -rad(N), we have bk1 ∈ M -rad(N). Since
abk2 ∈ N and ab 6∈ (N :R M) and bk2 6∈M -rad(N), we have ak2 ∈M -rad(N).
Now, since ab(k1 + k2) ∈ N and ab 6∈ (N :R M), we have a(k1 + k2) ∈ M -
rad(N) or b(k1 + k2) ∈M -rad(N). Suppose that a(k1 + k2) = ak1 + ak2 ∈M -
rad(N). Since ak2 ∈ M -rad(N), we have ak1 ∈ M -rad(N), a contradiction.
Suppose that b(k1 + k2) = bk1 + bk2 ∈ M -rad(N). Since bk1 ∈ M -rad(N),
we have bk2 ∈ M -rad(N), a contradiction again. Thus aK ⊆ M -rad(N) or
bK ⊆M -rad(N).

The following theorem offers a characterization of 2-absorbing primary
submodules.
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Theorem 2.17. Let M be an R-module and N be a proper submodule of M .
The following conditions are equivalent:

1. N is a 2-absorbing primary submodule of M ;

2. If I1I2K ⊆ N for some ideals I1, I2 of R and some submodule K of M ,
then either I1I2 ⊆ (N :R M) or I1K ⊆M -rad(N) or I2K ⊆M -rad(N);

3. If N1N2N3 ⊆ N for some submodules N1, N2 and N3 of M , then either
N1N2 ⊆ N or N1N3 ⊆M -rad(N) or N2N3 ⊆M -rad(N).

Proof. (1)⇒(2) Suppose that N is a 2-absorbing primary submodule of M
and I1I2K ⊆ N for some ideals I1, I2 of R and some submodule K of M
and I1I2 * (N :R M). We show that I1K ⊆ M -rad(N) or I2K ⊆ M -
rad(N). Suppose that I1K * M -rad(N) and I2K * M -rad(N). Then there
are a1 ∈ I1 and a2 ∈ I2 such that a1K * M -rad(N) and a2K * M -rad(N).
Since a1a2K ⊆ N and neither a1K ⊆ M -rad(N) nor a2K ⊆ M -rad(N), we
have a1a2 ∈ (N :R M) by Lemma 2.16.
Since I1I2 * (N :R M), we have b1b2 6∈ (N :R M) for some b1 ∈ I1 and
b2 ∈ I2. Since b1b2K ⊆ N and b1b2 6∈ (N :R M), we have b1K ⊆ M -rad(N)
or b2K ⊆M -rad(N) by Lemma 2.16. We consider three cases.

Case 1. Suppose that b1K ⊆ M -rad(N) but b2K * M -rad(N). Since
a1b2K ⊆ N and neither b2K ⊆M -rad(N) nor a1K ⊆M -rad(N), we conclude
that a1b2 ∈ (N :R M) by Lemma 2.16. Since b1K ⊆M -rad(N) but a1K * M -
rad(N), we conclude that (a1 + b1)K * M -rad(N). Since (a1 + b1)b2K ⊆ N
and neither b2K ⊆M -rad(N) nor (a1 + b1)K ⊆M -rad(N), we conclude that
(a1 + b1)b2 ∈ (N :R M) by Lemma 2.16. Since (a1 + b1)b2 = a1b2 + b1b2 ∈
(N :R M) and a1b2 ∈ (N :R M), we conclude that b1b2 ∈ (N :R M), a
contradiction.

Case 2. Suppose that b2K ⊆ M -rad(N) but b1K * M -rad(N). Similar
to the previous case we reach to a contradiction.

Case 3. Suppose that b1K ⊆ M -rad(N) and b2K ⊆ M -rad(N). Since
b2K ⊆ M -rad(N) and a2K * M -rad(N), we conclude that (a2 + b2)K *
M -rad(N). Since a1(a2 + b2)K ⊆ N and neither a1K ⊆ M -rad(N) nor
(a2 + b2)K ⊆ M -rad(N), we conclude that a1(a2 + b2) = a1a2 + a1b2 ∈
(N :R M) by Lemma 2.16. Since a1a2 ∈ (N :R M) and a1a2 + a1b2 ∈
(N :R M), we conclude that a1b2 ∈ (N :R M). Since b1K ⊆ M -rad(N)
and a1K * M -rad(N), we conclude that (a1 + b1)K * M -rad(N). Since
(a1 + b1)a2K ⊆ N and neither a2K ⊆ M -rad(N) nor (a1 + b1)K ⊆ M -
rad(N), we conclude that (a1 + b1)a2 = a1a2 + b1a2 ∈ (N :R M) by Lemma
2.16. Since a1a2 ∈ (N :R M) and a1a2 + b1a2 ∈ (N :R M), we conclude
that b1a2 ∈ (N :R M). Now, since (a1 + b1)(a2 + b2)K ⊆ N and neither
(a1 + b1)K ⊆ M -rad(N) nor (a2 + b2)K ⊆ M -rad(N), we conclude that
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(a1 + b1)(a2 + b2) = a1a2 + a1b2 + b1a2 + b1b2 ∈ (N :R M) by Lemma 2.16.
Since a1a2, a1b2, b1a2 ∈ (N :R M), we have b1b2 ∈ (N :R M), a contradiction.
Consequently I1K ⊆M -rad(N) or I2K ⊆M -rad(N).
(2)⇒(1) is trivial.
(2)⇒(3) Let N1N2N3 ⊆ N for some submodules N1, N2 and N3 of M such
that N1N2 * N . Since M is multiplication, there are ideals I1, I2 of R
such that N1 = I1M , N2 = I2M . Clearly I1I2N3 ⊆ N and I1I2 * (N :R
M). Therefore I1N3 ⊆ M -rad(N) or I2N3 ⊆ M -rad(N), which implies that
N1N3 ⊆M -rad(N) or N2N3 ⊆M -rad(N).
(3)⇒(2) Suppose that I1I2K ⊆ N for some ideals I1, I2 of R and some
submodule K of M . It is sufficient to set N1 := I1M , N2 := I2M and N3 = K
in part (3).

Theorem 2.18. Let M be a multiplication R-module and N a submodule of
M . If (N :R M) is a 2-absorbing primary ideal of R, then N is a 2-absorbing
primary submodule of M .

Proof. Let I1I2K ⊆ N for some ideals I1, I2 of R and some submodule K of
M . Since M is multiplication, then there is an ideal I3 of R such that K =
I3M . Hence I1I2I3 ⊆ (N :R M) which implies that either I1I2 ⊆ (N :R M) or
I1I3 ⊆

√
(N :R M) or I2I3 ⊆

√
(N :R M), by [11, Theorem 2.19]. If I1I2 ⊆

(N :R M), then we are done. So, suppose that I1I3 ⊆
√

(N :R M). Thus

I1I3M = I1K ⊆
√

(N :R M)M = M -rad(N). Similary if I2I3 ⊆
√

(N :R M),
then we have I2K ⊆M -rad(N). It completes the proof, by Theorem 2.17.

The following example shows that Theorem 2.18 is not satisfied in general.

Example 2.19. Consider the Z-module M = Z × Z and N = 6Z × 0 a
submodule of M . Observe that Z×0, 2Z×Z and 3Z×Z are some of the prime
submodules of M containing N . Also (N :Z M) = 0 is a 2-absorbing primary
ideal of Z. On the other hand, since 2.3.(1, 0) = (6, 0) ∈ N , 2.3 /∈ (N :Z M),
2.(1, 0) = (2, 0) /∈ M -rad(N) ⊆ (Z × 0) ∩ (2Z × Z) ∩ (3Z × Z) = 6Z × 0 = N
and 3.(1, 0) = (3, 0) /∈ M -rad(N) = N , so N is not a 2-absorbing primary
submodule of M .

Theorem 2.20. Let M be a multiplication R-module and N1 and N2 be pri-
mary submodules of M . Then N1 ∩N2 is a 2-absorbing primary submodule of
M . If in addition M is finitely generated faithful, then N1N2 is a 2-absorbing
primary submodule of M .

Proof. Since N1 and N2 are primary submodules of M , then (N1 :R M)
and (N2 :R M) are primary ideals of R. Hence (N1 :R M)(N2 :R M) and
(N1 ∩ N2 :R M) = (N1 :R M) ∩ (N2 :R M) are 2-absorbing primary ideals
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of R, by [11, Theorem 2.4]. Therefore, Theorem 2.18 implies that N1 ∩ N2

is a 2-absorbing primary submodule of M . If M is a finitely generated faith-
ful multiplication R-module, then (N1N2 :R M) = (N1 :R M)(N2 :R M).
So, again by Theorem 2.18 we deduce that N1N2 is a 2-absorbing primary
submodule of M .

Let M be a multiplication R-module and N a primary submodule of M .
We know that

√
(N :R M) is a prime ideal of R and so P = M -rad(N) =√

(N :R M)M is a prime submodule of M . In this case we say that N is a
P -primary submodule of M .

Corollary 2.21. Let M be a multiplication R-module and P1 and P2 be prime
submodules of M . Suppose that Pn

1 is a P1-primary submodule of M for some
positive integer n ≥ 1 and Pm

2 is a P2-primary submodule of M for some
positive integer m ≥ 1.

1. Pn
1 ∩ Pm

2 is a 2-absorbing primary submodule of M .

2. If in addition M is finitely generated faithful, then Pn
1 P

m
2 is a 2-absorbing

primary submodule of M .

Theorem 2.22. Let M be a multiplication R-module and N be a submodule
of M that has a primary decomposition. If M -rad(N) = M1 ∩M2 where M1

and M2 are two maximal submodules of M , then N is a 2-absorbing primary
submodule of M .

Proof. Assume that N = N1 ∩ · · · ∩ Nn is a primary decomposition. By
Proposition 2.14(3), M -rad(N) = M -rad(N1)∩ · · · ∩M -rad(Nn) = M1 ∩M2.
Since M -rad(Ni)’s are prime submodules of M , then {M -rad(N1), . . . ,M -
rad(Nn)} = {M1,M2}, by [3, Theorem 3.16]. Without loss of generality we
may assume that for some 1 ≤ t < n, {M -rad(N1), . . . ,M -rad(Nt)} = {M1}
and {M -rad(Nt+1), . . . ,M -rad(Nn)} = {M2}. Set K1 := N1 ∩ · · · ∩ Nt and
K2 := Nt+1∩ · · ·∩Nn. By [8, Lemma 1.2.2], K1 is an M1-primary submodule
and K2 is an M2-primary submodule of M . Therefore, by Theorem 2.20,
N = K1 ∩K2 is 2-absorbing primary.

Lemma 2.23. ([22, Corollary 1.3]) Let M and M ′ be R-modules with f :
M → M ′ an R-module epimorphism. If N is a submodule of M containing
Ker(f), then f(M -rad(N)) = M ′-rad(f(N)).

Theorem 2.24. Let f : M →M ′ be a homomorphism of R-modules.

1. If N ′ is a 2-absorbing primary submodule of M ′, then f−1(N ′) is a 2-
absorbing primary submodule of M .
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2. If f is epimorphism and N is a 2-absorbing primary submodule of M
containing Ker(f), then f(N) is a 2-absorbing primary submodule of
M ′.

Proof. (1) Let a, b ∈ R and m ∈M such that abm ∈ f−1(N ′). Then abf(m) ∈
N ′. Hence ab ∈ (N ′ :R M ′) or af(m) ∈ M ′-rad(N ′) or bf(m) ∈ M ′-rad(N ′),
and thus ab ∈ (f−1(N ′) :R M) or am ∈ f−1(M ′-rad(N ′)) or bm ∈ f−1(M ′-
rad(N ′)). By using the inclusion f−1(M ′-rad(N ′)) ⊆ M -rad(f−1(N ′)), we
conclude that f−1(N ′) is a 2-absorbing primary submodule of M .
(2) Let a, b ∈ R, m′ ∈ M ′ and abm′ ∈ f(N). By assumption there exists
m ∈ M such that m′ = f(m) and so f(abm) ∈ f(N). Since Ker(f) ⊆ N , we
have abm ∈ N . It implies that ab ∈ (N :R M) or am ∈M -rad(N) or bm ∈M -
rad(N). Hence ab ∈ (f(N) :R M ′) or am′ ∈ f(M -rad(N)) = M ′-rad(f(N))
or bm′ ∈ f(M -rad(N)) = M ′-rad(f(N)). Consequently f(N) is a 2-absorbing
primary submodule of M ′.

As an immediate consequence of Theorem 2.24(2) we have the following
Corollary.

Corollary 2.25. Let M be an R-module and L ⊆ N be submodules of M .
If N is a 2-absorbing primary submodule of M , then N/L is a 2-absorbing
primary submodule of M/L.

Theorem 2.26. Let K and N be submodules of M with K ⊂ N ⊂ M . If K
is a 2-absorbing primary submodule of M and N/K is a weakly 2-absorbing
primary submodule of M/K, then N is a 2-absorbing primary submodule of
M .

Proof. Let a, b ∈ R, m ∈ M and abm ∈ N . If abm ∈ K, then am ∈ M -
rad(K) ⊆ M -rad(N) or bm ∈ M -rad(K) ⊆ M -rad(N) or ab ∈ (K :R M) ⊆
(N :R M) as it is needed.
So suppose that abm 6∈ K. Then 0 6= ab(m + K) ∈ N/K that implies,

a(m + K) ∈M/K-rad(N/K) = M−rad(N)
K or b(m + K) ∈M/K-rad(N/K) or

ab ∈ (N/K :R M/K). It means that am ∈ M -rad(N) or bm ∈ M -rad(N) or
ab ∈ (N :R M), which completes the proof.

Let Ri be a commutative ring with identity and Mi be an Ri-module,
for i = 1, 2. Let R = R1 × R2. Then M = M1 ×M2 is an R-module and
each submodule of M is of the form N = N1 × N2 for some submodules N1

of M1 and N2 of M2. In addition, if Mi is a multiplication Ri-module, for
i = 1, 2, then M is a multiplication R-module. In this case, for each submodule
N = N1 ×N2 of M we have M -rad(N) = M1-rad(N1)×M2-rad(N2).



2-ABSORBING PRIMARY SUBMODULES 348

Theorem 2.27. Let R = R1 × R2 and M = M1 ×M2 where M1 is a multi-
plication R1-module and M2 is a multiplication R2-module.

1. A proper submodule K1 of M1 is a 2-absorbing primary submodule if and
only if N = K1 ×M2 is a 2-absorbing primary submodule of M .

2. A proper submodule K2 of M2 is a 2-absorbing primary submodule if and
only if N = M1 ×K2 is a 2-absorbing primary submodule of M .

3. If K1 is a primary submodule of M1 and K2 is a primary submodule of
M2, then N = K1 ×K2 is a 2-absorbing primary submodule of M.

Proof. (1) Suppose that N = K1×M2 is a 2-absorbing primary submodule of
M . From our hypothesis, N is proper, so K1 6= M1. Set M ′ = M

{0}×M2
. Hence

N ′ = N
{0}×M2

is a 2-absorbing primary submodule of M ′ by Corollary 2.25.

Also observe that M ′ ∼= M1 and N ′ ∼= K1. Thus K1 is a 2-absorbing primary
submodule of M1. Conversely, if K1 is a 2-absorbing primary submodule of
M1, then it is clear that N = K1 ×M2 is a 2-absorbing primary submodule
of M .
(2) It can be easily verified similar to (1).
(3) Assume that N = K1 ×K2 where K1 and K2 are primary submodules of
M1 and M2, respectively. Hence (K1 ×M2) ∩ (M1 × K2) = K1 × K2 = N
is a 2-absorbing primary submodule of M , by parts (1) and (2) and Theorem
2.20.

Theorem 2.28. Let R = R1 ×R2 and M = M1 ×M2 be a finitely generated
multiplication R-module where M1 is a multiplication R1-module and M2 is a
multiplication R2-module. If N = N1 ×N2 is a proper submodule of M , then
the followings are equivalent.

1. N is a 2-absorbing primary submodule of M.

2. N1 = M1 and N2 is a 2-absorbing primary submodule of M2 or N2 = M2

and N1 is a 2-absorbing primary submodule of M1 or N1, N2 are primary
submodules of M1, M2, respectively.

Proof. (1)⇒(2) Suppose that N = N1 × N2 is a 2-absorbing primary sub-
module of M . Then (N : M) = (N1 : M1) × (N2 : M2) is a 2-absorbing
primary ideal of R = R1 × R2 by Theorem 2.6. From Theorem 2.3 in [11],
we have (N1 : M1) = R1 and (N2 : M2) is a 2-absorbing primary ideal of
R2 or (N2 : M2) = R2 and (N1 : M1) is a 2-absorbing primary ideal of R1 or
(N1 : M1) and (N2 : M2) are primary ideals of R1, R2, respectively. Assume
that (N1 : M1) = R1 and (N2 : M2) is a 2-absorbing primary ideal of R2.
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Thus N1 = M1 and N2 is a 2-absorbing primary submodule of M2 by Theo-
rem 2.18. Similarly if (N2 : M2) = R2 and (N1 : M1) is a 2-absorbing primary
ideal of R1, then N2 = M2 and N1 is a 2-absorbing primary submodule of M.
And if the last case hold, then clearly we conclude that N1, N2 are primary
submodules of M1, M2, respectively.
(2)⇒(1) It is clear from Theorem 2.27.
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