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Abstract

All rings are commutative with 1 # 0, and all modules are unital.
The purpose of this paper is to investigate the concept of 2-absorbing
primary submodules generalizing 2-absorbing primary ideals of rings.
Let M be an R-module. A proper submodule N of an R-module M is
called a 2-absorbing primary submodule of M if whenever a,b € R and
m € M and abm € N, then am € M-rad(N) or bm € M-rad(N) or ab €
(N :r M). It is shown that a proper submodule N of M is a 2-absorbing
primary submodule if and only if whenever I; I, K C N for some ideals
I, I, of R and some submodule K of M, then I1Is C (N :g M) or
LK C M-rad(N) or IK C M-rad(N). We prove that for a submodule
N of an R-module M if M-rad(N) is a prime submodule of M, then
N is a 2-absorbing primary submodule of M. If N is a 2-absorbing
primary submodule of a finitely generated multiplication R-module M,
then (N :g M) is a 2-absorbing primary ideal of R and M-rad(N) is a
2-absorbing submodule of M.

1 Introduction and Preliminaries

Throughout this paper all rings are commutative with a nonzero identity and
all modules are considered to be unitary. Prime submodules have an important
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role in the theory of modules over commutative rings. Let M be a module
over a commutative ring R. A prime (resp. primary) submodule is a proper
submodule N of M with the property that for a € R and m € M, am € N
implies that m € N or a € (N :g M) (resp. a* € (N :g M) for some positive
integer k). In this case p = (N :g M) (resp. p = /(N :g M)) is a prime ideal
of R. There are several ways to generalize the concept of prime submodules.
Weakly prime submodules were introduced by Ebrahimi Atani and Farzalipour
n [16]. A proper submodule N of M is weakly prime if for a € R and m € M
with 0 #£ am € N, either m € N or a € (N :g M). Behboodi and Koohi in [13]
defined another class of submodules and called it weakly prime. Their paper
is on the basis of some recent papers devoted to this new class of submodules.
Let R be a ring and M an R-module. A proper submodule N of M is said
to be weakly prime when for a,b € R and m € M, abm € N implies that
am € N or bm € N. To avoid the ambiguity, Behboodi renamed this concept
and called submodules introduced in [13], classical prime submodule.

Badawi in [9] generalized the concept of prime ideals in a different way. He
defined a nonzero proper ideal I of R to be a 2-absorbing ideal of R if whenever
a,b,c € R and abc € I, then ab € I or ac € I or bc € I. This definition can
obviously be made for any ideal of R. This concept has a generalization, called
weakly 2-absorbing ideals, which has studied in [10]. A proper ideal I of R to
be a weakly 2-absorbing ideal of R if whenever a,b,c € R and 0 # abc € I, then
ab € I or ac €I or be € I. Anderson and Badawi [6] generalized the concept
of 2-absorbing ideals to n-absorbing ideals. According to their definition, a
proper ideal I of R is called an n-absorbing (resp. strongly n-absorbing) ideal
if whenever x;---x,y1 € I for x1,...,2,41 € R (vesp. Iy --I,11 C I for
ideals Iy,...,I,4+1 of R), then there are n of the z;’s (resp. n of the I;’s)
whose product is in I. They proved that a proper ideal I of R is 2-absorbing
if and only if I is strongly 2-absorbing.

In [26], the concept of 2-absorbing and weakly 2-absorbing ideals gener-
alized to submodules of a module over a commutative ring. Let M be an
R-module and N a proper submodule of M. N is said to be a 2-absorbing
submodule (resp. weakly 2-absorbing submodule) of M if whenever a,b € R
and m € M with abm € N (resp. 0 # abm € N), then ab € (N :g M)
or am € N or bm € N. Badawi et. al. in [11] introduced the concept of
2-absorbing primary ideals, where a proper ideal I of R is called 2-absorbing
primary if whenever a,b,c¢ € R with abc € I, then ab € I or ac € VT or
be € V1.

Let R be aring, M an R-module and N a submodule of M. We will denote
by (N :g M) the residual of N by M, that is, the set of all » € R such that
rM C N. The annihilator of M which is denoted by anng(M)is (0 :g M). An
R-module M is called a multiplication module if every submodule N of M has



2-ABSORBING PRIMARY SUBMODULES 337

the form IM for some ideal I of R. Note that, since I C (N :g M) then N =
IM C (N :g M)M C N. So that N = (N :g M)M [17]. Finitely generated
faithful multiplication modules are cancellation modules [25, Corollary to
Theorem 9], where an R-module M is defined to be a cancellation module if
IM = JM for ideals I and J of R implies I = J. It is well-known that if R
is a commutative ring and M a nonzero multiplication R-module, then every
proper submodule of M is contained in a maximal submodule of M and K is
a maximal submodule of M if and only if there exists a maximal ideal m of
R such that K = mM [17, Theorem 2.5]. If M is a finitely generated faithful
multiplication R-module (hence cancellation), then it is easy to verify that
(IN :g M) = I(N :g M) for each submodule N of M and each ideal I of
R. For a submodule N of M, if N = IM for some ideal I of R, then we
say that I is a presentation ideal of V. Clearly, every submodule of M has a
presentation ideal if and only if M is a multiplication module. Let N and K
be submodules of a multiplication R-module M with N = I1M and K = I, M
for some ideals I; and Iy of R. The product of N and K denoted by NK is
defined by NK = I1IsM. Then by [3, Theorem 3.4], the product of N and K
is independent of presentations of N and K. Moreover, for a,b € M, by ab,
we mean the product of Ra and Rb. Clearly, NK is a submodule of M and
NK C NN K (see [3]). Let N be a proper submodule of a nonzero R-module
M. Then the M-radical of N, denoted by M-rad(N), is defined to be the
intersection of all prime submodules of M containing N. If M has no prime
submodule containing N, then we say M-rad(N) = M. It is shown in [17,
Theorem 2.12] that if N is a proper submodule of a multiplication R-module
M, then M-rad(N) = /(N :g M)M. In this paper we define the concept of
2-absorbing primary submodules. We give some basic results of this class of
submodules and discuss on the relations among 2-absorbing ideals, 2-absorbing
submodules, 2-absorbing primary ideals and 2-absorbing primary submodules.

2 Properties of 2-absorbing primary submodules

Definition 2.1. A proper submodule N of an R-module M is called a 2-
absorbing primary submodule (resp. weakly 2-absorbing primary submodule)

of M if whenever a,b € R and m € M and abm € N (resp. 0 # abm € N),
then am € M-rad(N) or bm € M-rad(N) or ab € (N :g M).

Example 2.2. Let p be a fixed prime integer and Ny = NU{0}. Each proper
Z-submodule of Z(p>) is of the form G; = (1/p' + Z) for some t € Ny. In
[15, Example 1] it was shown that every submodule G; is not primary. For

each t € Ny, (Gy 7 Z(p™)) = 0. Note that p? (pt% +Z) = 5 + 7 € Gy,
but neither p? € (Gy iz Z(p™)) = 0 nor p (pt% + Z) € G¢. Hence Z(p™) has
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no 2-absorbing submodule. Since every prime submodule is 2-absorbing, then
Z(p*) has no prime submodule. Therefore Z(p*>)-rad(G;) = Z(p), and so
G is a 2-absorbing primary submodule of Z(p).

Theorem 2.3. Let N be a proper submodule of an R-module M. Then the
following conditions are equivalent:

1. N is a 2-absorbing primary submodule of M ;

2. For every elements a,b € R such that ab ¢ (N :g M), (N :p; ab) C (M-
rad(N) :p a) U (M-rad(N) :pr b);

3. For every elements a,b € R such that ab ¢ (N :g M), (N :pr ab) C (M-
rad(N) :a a) or (N iy ab) C (M-rad(N) :a b).

Proof. (1)=(2) Suppose that a,b € R such that ab ¢ (N :g M). Let m €
(N :pr ab). Then abm € N, and so either ma € M-rad(N) or bm € M-
rad(N). Therefore either m € (M-rad(N) :pr a) or m € (M-rad(N) :pr b).
Hence (N :pr ab) C (M-rad(N) :pr a) U (M-rad(N) :p1 b).

(2)=(3) Notice to the fact that if a submodule (a subgroup) is a subset of
the union of two submodules (two subgroups), then it is a subset of one of
them. Thus we have (N :p ab) C (M-rad(N) :pr a) or (N :p ab) C (M-
rad(N) :a b).

(3)=(1) is straightforward. O

Lemma 2.4. Let M be a finitely generated multiplication R-module. Then
for any submodule N of M, \/(N :g M) = (M-rad(N) :g M).

Proof. By [21, Theorem 4], (M-rad(N) :g M) C /(N :g M). Now we prove
the other containment without any assumption on M. Let K be a prime
submodule of M containing N. Then clearly (K : M) is a prime ideal that
contains (N : M). Therefore /(N :g M) C (K : M), so /(N :g M) C (M-
rad(N) :gp M). O
Proposition 2.5. Let M be a finitely generated multiplication R-module and

N be a submodule of M. Then M-rad(N) is a primary submodule of M if
and only if M-rad(N) is a prime submodule of M.

Proof. Suppose that M-rad(N) is a primary submodule of M. Let a € R and
m € M be such that am € M-rad(N) and m ¢ M-rad(N). Since M-rad(N)

is primary, it follows a € \/(M-rad(N) :p M) = \/\/(N :r M) =
V(N :g M) = (M-rad(N) :g M), by Lemma 2.4. Thus M-rad(N) is a prime
submodule of M. The converse part is clear. O
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Theorem 2.6. Let M be a finitely generated multiplication R-module. If N
18 a 2-absorbing primary submodule of M, then

1. (N :g M) is a 2-absorbing primary ideal of R.
2. M-rad(N) is a 2-absorbing submodule of M.
Proof. (1) Let a,b,c € R be such that abc € (N :gp M), ac¢\/ (N :p M) and

bc € /(N :g M). Since, by Lemma 2.4, \/(N :g M) = (M-rad(N) :g M),
there exist m1, ms € M such that acmq 5? M- rad( ) and bcm2 Z M- rad( ).
But ab(emy + ¢mg) € N, because abc € (N :g M). So a(emy + cmg) € M-
rad(N) or b(emy + cmg) € M-rad(N) or ab € (N :gp M), since N is 2-
absorbing primary. If ab € (N :g M), then we are done. Thus assume that
alemy + emz) € M-rad(N). So acms ¢ M-rad(N), because acmi ¢ M-
rad(N). Therefore ab € (N :g M), since N is 2-absorbing primary and
abemg € N. Similarly if b(emy + emg) € M-rad(N), then ab € (N :p M).
Consequently (N :g M) is a 2-absorbing primary ideal.

(2) By [11, Theorem 2.3] we have two cases.

Case 1. \/(N :g M) = pis a prime ideal of R. Since M is a multiplication
module, M-rad(N) = /(N :g M)M = pM, where pM is a prime submodule
of M by [17, Corollary 2.11]. Hence in this case M-rad(N) is a 2-absorbing
submodule of M.

Case 2. /(N :g M) = p; N pa, where p;, ps are distinct prime ideals
of R that are minimal over (N :gp M). In this case, we have M-rad(N) =

(N :g M)M = (p1 Np2)M = ([p1 +annM| N [ps +annM )M = py M Npa M,
where p1 M, poM are prime submodules of M by [17, Corollary 2.11, 1.7].
Consequently, M-rad(N) is a 2-absorbing submodule of M by [26, Theorem
2.3]. O

Theorem 2.7. Let M be a (resp. finitely generated multiplication) R-module
and N be a submodule of M. If M-rad(N) is a (resp. primary) prime sub-
module of M, then N is a 2-absorbing primary submodule of M.

Proof. Suppose that M-rad(N) is a prime submodule of M. Let a,b € R and
m € M be such that abm € N, am ¢ M-rad(N). Since M-rad(N) is a prime
submodule and abm € M-rad(N), then b € (M-rad(N) :g M). So bm € M-
rad(N). Consequently N is a 2-absorbing primary submodule of M. Now
assume that M is a finitely generated multiplication module and M-rad(N) is
a primary submodule of M, then M-rad(N) is a prime submodule of M, by
Proposition 2.5. Therefore N is 2-absorbing primary. O

In [2, Theorem 1(3)], it was shown that for any faithful multiplication
module M not necessary finitely generated, M-rad(IM) = VIM for any ideal
I of R.
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Theorem 2.8. Let M be a (resp. finitely generated faithful multiplication)
faithful multiplication R-module. If M-rad(N) is a (resp. primary) prime
submodule of M, then N™ is a 2-absorbing primary submodule of M for every
positive integer n > 1.

Proof. Assume that M is a (resp. finitely generated faithful multiplication)
faithful multiplication module and M-rad(N) is a (resp. primary) prime sub-
module of M. There exists an ideal I of R such that N = IM. Thus

M —rad(N™) = VI*M = M — rad(N),

which is a (resp. primary) prime submodule of M. Hence for every positive
integer n > 1, N™ is a 2-absorbing primary submodule of M, by Theorem
2.7. O

Recall that a commutative ring R with 1 # 0 is called a divided ring if for
every prime ideal p of R, we have p C xR for every z € R\p. Generalizing
this idea to modules we say that an R-module M is divided if for every prime
submodule N of M, N C Rm for all m € M\N.

Theorem 2.9. If M is a divided R-module, then every proper submodule of
M is a 2-absorbing primary submodule of M. In particular, every proper
submodule of a chained module is a 2-absorbing primary submodule.

Proof. Let N be a proper submodule of M. Since the prime submodules of a
divided module are linearly ordered, we conclude that M-rad(N) is a prime
submodule of M. Hence N is a 2-absorbing primary submodule of M by
Theorem 2.7. O

Remark 2.10. Let ] = (0:g M) and R’ = R/I. Tt is easy to see that N is
a 2-absorbing primary R-submodule of M if and only if IV is a 2-absorbing
primary R’-submodule of M. Also, (N :g M) is a 2-absorbing primary ideal
of R if and only if (IV :g M) is a 2-absorbing primary ideal of R’.

Theorem 2.11. Let S be a multiplicatively closed subset of R and M be an R-
module. If N is a 2-absorbing primary submodule of M and S™'N # S~ M,
then S™IN is a 2-absorbing primary submodule of S™*M.

Proof. If %%m € S7IN, then uajagm € N for some u € S. It follows that

uaim € M—razd(N) or uagm € M-rad(N) or araz € (N :g M), so we conclude
that §17% = 20 € S~ (M-rad(N)) € S™'M-rad(S™'N) or 272 = 2% ¢

S7IM-rad(S7IN) or @92 = @182 ¢ G=L(N :p M) C (S7IN :g-15 STIM).

S1 S2 S182 D
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Theorem 2.12. Let I be a 2-absorbing primary ideal of a ring R and M a
faithful multiplication R-module such that Assp(M//IM) is a totally ordered
set. Then abm € IM implies that am € VIM or bm € VIM or ab € I
whenever a,b € R and m € M.

Proof. Let a,b € R, m € M and abm € IM. If (VIM :g am) = R or
(VIM :r bm) = R, we are done. Suppose that (vIM :g am) and (VIM :p
bm) are proper ideals of R. Since Assgp(M/VIM) is a totally ordered set,
(VIM :p am)U (VIM :x bm) is an ideal of R, and so there is a maximal
ideal m such that (vVIM :r am) U (VIM :gr bm) C m. We have am ¢
Tau(M) :={m' e M : (1 —x)m’ =0, for some z € m}, since am € Ty (M)
implies that (1 — z)am = 0 for some z € m, thus (1 — z)am € vIM and so
1 —x € (VIM :g am) C m, a contradiction. So by [17, Theorem 1.2], there
are ¢ € m and m’ € M such that (1 — )M C Rm/. Thus, (1 — z)m = rm/
some r € R. Moreover, (1 —z)abm = sm/’ for some s € I, because abm € IM.
Hence (abr — s)m’ = 0 and so (1 — x)(abr — $)M C (abr — s)Rm’ = 0. Thus
(1—x)(abr—s) =0, because M is faithful. Therefore, (1—x)abr = (1—x)s € I.
Then (1—x)ar € VT or (1—z)b € VT or abr € I, since I is 2-absorbing primary.
If (1 —z)ar € VI, then (1 —x)a € VI or (1 —z)r € VI or ar € \/T, because
by [11, Theorem 2.2] v/T is a 2-absorbing ideal of R. If (1 — x)a € /I, then
(1 —x)am € VIM and so 1 — 2 € (V/IM :g am) C m that is a contradiction.
If (1 —a2)r € VI, then (1 —x)?>m = (1 — 2)rm’ € VIM which implies that
(1—2)% e (VIM :g m) C (VIM :g am) C m, a contradiction. Similarly we
can see that (1 — x)b & VI. Now, ar € /T implies that (1 — z)am = arm’ €
VIM and so 1 — 2 € (VIM :x am) C m which is a contradiction.

If arb € I, then ar € VI or br € \/T or ab € I which the first two cases are
impossible, thus ab € I. O

Let R be a ring with the total quotient ring K. A nonzero ideal I of R
is said to be invertible if II=* = R, where I7! = {z € K | 2z C R}. The
concept of an invertible submodule was introduced in [23] as a generalization
of the concept of an invertible ideal. Let M be an R-module and let S =
R\{0}. Then T' = {t € S | tm = 0 for some m € M implies m = 0} is a
multiplicatively closed subset of R. Let N be a submodule of M and N’ =
{r € Ry | N C M}. A submodule N is said to be invertible in M, if
N'N = M, [23]. A nonzero R-module M is called Dedekind provided that
each nonzero submodule of M is invertible.

We recall from [20] that, a finitely generated torsion-free multiplication
module M over a domain R is a Dedekind module if and only if R is a Dedekind
domain.

Theorem 2.13. Let R be a Noetherian domain, M a torsion-free multiplica-
tion R-module. Then the following statements are equivalent:
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1. M is a Dedekind module;

2. If N is a nonzero 2-absorbing primary submodule of M, then either
N =M™ for some mazimal submodule M of M and some positive integer
n>1or N =IMPMG for some mazimal submodules My and My of M
and some positive integers n,m > 1;

3. If N is a nonzero 2-absorbing primary submodule of M, then either
N = P" for some prime submodule P of M and some positive integer
n>1or N = PPy for some prime submodules Py and Py of M and
some positive integers n,m > 1.

Proof. By the fact that every multiplication module over a Noetherian ring is
a Noetherian module, M is Noetherian and so finitely generated.

(1) = (2) Let N be a 2-absorbing primary submodule of M. There exists a
proper ideal I of R such that N = IM. So (N :g M) = I is a 2-absorbing
primary ideal of R, by Theorem 2.6. Since R is a Dedekind domain, then we
have either I = m™ for some maximal ideal m of R and some positive integer
n > 1or I = mimy for some maximal ideals m; and my of R and some positive
integers n,m > 1, by [9, Theorem 2.11]. Thus, either N = m"M = (mM)" or
N = (myM)™*(moM)™ as desired.

(2) = (3) is clear.

(3) = (1) It is sufficient to show that R is a Dedekind domain, for this let
m be a maximal ideal of R. Let I be an ideal of R such that m®> C I C m.
So v/I = m and then M-rad(IM) = mM, since M is a faithful multiplication
R-module. Then I M is a 2-absorbing primary submodule of M, Theorem 2.7.
By assumption, either IM = P™ for some prime submodule P of M and some
positive integer n > 1 or IM = P'P3* for some prime submodules P; and
P, of M and some positive integers n,m > 1. Now, since M is cancellation,
either I = p™ for some prime ideal p of R or I = p7p5* for some prime ideals
p1 and po of R, which any two cases have a contradiction. Hence there are no
ideals properly between m? and m. Consequently R is a Dedekind domain by
[19, Theorem 39.2, p. 470]. O

Proposition 2.14. Let M be a multiplication R-module and K, N be sub-
modules of M. Then

1. /(KN (g M) = /(K :r M)N+/(N :gp M).
2. M-rad(KN) = M-rad(K) N M-rad(N).
3. M-rad(KNN)=M-rad(K) N M-rad(N).
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Proof. (1) By hypothesis there exist ideals I, J of R such that K = IM
and N = JM. Now assume r € /(K :g M) N /(N :g M). Therefore there
exist positive integers m, n such that ¥ M C IM and »"M C JM. Hence
rmt N C rmJM C IJM = KN. Sor € /(KN :g M). Consequently
VK g M) N /(N :g M) C /(KN :g M). The other inclusion trivially
holds.

(2) By part (1) and [17, Corollary 1.7],

M —rad(KN) = /(KN :g M)M = (\/(K :r M)N+/(N :g M))M
(W(K :g M)+annM|N[\/(N :g M)+ annM])M

= V(K g MYMN+/(N g M)M

M —rad(K) N M —rad(N).
(3) See [1, Theorem 15(3)]. O

Theorem 2.15. Let M be a multiplication R-module and N1, N3, ..., N, be
2-absorbing primary submodules of M with the same M -radical. Then N =
Ny N; is a 2-absorbing primary submodule of M.

Proof. Notice that M-rad(N) = NI M-rad(N;), by Proposition 2.14. Sup-
pose that abm € N for some a,b € R and m € M and ab & (N :g M). Then
ab & (N; :r M) for some 1 < ¢ < n. Hence am € M-rad(N;) or bm € M-
rad(Nl) O

Lemma 2.16. Let M be an R-module and N a 2-absorbing primary submodule
of M. Suppose that abK C N for some elements a,b € R and some submodule
K of M. Ifab ¢ (N :g M), then aK C M-rad(N) or bK C M-rad(N).

Proof. Suppose that aK ¢ M-rad(N) and bK ¢ M-rad(N). Then ak, ¢ M-
rad(N) and bky ¢ M-rad(N) for some ki,ke € K. Since abk; € N and
ab & (N :g M) and aky ¢ M-rad(N), we have bky € M-rad(N). Since
abks € N and ab € (N :g M) and bk & M-rad(N), we have aky € M-rad(N).
Now, since ab(k1 + ko) € N and ab € (N :g M), we have a(ky + ky) € M-
rad(N) or b(ky + k2) € M-rad(N). Suppose that a(ky + k2) = aky +aks € M-
rad(N). Since ake € M-rad(N), we have ak; € M-rad(N), a contradiction.
Suppose that b(ky + k) = bky + bka € M-rad(N). Since bk; € M-rad(N),
we have bk € M-rad(N), a contradiction again. Thus aK C M-rad(N) or
bK C M-rad(N). O

The following theorem offers a characterization of 2-absorbing primary
submodules.
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Theorem 2.17. Let M be an R-module and N be a proper submodule of M.
The following conditions are equivalent:

1. N is a 2-absorbing primary submodule of M ;

2. If LI, K C N for some ideals I, Is of R and some submodule K of M,
then either I1Io C (N :g M) or LK C M-rad(N) or IsK C M-rad(N);

8. If N1NyN3 C N for some submodules N1, No and N3 of M, then either
NiNy C N or NyN3 C M-rad(N) or NoN3 C M-rad(N).

Proof. (1)=(2) Suppose that N is a 2-absorbing primary submodule of M
and I1 oK C N for some ideals Iy,I> of R and some submodule K of M
and 1T, ¢ (N :g M). We show that ;K C M-rad(N) or LK C M-
rad(N). Suppose that 1K ¢ M-rad(N) and I, K ¢ M-rad(N). Then there
are ay € I1 and as € I such that ey K ¢ M-rad(N) and ao K ¢ M-rad(N).
Since ajas K C N and neither a; K C M-rad(N) nor as K C M-rad(N), we
have ajas € (N :g M) by Lemma 2.16.

Since I1I, ¢ (N :g M), we have biby & (N :zp M) for some by € I; and
by € Ir. Since bibo K C N and bibs € (N :g M), we have by K C M-rad(N)
or bo K C M-rad(N) by Lemma 2.16. We consider three cases.

Case 1. Suppose that bi K C M-rad(N) but boK ¢ M-rad(N). Since
a1b2 K C N and neither by K C M-rad(N) nor a1 K C M-rad(N), we conclude
that a1by € (N :g M) by Lemma 2.16. Since by K C M-rad(N) but a1 K ¢ M-
rad(N), we conclude that (a; + b1)K ¢ M-rad(N). Since (aj + by)bo K C N
and neither bo K C M-rad(N) nor (a; + b1)K C M-rad(N), we conclude that
(a1 + b1)by € (N :g M) by Lemma 2.16. Since (a; + b1)by = a1bs + b1by €
(N :g M) and a1bs € (N :g M), we conclude that bibs € (N :g M), a
contradiction.

Case 2. Suppose that bp K C M-rad(N) but by K ¢ M-rad(N). Similar
to the previous case we reach to a contradiction.

Case 3. Suppose that by K C M-rad(N) and bo K C M-rad(N). Since
boK C M-rad(N) and asK ¢ M-rad(N), we conclude that (as + bo)K ¢
M-rad(N). Since aq(ag + b2)K C N and neither a1 K C M-rad(N) nor
(ag + b2)K C M-rad(N), we conclude that aj(as + b2) = ajas + a1by €
(N :g M) by Lemma 2.16. Since ajas € (N :g M) and ajas + a1by €
(N :r M), we conclude that a1by € (N :g M). Since by K C M-rad(N)
and a1 K ¢ M-rad(N), we conclude that (a1 + b1)K ¢ M-rad(N). Since
(a1 + b1)agK C N and neither as K C M-rad(N) nor (ay + b1)K C M-
rad(NV), we conclude that (ay + b1)as = ajas + bias € (N :g M) by Lemma
2.16. Since ajaz € (N :g M) and ajas + bias € (N :g M), we conclude
that bias € (N :g M). Now, since (a1 + b1)(az + b2)K C N and neither
(a1 + b1)K C M-rad(N) nor (as + b2)K C M-rad(N), we conclude that
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(a1 + bl)(az + b2) = ara2 + a1by + brag + b1by € (N g M) by Lemma 2.16.
Since ajaz,ai1be,bias € (N :g M), we have bibs € (N :g M), a contradiction.
Consequently I; K C M-rad(N) or I, K C M-rad(N).

(2)=-(1) is trivial.

(2)=(3) Let NyNaN3 C N for some submodules N1, Ny and N3 of M such
that N1 Ny §Z N. Since M is multiplication, there are ideals I, Is of R
such that N1 = IlM, N2 = IQM Clearly IllzNg - N and 11[2 7@ (N ‘R
M). Therefore I} N3 C M-rad(N) or I;N3 C M-rad(N), which implies that
N1N3 g M—rad(N) or N2N3 Q M—rad(N).

(3)=(2) Suppose that I1IoK C N for some ideals I;, Io of R and some
submodule K of M. It is sufficient to set Ny := I1 M, Ny := [b,M and N3 = K
in part (3). O

Theorem 2.18. Let M be a multiplication R-module and N a submodule of
M. If (N :g M) is a 2-absorbing primary ideal of R, then N is a 2-absorbing
primary submodule of M.

Proof. Let I1Io K C N for some ideals I7, I of R and some submodule K of
M. Since M is multiplication, then there is an ideal I3 of R such that K =
IsM. Hence I1 1515 C (N :g M) which implies that either I1Io C (N :g M) or
L3 C /(N :g M) or IsI3 C /(N :g M), by [11, Theorem 2.19]. If I I, C
(N :g M), then we are done. So, suppose that I1I3 C /(N :g M). Thus
LIsM=5LK C /(N :g M)M = M-rad(N). Similary if Iy I3 C /(N :gp M),
then we have Ib K C M-rad(N). It completes the proof, by Theorem 2.17. [

The following example shows that Theorem 2.18 is not satisfied in general.

Example 2.19. Consider the Z-module M = Z x Z and N = 6Z x 0 a
submodule of M. Observe that Z x 0, 2Z x Z and 3Z x Z are some of the prime
submodules of M containing N. Also (N :z M) = 0 is a 2-absorbing primary
ideal of Z. On the other hand, since 2.3.(1,0) = (6,0) € N, 2.3 ¢ (N :z M),
2.(1,0) = (2,0) ¢ Mrad(N) C(Zx0)N(2ZXxZ)N(BZXxZ)=6Zx0=N
and 3.(1,0) = (3,0) ¢ M-rad(N) = N, so N is not a 2-absorbing primary
submodule of M.

Theorem 2.20. Let M be a multiplication R-module and N1 and Ns be pri-
mary submodules of M. Then N1 N Ny is a 2-absorbing primary submodule of
M. If in addition M is finitely generated faithful, then N1Ny is a 2-absorbing
primary submodule of M.

Proof. Since N; and N, are primary submodules of M, then (Ny :g M)
and (N3 :p M) are primary ideals of R. Hence (Ny :g M)(N2 :g M) and
(N1 NNy :g M) = (Ny :g M)N (Ny :gp M) are 2-absorbing primary ideals
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of R, by [11, Theorem 2.4]. Therefore, Theorem 2.18 implies that N; N Ny
is a 2-absorbing primary submodule of M. If M is a finitely generated faith-
ful multiplication R-module, then (N1Ny :g M) = (N1 :g M)(Ny :g M).
So, again by Theorem 2.18 we deduce that N;Ny is a 2-absorbing primary
submodule of M. O

Let M be a multiplication R-module and N a primary submodule of M.
We know that /(N :g M) is a prime ideal of R and so P = M-rad(N) =
V(N :g M)M is a prime submodule of M. In this case we say that N is a
P-primary submodule of M.

Corollary 2.21. Let M be a multiplication R-module and Py and Py be prime
submodules of M. Suppose that P{* is a Pi-primary submodule of M for some
positive integer n > 1 and PJ* is a Py-primary submodule of M for some
positive integer m > 1.

1. PN P3" is a 2-absorbing primary submodule of M.

2. If in addition M is finitely generated faithful, then P Py is a 2-absorbing
primary submodule of M.

Theorem 2.22. Let M be a multiplication R-module and N be a submodule
of M that has a primary decomposition. If M-rad(N) =9, NI, where M,
and M, are two mazximal submodules of M, then N is a 2-absorbing primary
submodule of M.

Proof. Assume that N = Ny N---N N, is a primary decomposition. By
Proposition 2.14(3), M-rad(N) = M-rad(Ny) N ---N M-rad(N,,) = 9, N9,
Since M-rad(N;)’s are prime submodules of M, then {M-rad(Ny),..., M-
rad(N,)} = {9, M, }, by [3, Theorem 3.16]. Without loss of generality we
may assume that for some 1 <t < n, {M-rad(Ny),..., M-rad(N¢)} = {9, }
and {M-rad(N¢y1), ..., M-rad(N,)} = {9,}. Set Ky := Ny nN---N N; and
K5 := N¢p1N---NN,. By [8, Lemma 1.2.2], K is an 9, -primary submodule
and K5 is an 9M,-primary submodule of M. Therefore, by Theorem 2.20,
N = K; N K is 2-absorbing primary. O

Lemma 2.23. (/22, Corollary 1.3]) Let M and M’ be R-modules with f :
M — M’ an R-module epimorphism. If N is a submodule of M containing
Ker(f), then f(M-rad(N)) = M'-rad(f(N)).

Theorem 2.24. Let f : M — M’ be a homomorphism of R-modules.

1. If N’ is a 2-absorbing primary submodule of M', then f=*(N') is a 2-
absorbing primary submodule of M.
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2. If f is epimorphism and N is a 2-absorbing primary submodule of M
containing Ker(f), then f(N) is a 2-absorbing primary submodule of
M.

Proof. (1) Let a,b € R and m € M such that abm € f~'(N’). Then abf(m) €
N’. Hence ab € (N’ :g M) or af(m) € M'-rad(N’) or bf(m) € M'-rad(N'),
and thus ab € (f~Y(N') :g M) or am € f~(M'-rad(N’)) or bm € f~1(M'-
rad(N’)). By using the inclusion f~1(M’-rad(N’)) C M-rad(f~1(N")), we
conclude that f~1(N’) is a 2-absorbing primary submodule of M.

(2) Let a,b € R, m' € M’ and abm’ € f(N). By assumption there exists
m € M such that m’ = f(m) and so f(abm) € f(N). Since Ker(f) C N, we
have abm € N. It implies that ab € (N :g M) or am € M-rad(N) or bm € M-
rad(N). Hence ab € (f(N) :g M') or am’ € f(M-rad(N)) = M’'-rad(f(N))
or bm’ € f(M-rad(N)) = M'-rad(f(N)). Consequently f(N) is a 2-absorbing
primary submodule of M’. O

As an immediate consequence of Theorem 2.24(2) we have the following
Corollary.

Corollary 2.25. Let M be an R-module and L C N be submodules of M.
If N is a 2-absorbing primary submodule of M, then N/L is a 2-absorbing
primary submodule of M /L.

Theorem 2.26. Let K and N be submodules of M with K C N C M. If K
is a 2-absorbing primary submodule of M and N/K is a weakly 2-absorbing

primary submodule of M/K, then N is a 2-absorbing primary submodule of
M.

Proof. Let a,b € R, m € M and abm € N. If abm € K, then am € M-
rad(K) € M-rad(N) or bm € M-rad(K) C M-rad(N) or ab € (K :g M) C
(N :g M) as it is needed.

So suppose that abm ¢ K. Then 0 # ab(m + K) € N/K that implies,
a(m+ K) € M/K-rad(N/K) = =229 o p(m + K) € M/K-rad(N/K) or
ab € (N/K :g M/K). It means that am € M-rad(N) or bm € M-rad(N) or
ab € (N :g M), which completes the proof. O

Let R; be a commutative ring with identity and M; be an R;-module,
for i = 1,2. Let R = Ry x Ry. Then M = M; x My is an R-module and
each submodule of M is of the form N = N; x Ny for some submodules N;
of My and Ny of M>. In addition, if M; is a multiplication R;-module, for
1 = 1,2, then M is a multiplication R-module. In this case, for each submodule
N = Ny x Ny of M we have M-rad(N) = M;-rad(Ny) x Ma-rad(N2).
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Theorem 2.27. Let R = Ry X Ry and M = M; x My where My is a multi-
plication Ri-module and My is a multiplication Ro-module.

1. A proper submodule Ky of My is a 2-absorbing primary submodule if and
only if N = K1 X Ms is a 2-absorbing primary submodule of M.

2. A proper submodule Ko of My is a 2-absorbing primary submodule if and
only if N = My x K5 is a 2-absorbing primary submodule of M.

8. If K1 is a primary submodule of My and K is a primary submodule of
Ms, then N = Ky X Ks is a 2-absorbing primary submodule of M.

Proof. (1) Suppose that N = K; X Ms is a 2-absorbing primary submodule of

M. From our hypothesis, N is proper, so K1 # M;. Set M’ = {O}Afsz. Hence

N' = {0}% is a 2-absorbing primary submodule of M’ by Corollary 2.25.
Also observe that M’ = M; and N’ = K;. Thus K; is a 2-absorbing primary
submodule of M;. Conversely, if K7 is a 2-absorbing primary submodule of
My, then it is clear that N = K; x My is a 2-absorbing primary submodule
of M.

(2) Tt can be easily verified similar to (1).

(3) Assume that N = Ky x Ky where K; and K are primary submodules of
M, and Ma, respectively. Hence (K; x Mo) N (M; x K3) = K1 X Ko = N
is a 2-absorbing primary submodule of M, by parts (1) and (2) and Theorem
2.20. O

Theorem 2.28. Let R = Ri X Ry and M = M, x M be a finitely generated
multiplication R-module where My is a multiplication Ry-module and Ms is a
multiplication Ro-module. If N = Ny X Ny is a proper submodule of M, then
the followings are equivalent.

1. N is a 2-absorbing primary submodule of M.

2. N1 = My and Ns is a 2-absorbing primary submodule of My or Ny = My
and N7 is a 2-absorbing primary submodule of My or N1, No are primary
submodules of My, My, respectively.

Proof. (1)=(2) Suppose that N = N; x Ny is a 2-absorbing primary sub-
module of M. Then (N : M) = (N7 : My) x (N2 : M) is a 2-absorbing
primary ideal of R = Ry X Ry by Theorem 2.6. From Theorem 2.3 in [11],
we have (N7 : My) = Ry and (N3 : M) is a 2-absorbing primary ideal of
Ry or (N : My) = Ry and (N7 : M7) is a 2-absorbing primary ideal of Ry or
(N7 : My) and (N : My) are primary ideals of Ry, Ra, respectively. Assume
that (N7 : My) = Ry and (N3 : M) is a 2-absorbing primary ideal of Rs.
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Thus N1 = M7 and Ns is a 2-absorbing primary submodule of My by Theo-
rem 2.18. Similarly if (N3 : M) = Ro and (N7 : M) is a 2-absorbing primary
ideal of Ry, then Ny = M5 and Nj is a 2-absorbing primary submodule of M.
And if the last case hold, then clearly we conclude that Ny, Ny are primary
submodules of M7, Ms, respectively.

(2)=(1) It is clear from Theorem 2.27. O
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