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Drift perturbation’s influence on traveling wave
speed in KPP-Fisher system

Fathi DKHIL and Bechir MANNOUBI

Abstract

This paper dressed the drift perturbation effects on the traveling
wave speed in a reaction-diffusion system. We prove the existence of
a traveling front solution of a KPP-Fisher equation and we show an
asymptotic expansion of her speed. Finally, we discuss according all
parameters of our system regions of the plane in which the traveling
wave speed increases or decreases as a function of a small parameter ε.

1 Introduction

Front propagation is a phenomenon that has many scientific applications ; such
as : the sprawl of epidemics and diseases, biological invasions and collective
behavior, ecology, population dynamics, reaction kinetics, the flow in porous
materials, etc.
This phenomenon is generally modeled by a reaction-diffusion equation of the
following form  Ut = ∇.(A∇U) + f(U)

U(0, x) = U0(x)

where the diffusivity A is a positive definite matrix and the reaction term f is
a C2 nonlinear function.
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Understanding the mechanism of the settings of perturbation on the diffusion
and (or) reaction influences the traveling fronts like configuring their location,
profile, and their speed is one of the most fundamental issues. In fact, varia-
tional principles for the speed of front propagation for KPP-type nonlinearities,
respectively Fisher’s population genetic model as well as various other implica-
tions of the qualitative behavior of propagating waves, were given by Hadeler
and Rothe in [7] and Gärtner and Freidlin in [6]. Paper [2] is used to han-
dle the speed of traveling fronts of reactions-diffusion equations of bistable or
combustion type with rapidly oscillating diffusion and drift coefficients. In the
monostable case (KPP-Fisher type), the variation of the traveling wave speed
was treated in [3] for nonlocally perturbed reaction-diffusion equations. Com-
pare the survey papers ([14],[16],[15]) in order to have an excellent reference
on propagation phenomenas mathematical results especially on the existence
and stability of traveling waves, and other references that has not already been
cited here.
In this paper we consider a particular kind of reaction-diffusion system with
drift perturbation. The type of system we are dealing with is the following ut = α∆u+ γu(1− u− v)

vt = β∆v + δb∇v + ηv(1− u− v)
(1)

with:
x = (x1, x2, ...., xn) ∈ D = R× Ω ⊂ Rn, t > 0,
b = b(x2...xn), β = β(ε) −→ α, η = η(ε) −→ γ and δ = δ(ε) −→ 0 as ε −→ 0.
The cross section of the cylinder Ω ⊂ Rn−1 is bounded with C1,λ boundary.
For simplicity, we will consider here traveling waves in direction e1 = (1, 0, ..., 0).
A very important question is how to study the variation of the traveling
wave speed in discussing the influence of drift perturbation and all param-
eters α, γ, β, δ, η of system (1).
Existence of unique monotone and stable traveling waves were shown in [5],
[9], [10] and [13] for monotonic systems. A variational characterization given
in [12] allows to prove an asymptotic expansion for the traveling wave speed
solution of system (1).
The paper is organized as follows. In section 2, we rescale system (1) to obtain
a monotone system and we show the existence of unique monotone and stable
traveling wave up to translation and we give a variational characterization of
the wave speed. In section 3, we prove that the traveling wave has an asymp-
totic expansion. Finally in section 4, we determine regions of the plane in
which the traveling wave speed solution of system (1) increases or decreases
as a function of ε.
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2 The variational characterization

We rescale the system (1). So, with no loss of generality, we can suppose that
α = γ = 1 and our system becomes ut = ∆u+ u(1− u− v)

vt = β∆v + δb∇v + ηv(1− u− v)
(2)

with b = b(x2...xn), β = β(ε) −→ 1, η = η(ε) −→ 1 and δ = δ(ε) −→ 0 as
ε −→ 0.
We pose w = 1− u. Thereby system (2) becomes wt = ∆w − (1− w)(w − v)

vt = β∆v + δb∇v + ηv(w − v).
(3)

We can easily see that system (3) is monotone. Therefore there exists a unique
monotone traveling wave (cε, wε, vε) in direction e1 solution of (3) connecting
two zeros of its nonlinearities; this wave is stable with respect to some subset
Is of initial data. For more detail, see for example [5], [9], [10] and [13].
The traveling wave solution (cε, wε, vε) of system (3) will satisfy the following
boundary conditions(

wε, vε
)

(−∞) =
(

1, 0
)

and
(
wε, vε

)
(+∞) =

(
1
2 ,

1
2

)
.

Let (c0, w0, v0) be the traveling wave solution of the system (3) when ε = 0
(i.e. β = 1, η = 1 and δ = 0).
Let W0 = 1 + v0 − w0 = u0 + v0, then W0 is a traveling front solution of the
following KPP-Fisher equation c0W

′
0 = W ′′0 +W0(1−W0)

W0(−∞) = 0,W0(+∞) = 1
(4)

with W0(t, x) = W0(x + c0te1) and W ′0 represent the derivative of W0 with
respect to the first component x1 of x.
Let

Wε = 1 + vε − wε = vε + uε, (5)

then Wε is a traveling wave solution of the following equation cεW
′
ε = ∆Wε +Wε(1−Wε) + (β − 1)∆vε + δb∇vε + (η − 1)vε(1−Wε)

Wε(−∞) = 0, Wε(+∞) = 1.
(6)
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Let

K =

{
y ∈ C1(R, C2(D))

∣∣∣∂ty(t, x) > 0, 0 < y(t, x) < 1, y(0, .) ∈ Is,
y(−∞) = 0, y(+∞) = 1

}

be the sets of admissible comparison functions. For y ∈ K define

ψ(y) =
∆y + y(1− y) + (β − 1)∆vε + δb∇vε + (η − 1)vε(1− y)

∂ty
.

In [5] a variational characterization of the wave speed was given for more
general situations. Here we will state a specific version of the result as a
lemma.

LEMMA 2.1. [5] Suppose that there exists a unique stable traveling wave for
problem (6) then the traveling wave speed cε is given by

sup
y∈K

inf
(t,x)∈(R×D)

ψ(y(t, x)) = cε = inf
y∈K

sup
(t,x)∈(R×D)

ψ(y(t, x)). (7)

The proof of this minimax characterization of the wave speed cε is based
on the maximum principle and relates technically to results given by Vol’pert
et al in [12] for monotone systems of ODE’s.

3 Asymptotic expansion

THEOREM 3.1. The traveling wave (cε, wε, vε) solution of the system (3)
has the following expansion:

cε = c0 + εc1 + o(ε)
vε = v0 + εv1 + o(ε)
wε = w0 + εw1 + o(ε).

(8)

Proof. We note β′ =
dβ

dε |ε=0
, η′ =

dη

dε |ε=0
and δ′ =

dδ

dε |ε=0
then equation

(6) becomes

Wεt = ∆Wε +Wε(1−Wε) + ε [β′∆vε + δ′b∇vε + η′vε(1−Wε)] + o(ε).

Since Wε and vε are regular and bounded functions, then the comparison
principle implies that

Wε = W0 + εW1 + o(ε).
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Furthermore, we have uεt = ∆uε + uε(1− uε − vε)

u0t = ∆u0 + u0(1− u0 − v0)

We substract these two equations to get

(uε − u0)t −∆(uε − u0)− (uε − u0)(1− u0 − v0) = u(W0 −Wε).

Using the comparison principle, we obtain

uε = u0 + εu1 + o(ε).

Therefore, we deduce from (5) that

wε = w0 + εw1 + o(ε)

and
vε = v0 + εv1 + o(ε)

which justify our expansion for vε and wε.
To show the asymptotic expansion of cε, we consider the test function:

y(x) = W0 + εy1(x),

where y1 will be determined below.
An easy computation gives that

ψ(y) =
∆y + y(1− y) + (β − 1)∆vε + δb∇vε + (η − 1)vε(1− y)

∂ty

=
c0W

′
0 + ε [y′′1 + (1− 2W0)y1 + η′v0(1−W0) + β′v′′0 + δ′bv′0]

W ′0 + εy′1
+ o(ε)

= c0 +
ε

W ′0
[y′′1 − c0y′1 + (1− 2W0)y1 + η′v0(1−W0) + β′v′′0 + δ′bv′0]

+o(ε).

We choose y1 such that the coefficient of ε in ψ(y) is constant. Thus y1 solves
the following equation y′′1 − c0y′1 + (1− 2W0)y1 = −c1W ′0 − η′v0(1−W0)− β′v′′0 − δ′bv′0

y1(±∞) = 0.
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Near ±∞ all derivatives of W0 have the same exponential decay rate as W ′0.
Therefore with our choice of y we have ∂ty > 0 for small ε. Thus y is an
admissible function for the minimax characterization (7) and we have

cε = c0 + εc1 + o(ε).

This ends the proof of Theorem 3.1.

4 Sign of c1

In this section, we discuss according to derivative perturbations parameters
how c1 may change sign.

PROPOSITION 4.1. Let (cε, wε, vε) be the traveling wave solution of sys-
tem (3), then the variation of cε is as follows.

• If c0β
′ + δ′

∮
b ≤ 0 and η′ − β′ ≤ −c0 +

√
c20 − 4

2

(
c0β
′ + δ′

∮
b

)
then cε decreases as a function of ε.

• If c0β
′ + δ′

∮
b ≥ 0 and η′ − β′ ≥ −c0 +

√
c20 − 4

2

(
c0β
′ + δ′

∮
b

)
then cε increases as a function of ε.

Proof. We note w′ and v′ the derivatives of w and v with respect to the
first variable then we have cεw

′
ε = ∆wε − (1− wε)(wε − vε)

cεv
′
ε = β∆vε + δbv′ε + ηvε(wε − vε)

this can be writen as
(c0 + εc1)(w0 + εw1)′ = ∆(w0 + εw1)− (1− w0 − εw1)(w0 + εw1 − v0

−εv1) + o(ε)

(c0 + εc1)(v0 + εv1)′ = β∆(v0 + εv1) + δb(v0 + εv1)′

+η(v0 + εv1)(w0 + εw1 − v0 − εv1) + o(ε).
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Since (c0, w0, v0) is a solution of the system (3) when ε = 0 then we have
c1w

′
0 + c0w

′
1 = ∆w1 − (1− w0)(w1 − v1) + w1(w0 − v0)

c1v
′
0 + c0v

′
1 = β′∆v0 + ∆v1 + η′v0(w0 − v0) + δ′bv′0 + v0(w1 − v1)

+v1(w0 − v0)

which implies that
∆w1 − c0w′1 − (1− w0)(w1 − v1) + w1(w0 − v0) = c1w

′
0

∆v1 − c0v′1 + v0(w1 − v1) + v1(w0 − v0) = c1v
′
0 − β′∆v0 − η′v0(w0 − v0)

−δ′bv′0.

We substract these two equations to obtain

∆(v1 − w1)− c0(v1 − w1)′ − (v1 − w1)(1 + 2(v0 − w0))

= c1(v0 − w0)′ − β′∆v0 − η′v0(w0 − v0)− δ′bv′0.
We pose φ = v1 − w1 then this equation is equivalent to

∆φ− c0φ′ − φ(1− 2W0) = c1W
′
0 − β′∆v0 − η′v0(w0 − v0)− δ′bv′0. (9)

Using that W0 is a solution of (4) and the Fredholm alternative, the solvability
condition of the equation (9) can be writen as

c1
∫
R×Ω

W ′0
2
e−c0ξ = β′

∫
R×Ω

∆v0W
′
0e
−c0ξdx+ η′

∫
R×Ω

v0(1−W0)W ′0e
−c0ξ

+δ′
∫
R×Ω

bv′0W
′
0e
−c0ξ.

Since v0 satisfies ∆v0 = c0v
′
0 − v0(1−W0) and using the fuct that v0 and W0

are independent on (x2..xn) ∈ Ω then the solvability condition is equivalent to

c1
∫
RW

′
0
2
e−c0ξ = c0β

′ ∫
R v
′
0W
′
0e
−c0ξ + (η′ − β′)

∫
R v0(1−W0)W ′0e

−c0ξ

+δ′
∮
b
∫
R v
′
0W
′
0e
−c0ξ.

After an integration by part we obtain that

c1

∫
R
W ′0

2
e−c0ξ =

∫
R

(
(c0β

′ + δ′
∮
b)W0 + (η′ − β′)W ′0

)
v0(1−W0)e−c0ξ.

We know that v0(1 −W0) > 0, so that if

(
c0β
′ + δ′

∮
b

)
W0 + (η′ − β′)W ′0

does not change sign then we can deduce the sign of c1. Here we have three
cases.
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First case:

(
c0β
′ + δ′

∮
b

)
and (η′ − β′) have the same sign then it is the

sign of c1.

Second case: one of

(
c0β
′ + δ′

∮
b

)
and (η′−β′) is zero then the sign of c1

is the sign of the non zero term.

Third case:

(
c0β
′ + δ′

∮
b

)
and (η′−β′) have an opposite sign. In this case

we need a good estimate on W ′0.

Equation (4) is equivalent to

W ′′0 − (c0 − a)W ′0 = aW ′0 −W0(1−W0) ∀a ∈ R.

Since 0 < W0 < 1 then we have

W ′′0 − (c0 − a)W ′0 > a(W ′0 −
1

a
W0) ∀a 6= 0. (10)

We choose a such that c0 − a =
1

a
which is possible since we have c20 ≥ 4,

(see [1] and [11]).
We note

a± =
c0 ±

√
c20 − 4

2
> 0.

After multiplication by e−
1
a ξ and integrating the inequality (10) on

(ξ,∞) for any ξ ∈ R we obtain that

W ′0 < aW0

with a = a− =
c0 −

√
c20 − 4

2
.

We discuss two subcases

1. η′ − β′ > 0 and c0β
′ + δ′

∮
b < 0. We have that(

c0β
′ + δ′

∮
b

)
W0 + (η′ − β′)W ′0 <

(
c0β
′ + δ′

∮
b+ a− (η′ − β′)

)
W0

<

(
c0
2

(η′ + β′) + δ′
∮
b− η′ − β′

2

√
c20 − 4

)
W0.
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So that if
c0
2

(η′ + β′) + δ′
∮
b < 0 then c1 < 0.

If not, we have
c0
2

(η′ + β′) + δ′
∮
b > 0,

therefore an easy computation gives that

c0
2

(η′ + β′) + δ′
∮
b− η′ − β′

2

√
c20 − 4 ≤ 0,

if and only if(
−c0 +

√
c20 − 4

)
2

(
c0β
′ + δ′

∮
b

)
≤ η′ − β′

and

η′ − β′ ≤ −

(
c0 +

√
c20 − 4

)
2

(
c0β
′ + δ′

∮
b

)
.

Hence, in this subcase we have c1 < 0 and then cε decreases as a
function of ε, for ε small enough.

2. η′ − β′ < 0 and c0β
′ + δ′

∮
b > 0. We have that(

c0β
′ + δ′

∮
b

)
W0 + (η′ − β′)W ′0 >

(
c0β
′ + δ′

∮
b+ a−(η′ − β′)

)
W0

>

(
c0
2

(η′ + β′) + δ′
∮
b− η′ − β′

2

√
c20 − 4

)
W0.

So that if
c0
2

(η′ + β′) + δ′
∮
b > 0 then c1 > 0.

If not, we have
c0
2

(η′ + β′) + δ′
∮
b < 0,

therefore an easy computation gives that

c0
2

(η′ + β′) + δ′
∮
b− η′ − β′

2

√
c20 − 4 ≥ 0,

if and only if

−c0 +
√
c20 − 4

2

(
c0β
′ + δ′

∮
b

)
≤ η′ − β′
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and

η′ − β′ ≤ −c0 +
√
c20 − 4

2

(
c0β
′ + δ′

∮
b

)
.

Hence, in this subcase we have c1 > 0 and then cε increases as a
function of ε, for ε small enough.

This ends the proof of proposition 4.1.

Return now to the full system (1). A simple scaling argument allow to con-
clude the result in a general way. We note c∗ε the traveling wave speed solution
of (1). Then we have the following

THEOREM 4.2. Let (c∗ε, u
∗
ε, v
∗
ε ) be the traveling wave solution of system (1)

for ε small enough. Then c∗ε =
cε
α

and has the following variations.

• If
c0
α
β′+δ′

∮
b ≤ 0 and αη′−γβ′ ≤ −c0 +

√
c20 − 4αγ

2

(
c0
α
β′ + δ′

∮
b

)
then c∗ε decreases as a function of ε.

• If
c0
α
β′+δ′

∮
b ≥ 0 and αη′−γβ′ ≥ −c0 +

√
c20 − 4αγ

2

(
c0
α
β′ + δ′

∮
b

)
then c∗ε increases as a function of ε.

Where cε is the traveling wave speed solution of (3).

Figure 1 presents the different regions of the plane(
X =

c0
α
β′ + δ′

∮
b, Y = αη′ − γβ′

)
in which c∗ε increases or decreases as a function of ε.

REMARK 4.3. In the regions(
X > 0, Y < −c0 +

√
c20 − 4αγ

2
X

)
and

(
X < 0, Y > −c0 +

√
c20 − 4αγ

2
X

)

of Figure 1, the determination of the sign of c1 rest an open problem.
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Figure 1: c∗ε variation.
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