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Iterative calculus on tangent floors

Vladimir Balan, Maido Rahula and Nicoleta Voicu

Abstract

Tangent fibrations generate a ”multi-floored tower”, while raising
from one of its floors to the next one, one practically reiterates the
previously performed actions. In this way, the ”tower” admits a ladder-
shaped structure. Raising to the first floors suffices for iteratively per-
forming the subsequent steps. The paper mainly studies the tangent
functor. We describe the structure of multiple vector bundle which
naturally appears on the floors, tangent maps, sector-forms, the lift of
vector fields to upper floors. Further, we show how tangent groups of
Lie groups lead to gauge theory, and explain in this context the meaning
of covariant differentiation. Finally, we will point out within the floors
special subbundles – the osculating bundles, which play an essential role
in classical theories.

1 The tangent functor

The tangent functor T is a correspondence which attaches to a smooth man-
ifold M , its tangent bundle TM (its first floor) and to a smooth mapping ϕ,
its tangent map Tϕ. By applying k times the functor T to the manifold M ,
one obtains its k-th tangent space T kM (k-th floor of the manifold M) and
by applying it to the mapping f – the k-th tangent map T kf - understood as
a morphism between the k-th floors,{

M
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TM
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1.1 Floors and projections

The natural projections from all the floors onto the previous floors π1, π2, π3, . . .
and their tangent maps define on the k-th floor T kM the structure of a k-fold
vector bundle with the projections ρ1, ρ2, . . . , ρk on the floor T k−1M ,

ρi
.
= T k−iπi : T kM −→ T k−1M, i = 1, 2, . . . , k.

We notice that the sequences ρ1, ρ2, . . . are different for different floors. From
the first floor TM to the manifold M , we have one projection ρ1 = π1, while
from the second floor to the first one, two projections ρ1 = Tπ1, ρ2 = π2,
from the third one to the second one – three projections

ρ1 = T 2π1, ρ2 = Tπ2, ρ3 = π3 , and so on.

M
π1←− TM

Tπ1←− T 2M
T 2π1←− T 3M || ρ1

TM
π2←− T 2M

Tπ2←− T 3M || ρ2
T 2M

π3←− T 3M || ρ3

k = 1 : ρ1 = π1 ,

k = 2 : ρ1 = Tπ1 , ρ2 = π2 ,

k = 3 : ρ1 = T 2π1 , ρ2 = Tπ2 , ρ3 = π3.

For k = 2 and k = 3, we have indicated the projections on the corresponding
commutative diagrams. For k = 2, the diagram has the shape of a rhombus :

T 2M

ρ1=Tπ1
↙ ↘ ρ2=π2

TM TM

π1 ↘ ↙ π1

M

where there holds the equality1:

π1ρ1 = π1ρ2 .

For k = 3, the diagram has the shape of a 3-dimensional cube:

1We shall further omit the sign ” ◦ ” generally used for the composition of mappings;
e.g., πρi

.
= π ◦ ρi.
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T 3M
ρ1=T

2π1

{{
ρ3=π3

��

ρ2=Tπ2

##
T 2M

π2

��

Tπ1

$$

T 2M

Tπ1

zz
π2

$$

T 2M

π2

��

Tπ1

zz
TM

π1

$$

TM

π1

��

TM
π1

zz
M

where the following equalities hold :

π1π2ρ1 = π1π2ρ2 = π1π2ρ3 ,

Tπ1ρ1 = Tπ1ρ2, Tπ1ρ3 = π2ρ1, π2ρ3 = π2ρ2,

etc. This can be generalized, and in the general case T kM , the diagram
becomes a k-dimensional cube.

1.2 Tangent maps and differentials

The tangent map of a mapping f is defined as a pair

Tf = (f ◦ π, f1) ,

where f is the mapping under discussion,

f : M1 −→ M2 : u 7→ v = f(u),

and
f1

.
= df : TuM1 −→ TvM2 : du 7→ dv = df ◦ du,

is its differential, understood as a linear mapping between the tangent spaces2.
The mappings f, f1, together with the projection π : TM1 →M1 are indicated
in the following diagram by arrows:

TuM1
f1−→ TvM2

π ↓ ↓
M1

f−→ M2

Tf = (f ◦ π, f1).

2In local coordinates, the differential df is defined by the Jacobian matrix. The dif-
ferentials du and dv, as column matrices, will be further respectively identified with the
components of the vectors u1 and v1.
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One can also discuss about higher order tangent maps, e.g., for a function or
a system of functions ϕ : T k−1M → Rp, we deal with the tangent maps Tϕ
and T 2ϕ :

T k+1M
ϕk+1−→ T 2Rp

πk+1 ↓ ↓
T kM

ϕk−→ TRp
πk ↓ ↓

T k−1M
ϕ−→ Rp

T 2ϕ = (Tϕ ◦ πk+1, ϕk+1),

Tϕ = (ϕ ◦ πk, ϕk).

We further introduce a convenient indexing system. A usual scalar function
f : M → R admits, on distinct floors, distinct differentials:

f1 = df, f2
.
= d(f ◦ π1), f3

.
= d(f ◦ π1π2), . . .

For higher order differentials, we shall use the following multi-index notation:

f12
.
= d2f, f13

.
= d(df ◦ π2), f23

.
= d2(f ◦ π1), f123

.
= d 3f, . . .

With these notations, for a given function f , we define the tangent maps
Tf, T 2f and T 3f :

k = 1 : Tf = (f ◦ ρ1, f1)
.
= (f, f1) ,

k = 2 : T 2f =
(
(f ◦ π1, f1) ◦ π2, (f ◦ π1, f1)2

)
=

= (f ◦ π1π2, f1 ◦ π2, f2 ◦ Tπ1, f12) =

= (f ◦ π1π2 = f ◦ π2ρ1, f1 ◦ ρ2, f2 ◦ ρ1, f12)
.
= (f, f1, f2, f12 ) ,

k = 3 : T 3f =
(
(f ◦ π1π2, f1 ◦ π2, f2 ◦ Tπ1, f12) ◦ π3,

(f ◦ π1π2, f1 ◦ π2, f2 ◦ Tπ1, f12)3
)
=

= (f ◦ π1π2ρ1 = f ◦ π1π2ρ2 = f ◦ π1π2ρ3,
f1 ◦ π2ρ3 = f1 ◦ π2ρ2, f2 ◦ Tπ1ρ3 = f2 ◦ π2ρ1, f12 ◦ ρ3,
f3 ◦ Tπ1ρ2 = f3 ◦ Tπ1ρ1, f13 ◦ ρ2, f23 ◦ ρ1, f123)

.
=

.
= (f, f1, f2, f12, f3, f13, f23, f123) .

We shall use the following rule: for denoting the tangent mapping T kf , we
write the symbols which define T k−1f , and add the index k – as a result, we
obtain 2·2k−1 = 2k symbols in the writing of the mapping T kf . Thus, symbols
with the index i (i = 1, 2, , . . . , k) will be related to the fiber of the bundle ρi
and the other symbols, to the base of this bundle.

Remarks. The writing f ◦ ρ1
.
= f means that the function f is raised from the

manifold M to the floor TM . The writing f ◦ π1π2ρ1 = f ◦ π1π2ρ2 = f ◦ π1π2ρ3 means
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that the symbol f is related to the common base of the bundles ρ1, ρ2 and ρ3. The notation

f2 ◦ Tπ1ρ3 = f2 ◦ π2ρ1 tells us that the symbol f2 corresponds to the bases of the bundles

ρ1 and ρ3 and to the fiber of the bundle ρ2.

1.3 Coordinates and sector-forms

The coordinates on neighborhoods

U
π1←− TU π2←− T 2U . . .

πk←− T kU . . . , where πk(T kU) = T k−1U, k = 1, 2, . . . ,

are automatically defined once the coordinate functions (ui) are defined on the
neighborhood U . Namely, if a mapping ω : U → Rn defines the coordinate
functions on a neighborhood U , then on the neighborhood T kU , coordinates
are defined by the k-th tangent map T kω,

ω : U  (ui),

Tω : TU  (ui, ui1, u
i
2, u

i
12),

T 2ω : T 2U  (ui, ui1, u
i
2, u

i
12, u

i
3, u

i
13, u

i
23, u

i
123),

. . . . . .

There holds the following rule: in order to define the coordinate functions
on the neighborhood T kU , one appends their differentials to the coordinate
functions on the neighborhood T k−1U , i.e., the same coordinate functions as
on the neighborhood T k−1U , but with the extra index k. As a result, one gets
2 kn coordinate functions3 on the neighborhood T kU . Here, the coordinates
with the index i are fiber coordinates for the fibration ρi (i = 1, 2, , . . . , k),
and the other ones are base ones.

In the following diagram, it is represented a cube with symbols attached
to each vertex. Alltogether, these represent an element of the floor T 3M . If
we adjoin to all the indices the upper index i, then we get the coordinates
defined above. The endpoints of each of the three sides which are adjacent
to the symbol u define a point of the floor T 2M , and the endpoints of the
opposite sides define a tangent vector to T 2M at this point.

3Practically, to a point of the floor Tk−1M , one attaches a tangent vector to Tk−1M ,
at that point.
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u123
ρ1

{{
ρ3

��

ρ2

##
u23

�� ##

u12

{{ ##

u13

��{{
u2

##

u3

��

u1

{{
u

A scalar function on the neighborhood T kU , is called a (White, [17]) sector-
form on T kU , if it is linear and homogeneous on the fibers of all the bundles
ρ1, ρ2, . . . , ρk.

Differentials of a function f from the manifold M are sector-forms on the
corresponding neighborhoods, with partial derivatives as coefficients,

f,

f1 = fiu
i
1,

f12 = fiju
i
1u
i
2 + fku

k
12 ,

f123 = fijku
i
1u
j
2u
k
3 + fij(u

i
1u
j
23 + ui2u

j
13 + ui3u

j
12) + fku

k
123 ,

. . . . . .

We notice that the differential f12, defined on the neighborhood T 2U , is a
linear function both in the fiber coordinates (ui1, u

i
12) of the bundle ρ1, and

in the fiber coordinates (ui2, u
i
12) of the bundle ρ2. This statement also holds

true for its differentials of higher order f123 . . ..
The differentials may be considered for any sector-form. For instance, for

the 1-form Φ = ϕiu
i
1, which is a scalar function on the neighborhood TU , the

differentials start by the index 2 :

Φ = ϕiu
1
1, Φ2 = ∂jϕiu

i
1u
j
2 + ϕku

k
12, ∂jϕi

.
=
∂ϕi
∂uj

, . . .

Actually, if in the expression of Φ2, one performs the symmetrization and the
skew-symmetrization of the coefficients ∂jϕi = ∂(jϕi) + ∂[jϕi], then Φ2 will

include the exterior differential 4 dΦ
.
= ∂[jϕi]u

i
1 ∧ u

j
2.

When lifting a function f from the neighborhood U to the floor TU , its
differentials also start by the index 2:

f = f ◦ π1, f2 = fiu
i
2, f23 = fiju

i
2u
i
3 + fku

k
23 . . .

4Generally, the theory of sector-forms includes Cartan’s theory of exterior forms.
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Generally, a sector-form on the neighborhood T 2U is written in the following
manner (where ψij , ψk are arbitrary functions):

Ψ = ψiju
i
1u
j
2 + ψku

k
12. (1)

1.4 Lifts of a vector field

For every vector fieldX on the manifoldM there exists a corresponding flow at,
which may be understood as a 1-parameter group of (local) diffeomorphisms
of the manifold M . The diffeomorphisms at are prolonged to the k-th floor

T kM , where the flow T kat induces a vector field
(k)

X , called the k-th order lift
of the vector field X,

at = exp tX  T kat = exp t
(1)

X .

On the neighborhood TU , one may associate to the coordinates (ui, ui1) the
natural frame and its dual coframe:

(∂i, ∂
1
i )

.
=
( ∂

∂ui
,

∂

∂ui1

)
, d(ui, ui1)

.
= (ui2, u

i
12).

Similarly, one may attach to the coordinates (ui, ui1, u
i
2, u

i
12) on the neighbor-

hood T 2U , the natural frame and its dual coframe

(∂i, ∂
1
i , ∂

2
i , ∂

12
i )

.
=
(

∂
∂ui ,

∂
∂ui1

, ∂
∂ui2

, ∂
∂ui12

)
,

d(ui, ui1, u
i
2, u

i
12)

.
= (ui3, u

i
13, u

i
23, u

i
123), etc.

The vector fields X,
(1)

X and
(2)

X are represented in the local frames in the form5:

X = ∂ix
i,

(1)

X = ∂ix
i + ∂1i x

i
1, (2)

(2)

X = ∂ix
i + ∂1i x

i
1 + ∂2i x

i
2 + ∂12i x

i
12.

Main property: the operation of lifting vector fields is compatible with the Lie
bracket: [(k)

X,
(k)

Y
]

=
(k)

[X,Y ], k = 1, 2, ... (3)

5When writing vector fields, we shall obey the following rule: summation excludes dif-
ferentiation. Thus, the writing ∂ix

i means the linear combination of the operators ∂i with
the coefficients xi, while the writing ∂jx

i indicates partial differentiation of the function xi

with respect to the operator ∂j .
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2 Tangent groups

2.1 The Leibniz rule

Consider a smooth mapping

λ : M1 ×M2 −→M : (u, v) 7−→ w = u · v,

which attaches to any pair of points u ∈M1 and v ∈M2, a point w ∈M . The
tangent map

Tλ : TM1 × TM2 −→ TM :
(
(u, u1), (v, v1)

)
7−→ (w,w1)

attaches to a pair of vectors u1 and v1 at the points u and v, a vector w1 at
the point w. We write this as : w = u · v and w1 = (u · v)1. The following
relation can be called the generalized Leibniz rule :

(u · v)1 = u1 · v + u · v1. (4)

Let us recall the case of the differential of a function of two variables :

z = z(x, y)  dz =
∂z

∂u
du+

∂z

∂v
dv.

In our case, we have to study the so-called right and left translations (in the
first case, the element v ∈ M2 is fixed, while in the second case, the fixed
element is u ∈M1), and their tangent maps:

λv : M1 −→M : u 7→ w, λu : M2 −→M : v 7→ w,

Tλv : (u, u1) 7→ (w, u1 · v), Tλu : (v, v1) 7→ (w, u · v1).

The map Tλv brings the vector u1 from the point u, to the vector u1 · v at the
point w, and Tλu brings the vector v1 from the point v, to the vector u · v1 at
the same point w. At w, the two vectors add according to the rule (4).

This rule can be extended to higher order differentials6, for instance,

(u · v)12 = u12 · v + u2 · v1 + u1 · v2 + u · v12. (5)

The tangent map T 2λ, on the floor T 2M generates the element

(w,w1, w2, w12) =
(
u · v, (u · v)1, (u · v)2, (u · v)12

)
,

6These are generalizations of the following formulas of classical calculus:

(uv)′ = u′v + uv′,

(uv)′′ = u′′v + 2u′v′ + uv′′.
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where w1 and w12 are defined by relations (4), (5) and w2 = u2 · v + u · v2.
In the following, it will be more convenient to represent Tλ and T 2λ in

matrix form:

Tλ :

(
w 0
w1 w

)
=

(
u 0
u1 u

)
·
(

v 0
v1 v

)
, (6)

T 2λ :


w 0 0 0
w1 w 0 0
w2 0 w 0
w12 w2 w1 w

 =


u 0 0 0
u1 u 0 0
u2 0 u 0
u12 u2 u1 u

 ·


v 0 0 0
v1 v 0 0
v2 0 v 0
v12 v2 v1 v

 . (7)

Then, the transition to higher order tangent maps T kλ is made iteratively.
The transition from an element u ∈M , first, to a 2×2-matrix, and then, to a
4×4-matrix is then made automatically:

u  

(
u 0
u1 u

)
 


(

u 0
u1 u

) (
0 0
0 0

)
(

u 0
u1 u

)
2

(
u 0
u1 u

)
. (8)

Remarks. The Leibniz rule is applicable in various situations. For instance, with its
help, we can deduce the expressions of Lie derivatives.

By denoting the Lie derivatives with respect to some vector field X simply, by a prime
mark, as: LX

.
= (. . .) ′ , we have for the Lie derivative of a vector field Y :

(Y f)′ = Y ′f + Y f ′  Y ′ = XY − Y X = [XY ].

For the Lie derivative of a 1-form Φ, we have:(
Φ(Y )

)′
= Φ′(Y ) + Φ(Y ′),

and therefore, using the defining relations for the exterior derivative:

dΦ(X,Y ) = X
(
Φ(Y )

)
− Y

(
Φ(X)

)
+ Φ([XY ]),

it follows7:
Φ′ = dΦ(X, ·) + d

(
Φ(X)

)
,

for Φ = df , from the latter equality, we get that (df)′ = df ′, i.e., the Lie derivative commutes

with differentiation, etc.

2.2 Floors of a Lie group

Tangent groups of a Lie group are the floors of the group-manifold, with the
induced group actions.

First of all, a Lie group G is a smooth manifold with a group composition
law8

γ : G2 −→ G : (a, b) 7−→ c = ab,

7We notice that
(1)

XΦ = LXΦ.
8We have denoted above the product of two elements by a dot: u · v. For the product of

group elements, we will omit this dot ”· ” i.e., we will write: ab.
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with the unity element e and inverse operation a a−1.
The first floor TG of the manifold G becomes the first tangent group of the

group G, with the composition law

Tγ :

(
c 0
c1 c

)
=

(
a 0
a1 a

)(
b 0
b1 b

)
, (9)

having the zero vector at the point e ∈ G as its unity element, and the inverse
elements (

a 0
a1 a

)−1
=

(
a−1 0
a−11 a−1

)
, (10)

where

a−11 = −a−1a1a−1. (11)

The second tangent group of a group G is the second floor T 2G of the
manifold G, with the composition law

T 2λ :


c 0 0 0
c1 c 0 0
c2 0 c 0
c12 c2 c1 c

 =


a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a




b 0 0 0
b1 b 0 0
b2 0 b 0
b12 b2 b1 b

 . (12)

Its unity element is the zero vector at the unity element of the group TG,
and the inverses of its elements are:

a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


−1

=


a−1 0 0 0
a−11 a−1 0 0
a−12 0 a−1 0
a−112 a−12 a−11 a−1

 , (13)

where, according9 to (11), a−11 = −a−1a1a−1, a−12 = −a−1a2a−1, and

a−112 = a−1a2a
−1a1a

−1 − a−1a12a−1 + a−1a1a
−1a2a

−1 . (14)

Raising to the following floors, we conclude that the k-th tangent group of a
group G is the k-th floor T kG.

Remark 2.2. If the group G is the general linear group GL(n,R), then the diagonal

blocks in the matrices (6), and further on, are regular matrices, i.e., elements of the group

GL(n,R), while the other blocks (with subscripts) are elements of the Lie algebra gl(n,R).

9Formulas (11) and (14) generalize the formulas( 1

u

)′
= −

u′

u2
,
( 1

u

)′′
=

2(u′)2 − u′′u
u3

.

Other classical formulas can also be generalized, for instance,
(u
v

)′
=
u′v − uv′

v2
is general-

ized as: (ab−1)1 = a(a−1a1 − b−1b1)b−1 etc.
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2.3 Representations of tangent groups

A smooth mapping

λ : M ×G −→ M : (u, a) 7→ v = u · a

defines a right action of the Lie group G on the space M , if all the maps

λa : M →M : u 7→ u · a , ∀a ∈ G ,

are transformations (diffeomorphisms) of M and the mapping a 7→ λa is a
morphism between the group G and the group of transformations of the space
M . The mapping

λu : G→M : a 7→ u · a

defines, in the space M , the orbit λu(G) of the point u.

The tangent map

Tλ : TM × TG → TM :
(
(u, u1), (a, a1)

)
7→ (v, v1)

where {
v = u · a ,
v1 = u1 · a+ u · a1 = u1 · a+ v · (a−1a1),

defines a representation of the tangent group TG on the floor TM .
Let us notice two particular cases. For a1 = 0, it is defined the action of

the group G on the floor TM :

a1 = 0 ⇒ u1 7→ v1 = u1 · a.

If u1 = 0, then we have a linear mapping from the Lie algebra TeG to the
tangent space TvM , ∀v ∈M :

u1 = 0 ⇒ e1 = a−1a1 7→ v1 = u · a1 = v · a−1a1 = v · e1.

Formula v1 = v ·a−1a1 is known in the theory as the fundamental equation
of the representation of the Lie group G.

Remarks. 2.3. At every point v ∈ M it is defined the vector v1 = v · e1. This
means that, in the space M , it is defined a vector field – group operator 10, tangent to
orbits. Depending on the choice of the vector e1 ∈ TeG, in M there appear infinitely many
operators of the group G.

10Sophus Lie called these operators infinitesimal transformations of the space M . It also
makes sense to speak about fundamental vector fields of the group etc.
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2.4 . The fundamental equation v1 = v · a−1a1 defines on the group G a system of
equations11 ϑα = ξαi ω

i, where ωi is a left invariant cobasis on the Lie group G. At the
same time, in a coordinate neighborhood of the point v ∈M we have a system of operators
Xi :

Xi = ξαi
∂

∂vα
.

The forms ϑα and the operators Xi are not necessarily linearly independent, but the number
of forms ϑα is equal to the dimension of the space M , while the number of operators Xi is
equal to the dimension of the group G. The Pfaff system ξαi ω

i = 0 defines for a fixed point
v ∈M its stabilizer Hv ⊂ G.

2.5. The group G acts on itself by:

• left translations lb : a 7→ b a ,
• right translations rb : a 7→ ab ,
• inner automorphisms Ab = lb ◦ r−1

b : a 7→ b ab−1 (conjugate representation).

A vector e1 ∈ TeG is mapped by left translations lb into a left invariant vector field b e1,
by right translations rb into a right invariant vector field e1b and by inner automorphisms
Ab into the operator b e1 − e1b.

2.6. The vector field X
.
= b e1 (accordingly, X̃

.
= e1b) induces in the group G the

flow of right (left) translations. The operator X̃ −X = e1b− b e1 induces the flow of inner
automorphisms. If e1 ∈ TeG is the tangent vector to a 1-parameter subgroup at of the
group G, then

rat = exp tX, lat = exp tX̃, Aat = exp t(X̃ −X).

The left invariance of the operator X and the right invariance of the operator X̃ are a
consequence of the fact that left and right translations commute12 :

lb rat l
−1
b = rat , rb latr

−1
b = lat , ∀b ∈ G.

For an arbitrary function f on G, we have the derivatives

Xf = (f ◦ rat )′t=0 , X̃f = (f ◦ lat )′t=0 , (X̃ −X)f = (f ◦Aat )′t=0 .

2.7 . By considering the inverse κ : a→ a−1, the vector fields X and X̃ will be related
by the equality X̃ = −TκX, since lat = κr−1

at κ.

2.8 . The fundamental equations of left and right translations, as well as those of inner
automorphisms on the floor TG, look as follows :

c1 = (a1a
−1) c , c1 = c (a−1a1) , c1 = (a1a

−1) c− c (a1a
−1) .

11The matrix ξ = (ξαi ) plays in the local theory an exceptional role. For instance, in the
formulation of Lie’s theorems.

12Generally, with respect to a transformation b of the manifold M, the flow at is trans-
formed according to the following scheme :

M at−−−→ M
b ↓ ↓ b
M ãt−−−→ M

at  ãt = b at b
−1.
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2.4 Gauge theory

2.4.1 Jacobian matrix

Consider a smooth mapping from an n-dimensional manifold N to an m-
dimensional manifold M,

ϕ : N −→ M.

The tangent map Tϕ is understood as a morphism of floors :

TN Tϕ−−−→ TM
π1
↓ ↓ π2

N ϕ−−→ M
For any pair of points u ∈ N and v = ϕ(u) ∈ M, it is defined a linear
transformation between the respective tangent spaces :

Tuϕ : TuN −→ TvM.

In the coordinates ui and vα on the neighborhoods U ⊂ N and V ⊂ M, the
mapping ϕ is defined by m functions ϕα on the neighborhood U , which are
ϕ-related to the coordinate functions vα on the neighborhood V ,

vα ◦ ϕ = ϕα.

The tangent map Tϕ is defined by the differentials dϕα = ϕαi du
i, which are

Tϕ-related with the cobasis dvα on the neighborhood V ,

dvα ◦ Tϕ = dϕα.

The Jacobian matrix (ϕαi ) consists of the partial derivatives ϕαi =
∂ϕα

∂ui
on the

neighborhood U . At a fixed point u ∈ U , this is a numerical (m× n)-matrix,
which thus defines a linear transformation Tuϕ.

The tangent maps Tϕ and T 2ϕ are defined by the system to the left (see
below) and by the Jacobian matrix (to the right) respectively :{

vα ◦ ϕ = ϕα ,
vα1 ◦ Tϕ = ϕα1 ,

(
ϕαi 0

(ϕαi )1 ϕαi

)
,

where ϕα1 = ϕαi u
i
1 and (ϕαi )1 = ϕαiju

j
1. At the point u(1)

.
= (u, u1) ∈ TU , the

Jacobian matrix defines a linear mapping13 :

T 2
u(1)

ϕ : T 2
u(1)
N −→ T 2

v(1)
M.

13More precisely : T(u,u1)(Tϕ) : T(u,u1)(TN ) −→ T(v,v1)(TM).
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Remarks.
2.9. Since the Jacobian matrix is defined on the whole neighborhood TU , it is also

defined on any subset of this neighborhood, in particular, on the vector field X, regarded
as a section of the bundle TU → U , with the local components (xi) , namely:(

Φ 0
XΦ Φ

)
, where Φ

.
= (ϕαi ), XΦ

.
= (ϕijkx

k).

2.10. Taking iterations of the tangent functor Tϕ  T 2ϕ  T 3ϕ  . . . the staircase
structure of the Jacobian matrix is preserved :

Φ  

(
Φ 0
XΦ Φ

)
 


Φ 0 0 0
XΦ Φ 0 0
Y Φ 0 Φ 0
Y XΦ Y Φ XΦ Φ

 . . .

2.4.2 Gauge group

We shall give in the following an invariant (coordinate-free) definition of the
gauge group14.

Definition15. Let M be a smooth manifold of dimension n. The gauge
group at a point u(k) of the k-th floor T kM is the group Gk of linear transforma-

tions of the tangent space T k+1
(uk)

M , induced on this space by diffeomorphisms

of the manifold M .

Proposition 2.1. The gauge group Gk is isomorphic to the k-th tangent
group of the linear group GL(n,R),

Gk ∼ T k
(
GL(n,R)

)
, k = 0, 1, 2, . . .

P r o o f. Transformations of the tangent space are defined independently from local
coordinates, but, in the natural bases, they are defined by Jacobian matrices. At the first
steps, we have :

k = 0 ⇒ G ∼ GL(n,R) – the linear group is generated by the Jacobian matrices
a = (aij) of diffeomorphisms a at the point u ∈M ,

k = 1 ⇒ G1 ∼ T
(
GL(n,R)

)
– the first tangent group is generated by the Jacobian

matrices

(
a 0
a1 a

)
of diffeomorphisms Ta at the point (u, u1) ∈ TM , by means of the

block a1 = (aijku
k
1),

14See also [1].
15In the case k = 0, we set :

u(0) = u , T 0M = M, G0 = G , T 0+1
(u0)

M = TuM, etc., u(1) = (u, u1), . . .
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k = 2 ⇒ G2 ∼ T 2
(
GL(n,R)

)
– the second tangent group is defined by the Jaco-

bian matrices


a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a

 of diffeomorphisms T 2a at the point (u, u1, u2, u12) ∈

T 2M , by means of the blocks

a1 = (aijku
k
1), a2 = (aijku

k
2), a12 = (aijklu

k
1u
l
2 + aijku

k
12).

Further, we proceed iteratively. �

Remarks.
2.11. The actions in the group G2 (and in the following groups Gk), i.e., multiplication

and inverse operation, are defined by :(
a 0
a1 a

)
·
(

b 0
b1 b

)
=

(
ab 0

(ab)1 ab

)
, (ab)1 = a1b + ab1 ,

(
a 0
a1 a

)−1

=

(
a−1 0

a−1
1 a−1

)
, a−1

1 = −a−1a1a
−1.

2.12. To a vector field X on the neighborhood TU it corresponds a linear pseudo-group,
with the multiplication and inversion of matrices :(

a 0
Xa a

)
·
(

b 0
Xb b

)
=

(
ab 0

X(ab) ab

)
,

(
a 0
Xa a

)−1

=

(
a−1 0

−a−1Xa a−1 a−1

)
.

There appears a natural question: what is the relation between the above
invariant definition of the gauge group and the jet bundle approach?

Let us consider the group Gk of k-jets of diffeomorphisms of the manifold
M at a point u ∈M .

Proposition 2.2. There exists a homomorphism from the jet group Gk
onto the k-th gauge group Gk → Gk . The kernel of this homomorphism is
the stabilizer Hk−1 of the point u(k−1) ∈ T k−1M . The gauge group Gk is
isomorphic to the quotient group Gk/Hk−1.

P r o o f. The case k = 1 is trivial. In the case k = 2, the group G2 is generated by 2-jets
(aij , a

i
jk) at the point u ∈ M . In the group G2 the actions (multiplication and inversion of

its elements) are defined by :

(aij , a
i
jk) · (bij , bijk) = (ailb

l
j , a

i
jlb

l
i + ailb

k
ij),

(aij , a
i
jk)−1 = (āij ,−āila

l
sj ā

s
k) , where (āij) = (aij)

−1.

The mapping

G2 −→ G2 : (aij , a
i
jk)  

(
aij 0

aijku
k
1 aij

)
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is homomorphic. The stabilizer H1 of the element (u, u1) ∈ TM generates a 2-jet which is
transformed into the identity matrix :

H1 =
{

( aij , a
i
jk) | aij = δij , a

i
jku

k
1 = 0

}
.

According to the theorem of homomorphisms, the isomorphism G2 ∼ G2/H1 holds.

In the case k > 2, the reasoning is similar. �

3 Elements of the theory of connections

3.1 The structure 4h ⊕4v
A connection in a bundle π : M1 → M with the n-dimensional base M and
r-dimensional fibers is defined as a structure 4h ⊕4v, where 4v = kerTπ is
the vertical distribution and 4h is the horizontal one, supplementary to the
distribution 4v.

On a domain of local chart U ⊂M1 with coordinates (ui, uα), where ui are
base coordinates and uα are fiber ones (i = 1, 2, . . . , n ; α = n+ 1, . . . , n+ r),
a basis (frame + coframe) can be adapted to the structure 4h ⊕4v,

(Xi, Xα) = (∂j , ∂β ) ·
(

δji 0

Γβi δβα

)
,

(
ωj

ωβ

)
=

(
δji 0

−Γβi δβα

)
·
(

dui

duα

)
. (15)

The horizontal vector fields Xi = ∂i + Γαi ∂α generate a basis of the distribu-
tion ∆h, and the forms ωα = duα−Γαi du

i vanish on Xi. The forms ωi vanish
on the vertical vector fields Xα = ∂α generating a basis for ∆v.

Remark.

3.1. It is a known fact that an n-dimensional subspace on an (n+r)-dimensional vector

space is defined up to nr parameters; for the adapted basis, these parameters are the nr

quantities Γαi . Generally, they depend both on the base and on the fiber coordinates (ui, uα).

3.2. A Pfaff system ωα = 0 is equivalent to a system of ordinary differential equations
(ODE’s)

ωα = duα − Γαi du
i = 0 ⇐⇒

∂uα

∂ui
= Γαi . (16)

It is thus established a link between the structure 4h ⊕4v and the given differential equa-

tions. If the DE’s cannot be brought into the form (16), then for the quantity Γαi , the

relations overlap and in the definition of the distribution ∆h there might exist some arbi-

trariness. Using this arbitrariness, the distribution ∆h can be changed in such a way as to

find the solutions of the DE’s.

3.3. In a vector bundle, one can define a linear connection. In this case, the quantities

Γαi are linear and homogeneous on the fibers: Γαi = Γαiβu
β . The coefficients Γαiβ depend on

the base coordinates. The system (16) consists of linear DE’s. The transport of fibers along
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a path is done by means of linear transformations.

3.4. A classical affine connection on the manifold M is equivalent to a linear connection
on the floor TM. Then, the quantities Γαi define on the neighborhood U ⊂M a 1-form with

values in the Lie algebra gl(n,R) : Γαi  −Γijkdu
k. On the neighborhood TU ⊂ TM it is

defined the adapted basis16:

(Xi, X
1
i ) = (∂j , ∂

1
j ) ·

(
δji 0

−Γjiku
k
1 δji

)
,

(
Uj2
Uj12

)
=

(
δji 0

Γjiku
k
1 δji

)
·
(

ui2
ui12

)
.

(17)

3.5. With respect to coordinate transformations on the neighborhood U , the natural
basis is transformed as: {

ũi = ai(uj),
ũα = aα(uj , uβ),

(∂̃i , ∂̃α) = (∂j , ∂β) ·
(

āji 0

āβi āβα

)
,

(
dũi

dũα

)
=

(
aij 0

aαj aαβ

)
·
(

duj

duβ

)
, (18)

aij =
∂ai

∂uj
, aαj =

∂aα

∂uj
, aαβ =

∂aα

∂uβ
,

aikā
k
j = δij , a

α
γ ā

γ
β = δαβ , a

α
j ā

j
i + aαβ ā

β
i = 0,

and the adapted basis (15) is transformed as follows:

(X̃i X̃α) = (Xj Xβ) ·
(
āji 0

0 āβα

)
,

(
ω̃j

ω̃β

)
=

(
aji 0

0 aβα

)
·
(
ωi

ωα

)
. (19)

We obtain a transformation of the quantities Γαi  Γ̃αi

Γ̃αi ◦ a = (aαβ Γβj + aαj )āji . (20)

In the case of linear connections, when

Γαi = Γαiβu
β , Γ̃αi = Γ̃αiβ ũ

β , ũα = aα = aαβu
β , aαj = aαjβu

β ,

formula (20) defines a transformation Γαiβ  Γ̃αiβ

Γ̃αiβ ◦ a = (aασ Γσjγ + aαjγ)āji ā
γ
β . (21)

3.2 Covariant differentiation

A tensor field of type (p, q) is split in the presence of the structure 4h ⊕4v
into 2 p+q invariant blocks. In the adapted basis (15), taking into account
relations (19), these blocks have a tensorial character. When on some floor, one
performs the usual differentiation, in the formulas corresponding to the natural
bases, there appear partial derivatives, while in the formulas corresponding to
the adapted bases, instead of partial derivatives, there appear covariant ones.

16The sign ”−” is put in order to make our formulas correspond to the ones in tensor
analysis.
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3.2.1 Decomposition of a vector field

A vector field, as a tensor field of type (1,0), is decomposed with respect to the
structure 4h⊕4v into 2 invariant blocks. Let us consider the vector field (2)
on the floor TM and decompose this field, in matrix writing, in the natural
and in the adapted frames, see (17):

(1)

X = ( ∂i , ∂
1
i ) ·

(
xi

xiju
j
1

)
= (Xi , X

1
i ) ·

(
xi

xi,ju
j
1

)
.

The partial derivatives from the natural frame xij = ∂jx
i are replaced, in the

adapted basis, by covariant derivatives:

xi,j = ∂jx
i + Γikjx

k. (22)

3.2.2 Decomposition of sector-forms

A sector form, as a tensor field of type (0,1), is also decomposed in the structure
4h⊕4v into 2 invariant blocks. We consider the sector-form (1) on the floor
TM and decompose it (in matrix writing), in the natural and in the adapted
coframes, see (17) :

Ψ = (ψiju
i
1 , ψj) ·

(
uj2
uj12

)
= ( ψ̃iju

i
1 , ψj) ·

(
U j2
U j12

)
.

There appears a transformation

ψij  ψ̃ij = ψij − ψkΓkji.

If Ψ = Φ2 = ∂jϕiu
i
1u
j
2 + ϕju

j
12 is the differential of a 1-form Φ = ϕiu

i
1 on the

manifold M , partial derivatives ∂jϕi are replaced by covariant ones :

ϕi,j = ∂jϕi − ϕkΓkji . (23)

3.2.3 Decomposition of affinor fields

A tensor field of type (1,1), i.e., an affinor field, is decomposed in the structure
4h ⊕4v into 4 invariant blocks.

Let us return to the gauge group. When saying that the Jacobian matrix(
a 0
a1 a

)
=

(
aij 0

aijku
k
1 aij

)
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defines on the neighborhood TU a transformation of the tangent spaces T 2
(u1)

M ,

we understand that this happens in the natural basis (∂i , ∂
1
i ;uj2 , u

j
12) and it

can be represented as a vector-valued form

A = (∂i , ∂
1
i ) ·

(
aij 0

aijku
k
1 aij

)
·
(

uj2
uj12

)
.

In the adapted basis (17), the vector-valued form A is written as

A = (Xi , X
1
i ) ·

(
aij 0

aij ,k u
k
1 aij

)
·
(

U j2
U j12

)
,

where

aij ,k = aijk − ailΓljk + Γilka
l
j (24)

is the covariant derivative of the Jacobian matrix (ajj). We can convince
ourselves of this if we multiply the matrices below. It is the way the matrix
of a linear map is transformed when passing from a basis to another one :(

δis 0
Γisku

k
1 δis

)
·
(

ast 0
astk u

k
1 ast

)
·
(

δtj 0
−Γtjku

k
1 δtj

)
.

In the adapted basis, all the blocks of the vector-valued form A are tensors.

As a conclusion, considering that the gauge group G2 is generated by the

group of matrices

(
a 0
a1 a

)
then, depending on the basis in which the trans-

formations T 2a are represented (natural or adapted ones), the block a1 has
the form a1 = (aijku

k
1), or a1 = (aij ,ku

k
1).

3.3 Basic formulas of the theory of connections

3.3.1 Morphism of bundles with connections

The following commutative diagram defines a morphism between the bundles
π1 and π2:

M1
F−−→ M2

π1 ↓ ↓ π2
M1

f−−→ M2

(25)

Consider on each of the bundles π1 and π2 connections, i.e., structures ∆h⊕∆v

and ∆̃h ⊕ ∆̃v on the manifolds M1 and M2 respectively.
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On the neighborhoods U ⊂M1 and F (U) ⊂M2 with coordinates (ui, uα)
and (va, vλ), we have the natural and the adapted bases (to the right we have

indicated the quantities Γβi and Λλb ),

U : (∂i, ∂α ; duj , duβ), (Xi, Xα ;ωj , ωβ), (Γβi ),

F (U) : (∂a, ∂λ ; dvb, dvµ), (Xa, Xλ ; θ b, θ µ), (Λλb ).

The mapping F is locally defined by the functions (fa, fλ),{
va ◦ F = fa,
vλ ◦ F = fλ.

The functions fa are π-related to the functions f̄a, which define the mapping
f on the neighborhood π1(U), thus, fa = f̄a ◦ π1 . The tangent map TF is
defined in the natural bases by the Jacobian matrix (to the left) and in the
adapted bases, by the same matrix, in which we modify the ”south-western”
block: (

fai 0
fλi fλα

)
 

(
fai 0
Fλi fλα

)
,

where fai
.
=
∂fa

∂ui
, fλi

.
=
∂fλ

∂ui
, fλα

.
=
∂fλ

∂uα
, and

Fλi = fλi + fλβΓβi − (Λλb ◦ F )f bi . (26)

In the case of vector bundles equipped with linear connections, the quantities
(26) are linear functions on the fibers:

Fλi = Fλiα u
α,

with the coefficients

Fλiα = ∂if
λ
α − fλβΓβiα + (Λλaµ ◦ f)fai f

µ
α . (27)

Remarks.

3.6. The block (26) appears in the process of transformation of the (Jacobian) matrix
of the linear map TF with respect to the change of bases, i.e., when passing from the natural
bases to the adapted ones:(

fbj 0

fµj fµβ

)
 

(
δab 0
−Λλb δλµ

)
◦F
·
(
fbj 0

fµj fµβ

)
·
(
δji 0

Γβi δβα

)
.

The block Fλi is a mixed tensor by virtue of relations (19). It is different from the block fλi
of the Jacobian matrix.
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3.7. The coefficients (27) appear in the formula (26), if we take into account the lin-

earity of the functions fλ = fλα u
α. The quantities Fλiα generate a mixed tensor.

3.8. A smooth mapping
f : M1 −→M2

gives rise to a morphism of the tangent bundles (of the first floors)

TM1
Tf−−→ TM2

π1 ↓ ↓ π2
M1

f−−→ M2

The coordinates (ui) and (va), given on the neighborhoods U ⊂ M1 and Ũ ⊂ M2, induce

on the neighborhoods TU ⊂ TM1 and T Ũ ⊂ TM2 the coordinates (ui, ui1) and (vα, vα1 ).
The tangent map Tf is defined by the system{

vα = fα,

vα1 = fα1 = fαi u
i
1, fαi

.
=
∂fα

∂ui
.

Consider on the manifolds M1 and M2 the affine connections with coefficients Γkij and Λαβγ
on the neighborhoods U and Ũ , and assume that on the neighborhoods TU and T Ũ we
have both natural bases and adapted ones. The second tangent map T 2f is defined in the
natural and in the adapted bases by matrices with different lower-left blocks:(

fαj 0

fαjku
k
1 fαj

)
 

(
fαj 0

Fαjku
k
1 fαj

)
.

The block (fαj )1 = fαjku
k
1 of the Jacobian matrix is replaced by the block

Fαi = Fαiju
j
1, where

Fαij = fαij − fαk Γkij + (Λαβγ ◦ f)fβi f
γ
j , fαi

.
=
∂fα

∂ui
, fαij

.
=

∂2fα

∂ui∂uj
. (28)

Formulas (26), (27) and (28) represent fundamental formulas of the theory
of connections. These objects appear quite frequently in a way or another in
differential-geometric constructions. The question is where to consider these
connections. Riemannian geometry and its dual (co-Riemannian geometry)
give a univocal answer to this question. In the Cartan method the connec-
tions appear by the use of nonholonomic bases.

Remarks.
3.9. Riemannian geometry. In the case when f is an immersion into the Euclidean

space M̃ , the relation (28) becomes Gauss’ formula from the theory of surfaces.
Assume that f is an immersion from an n-dimensional smooth manifold M into the

(n+r)-dimensional Euclidean space M̃ . The image f(M) ⊂ M̃ represents an n-dimensional
surface, locally given by the parametric equations

uI = fI(ti), i = 1, ..., n, I = 1, ..., n+ r.
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The linearly independent columns of the Jacobian matrix fIi =
∂fI

∂ti
generate in the tangent

plane to the surface f(M) a vector basis. The Gram matrix consisting of the scalar products
of these vectors is regular and thus, invertible:

gij
.
= fIi f

I
j  (gij)

−1 .
= (gij).

On the surface f(M), it is defined the metric and the first fundamental form. The quantities
Γkij and ΛIJK are fixed as follows. First of all, we set ΛIJK = 0 – this property, in the

Euclidean space M̃ , is an invariant one. Second, we impose the condition fIkF
I
ij = 0.

Therefore, we get the expressions of the Christoffel symbols :

fIkF
I
ij = 0  fIkf

I
ij − gklΓlij = 0  Γkij = fIl f

I
ijg

kl. (29)

The vectors F Iij (with fixed indices i and j) belong to the normal plane to the surface f(M)

and they can be expressed in the vector basis as (nIα), α = 1, ... , r :

F Iij = nIαh
α
ij .

The coefficients hαij define the second fundamental form of the surface f(M) with values in
the normal plane. We obtain the famous Gauss’ formula in the theory of surfaces:

fIij = fIkΓkij + nIαh
α
ij .

On the surface f(M) it is thus defined a Riemannian geometry.

3.10. Co-Riemannian geometry. Let ϕ : M̃ →M be a submersion from the (n+r)-
dimensional Euclidean space M̃ to an r-dimensional smooth manifold M . The space M̃
is fibered into an r-parameter family of n-dimensional fibers. Locally, ϕ is defined by the
system

vα = ϕα(uI), α = 1, ..., r, I = 1, ..., n+ r.

The lines of the Jacobian matrix ϕαI =
∂ϕα

∂uI
are linearly independent gradient vectors,

transversal to the fibers. The Gram matrix consisting of their scalar products is a regular
(invertible) one:

gαβ
.
= ϕαI ϕ

β
I  (gαβ)−1 .

= (gαβ).

In the bundle ϕ it is defined the so-called co-metric. We notice that the quantities gαβ are
defined on the space M̃ , but, by their indices, they belong to the manifold M and, with
respect to coordinate changes on M , they transform as the components of a tensor.

Let us rewrite the object (28) in a different form:

ΦαIJ = ϕαIJ − ϕ
α
KΓKIJ + Λαβγϕ

β
I ϕ

γ
J .

We set ΓKIJ = 0, which has in the space M̃ an invariant meaning. Second, we impose the

condition ΦαIJϕ
β
I ϕ

γ
J = 0, and define the coefficients Λαβγ ◦ ϕ (we will not indicate explicitly

the composition ◦ϕ), as follows:

ΦαIJϕ
β
I ϕ

γ
J = 0  ϕαIJϕ

β
I ϕ

γ
J + Λαλµg

λβgµγ = 0  Λαβγ = −gλβgµγϕαIJϕ
λ
Iϕ

µ
J . (30)

These are the so-called co-Christoffel symbols Λαβγ which compose a tensor object:

ΦαIJ = ϕαIJ − gλβgµγϕ
α
KLϕ

λ
Kϕ

µ
Lϕ

β
I ϕ

γ
J .
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These are the bases of co-Riemannian geometry 17, in which the object of study are families

of surfaces in the Euclidean space M̃ , as the fibers of the submersion ϕ.

3.11. Geodesics and co-geodesics. The equality Fαij = 0 provides, for dimM1 = 1,
the equations of geodesic lines, and for dimM2 = 1, the equation of a co-geodesic field.

3.12. Cartan’s test. A smooth mapping

f : M → M̃,

is represented on the neighborhoods U ⊂M and Ũ = f(U) ⊂ M̃ , with coordinates (ui) and
(vα) by the following system:

vα ◦ f = fα, i = 1, 2, . . . , dimM ; α = 1, 2, , . . . ,dim M̃.

Consider on the manifolds M and M̃ the nonholonomic bases (Xi, ω
j) and (Yα, θβ). On

U and Ũ , these bases are defined with respect to the natural bases by the matrices A,A−1

and B,B−1:

(Xi, ω
j)  Xi = ∂jĀ

j
i , ωj = Ajidu

i,

(Yα, θ
β)  Yα = ∂βB̄

β
α, θβ = Bβαdv

α,

A linear map between the tangent spaces

Tuf : TuM → TvM̃, v = f(u),

is defined in the natural bases (∂i, du
j) and (∂α, dvβ) by means of the Jacobian matrix

(fαi ), and in the nonholonomic bases (Xi, ω
j), (Yα, θβ), by the matrix (Fαi ), or by the

vector-valued form

F = ∂α ⊗ dvα = Yα ⊗ θα , where:

dvα ◦ Tf = fαi du
i, fαi

.
=
∂fα

∂ui
, (31)

θα ◦ Tf = Fαi ω
i, Fαi

.
= (Bαβ ◦ f)fβj Ā

j
i . (32)

For the sake of simplicity, we will represent equation (31) in the form dvα = fαi du
i, and

equation (32), in the form θα = Fαi ω
i. Actually, this is the differential equation of a single

mapping f , but, in the first case, it is represented in local form in the natural bases and, in
the second case, in the nonholonomic bases, not depending on the coordinates.

Cartan’s test consists of the following. Using the structure equations for the forms ωi

and θα (see line 1), one calculates the exterior derivative of the equation θα = Fαi ω
i (line

2) and, in the result (line 3), one uses Cartan’s lemma (line 4) :

dωi = −
1

2
cijkω

j ∧ ωk, d θα = −
1

2
c̃αβγθ

β ∧ θγ ,

−
1

2
(c̃αβγ ◦ f)Fβi F

γ
j ω

i ∧ ωj = dFαj ∧ ωj −
1

2
Fαk c

k
ijω

i ∧ ωj ,

{
dFαj −

1

2
Fαk c

k
ijω

i +
1

2
(c̃αβγ ◦ f)Fβi F

γ
j ω

i
}
∧ωj = 0 ,

dFαj =
{1

2
Fαk c

k
ij −

1

2
(c̃αβγ ◦ f)Fβi F

γ
j + λαij

}
ωi .

17A joke by M. Spivak: the analogues of the Gauss-Codazzi equations appearing in the
dual case were called by him the Dazzi-Cogauss equations.
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There appears an object λαij , which is symmetric in its lower indices. This object defines
the symmetric part of the differential dFαi . On the other hand, we can apply to Fαi the
operator d = Xi ⊗ωi, define the differential dFαi and distinguish directly its antisymmetric
and its symmetric parts :

dFαj = XiF
α
j ω

i = (X[iF
α
j] +X(iF

α
j))ω

i,

Comparing the two expressions for dFαi , we conclude :

λαij = X(iF
α
j) = BαβF

β
klĀ

k
i Ā

l
j ,

where

Fαij = fαij − fαk Γkij + (Λαβγ ◦ f)fβi f
γ
j , (33)

with the connection coefficients

Γkij = Āks∂(iA
s
j), Λγαβ = B̄γσ∂(αB

σ
β). (34)

This way, the second tangent map

T 2f : T 2M → T 2M̃

is defined in the natural bases, as usually, by the Jacobian matrix with the lower-left block
(fαi )1 = fαiju

j
1, and in the adapted ones – by the matrix with lower-left block Fαiju

j
1, with

the connections (33):(
fαi 0

(fαi )1 fαi

)
 

(
fαi 0

Fαiju
j
1 fαi

)
.

By the choice of the nonholonomic bases, Cartan’s method anticipates the link between
the frames and the structure of the manifold under study. For instance, in the theory of
surfaces, the Darboux frame is related to principal directions and, in projective geometry
– to the Wiltschinsky directrices. This is how the frame is related to congruences and to
complex lines in line geometry etc.

G.F. Laptev called objects (33), appearing in the process of Cartan differential prolon-
gations, the fundamental objects of the mapping, [9].

4 Subbundles of the floors

4.1 Osculating bundles

On the k-th floor TkM of an n-dimensional manifold M , the equality of the projections18

ρ1 = ρ2 = . . . = ρk (35)

defines a kn-dimensional subbundle Osck−1M ,

Osck−1M ⊂ TkM, k = 2, 3, . . . (36)

This subbundle of the k-th floor TkM is called the osculating bundle of order k − 1 of the
manifold M .

According to the definition, the osculating bundle Osck−1M consists precisely of those
elements of the floor TkM , which have a common image through all projections (35).

18In the same way as on the plane xy, the equality of the coordinate functions x = y
defines a straight line.
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In a local chart, the coordinates with the same number of lower indices are equal. Thus,
on a domain of local chart of the second floor T 2U ⊂ T 2M the elements belonging to the
bundle OscM are those which satisfy the equality: ui1 = ui2. On a neighborhood of the
third floor T 3U ⊂ T 3M , the elements belonging to the osculating bundle Osc2M are those
for which ui1 = ui2 = ui3 and ui12 = ui13 = ui23, etc. It is clear, judging by the number of
coordinates, that

dimOscM = 3n, dimOsc2M = 4n etc.

The coordinates on the osculating bundle can be denoted either by ui, ui1, u
i
11, u

i
111, . . . ,

or by ui,
(1)
u i,

(2)
u i, . . .

(k)
u i, . . . , but the notation with differentials ui, dui, d 2ui, d 3ui, . . . is

not appropriate, since the meaning of higher order differentials on the floors is a different
one.

We notice that the subbundle OscM ⊂ T 2M is an integral surface of a 3n-dimensional
distribution – the linear span of the operators

〈 ∂i, ∂1i + ∂2i , ∂
12
i 〉.

The functions (ui1 − ui2) are invariants of these operators.
Similarly, the subbundle Osc2M ⊂ T 3M is the integral surface of a 4n-dimensional

distribution, namely, the linear span of the operators

〈 ∂i, ∂1i + ∂2i + ∂3i , ∂
12
i + ∂23i + ∂13i , ∂123i 〉.

For these operators, the functions (ui1 − ui2, ui1 − ui3, ui12 − ui23, ui13 − ui23) are invariants.

Remark 4.1. A vector field
(2)

X = ∂ix
i + ∂1i x

i
1 + ∂2i x

i
2 + ∂12i xi12 on the floor T 2M , with

equal components xi1 = xi2 is tangent to the surface OscM ,

(xi1 = xi2) ⇒
(2)

X = ∂ix
i + (∂1i + ∂2i )xi1 + ∂12i xi12.

4.2 Lagrange – Hamilton

A considerable contribution to the development of analytic mechanics was
brought by Lagrange and Hamilton19. Their approaches are different, but,
as is well known, the Legendre transformation allows us to transform the
Hamilton system into the Lagrange equations. We could say that Hamilton’s
theory, which is built on the 4n-dimensional second floor T 2M of the manifold
M , reduces, on the 3n-dimensional osculating bundle OscM , to Lagrange’s
theory. Hamiltonian theory is a generalization of Lagrange’s one.

A scalar function H = H(u, u1) defined on the floor TM is called a Hamil-
tonian. To a Hamiltonian H, it is associated on the floor TM a vector field
X,

X = Σ
i
Hui1

∂i − Σ
i
Hui∂

1
i , Hi

.
=
∂H

∂ui
, Hui1

.
=
∂H

∂ui1
. (37)

19J.L.Lagrange (1736-1813), W.R.Hamilton (1805-1865), A.M.Legendre (1752-1833).
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With respect to the vector field X, the function H and the symplectic form
Ω = dui ∧ dui1 are invariant:XH = 0 , LXΩ = 0.

The flow at = exp tX is defined by the system{
u̇i = Hui1

,

u̇i1 = −Hui ,
u̇i

.
=
dui

dt
, u̇i1

.
=
dui1
dt

. (38)

The system (38), called the Hamiltonian system, defines a section of the second
floor (indices of the coordinates are omitted):

π : T 2M → TM : (u, u1, u2, u12)  (u, u1),

{
u2 = u̇(u, u1) ,
u12 = u̇1(u, u1).

(39)

Proposition 4.1. The Hamiltonian system (38) reduces on the osculating
bundle OscM ⊂ T 2M to the Lagrange system

d

dt

( ∂L
∂u̇i

)
− ∂L

∂ui
= 0. (40)

P r o o f. The Legendre transformation provides the transition from the Hamiltonian
H = H(u, u1) to the Lagrangian L = L(u, u2) on the floor T 2M , under the condition

H(u, u1)− Σ
i
ui1u

i
2 + L(u, u2) = 0.

Generally, this transition is not possible on the floor T 2M :

d(H − Σ
i
ui1u

i
2 + L) ≡ 0 ⇐⇒ (Hui + Lui = 0, Hui1

= ui2, Lui2
= ui1),

since, by hypothesis, the function H does not depend on the coordinates u2 and the function
L does not depend on the coordinates u1. The transition H  L is only possible under the
assumption that ui1 = ui2 = u̇, i.e., on the osculating bundle OscM . Under this condition,
the system (38) is indeed reduced to the system (40).

Let us add that the system (39) defines a 2n-dimensional section of the bundle T 2M ,

while the system (40) defines a 2n-dimensional section of the bundle OscM . Consequently,

Hamilton geometry on the floor T 2M completely reduces to Lagrange geometry on the

bundle OscM . �

4.3 Jacobi equation and connections on T 2M

On a Riemannian manifold (M, g), when studying the first variation of the
arc length, one naturally works on the first floor TM – and, as a result, it is
determined a connection (called the canonical or Cartan connection, [16]) on
this space, with coefficients

N i
j = γijk(u)uk1 .

In the notations of the previous sections, N i
j is actually −Γij . The main

property of this connection is that its autoparallel curves coincide with the
geodesics of g.
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Similarly, the geodesic deviation equation ”lives” on the second floor T 2M
and thus, it will naturally give rise to connections on this bundle. We can
immediately realize this by the presence in it of two vector fields – the velocity
vector field and the deviation vector field.

As shown above, T 2M has the structure of a 2-fold linear bundle, see
Section 1.1, with fibrations

T 2M
ρ1
⇒
ρ2

TM and T 2M
π−→ TM, where π := π1ρ1 = π1ρ2. (41)

If (u, u1, u2, u12) =: (ui, ui1, u
i
2, u

i
12) are the local coordinates of a point

p ∈ T 2M , then:

ρ1(p) = (u, u2), ρ2(p) = (u, u1), π(p) = u.

To the linear mappings ρ1 and ρ2, there correspond two vertical distribu-
tions : ∆v1 = kerTρ1 and ∆v2 = kerTρ2 of dimension 2n, n = dimM , with
the n-dimensional intersection ∆12 = ∆v1 ∩∆v2 and the 3n-dimensional sum
∆v1 + ∆v2 = kerTπ.

We define a connection on the second floor T 2M as a splitting

∆⊕∆1 ⊕∆2 ⊕∆12, (42)

where ∆v1 = ∆2 ⊕∆12, ∆v2 = ∆1 ⊕∆12. The horizontal distributions for the
three fibrations are:

∆hi = ∆⊕∆i for ρi, i = 1, 2 and ∆h = ∆ for π.

Each of the distributions ∆,∆1,∆2,∆12 has the dimension n.
To the coordinate functions on the neighborhood T 2U , it corresponds the

adapted basis, see (17) – the frame

(Xi, X
1
i , X

2
i , X

12
i )

and the dual coframe
(U i3, U

i
13, U

i
23, U

i
123).

The coframe is defined as in (15) ; in matrix writing,
U i3
U i13
U i23
U i123

 =


δij 0 0 0

N i1
j δij 0 0

N i2
j 0 δij 0

M i12
j N i12

j1
N i12

j2
δij

 ·


uj3
uj13
uj23
uj123

 (43)
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whereN i1
j = N i1

j (u, u1), N i2
j = N i2

j (u, u2) and N i12
j1
, N i12

j2
,M i12

j may depend20

on all the variables u, u1, u2, u12.
The frame is defined by the inverse matrix

δij 0 0 0

−N i1
j δij 0 0

−N i2
j 0 δij 0

−M̃ i12
j −N i12

j1
−N i12

j2
δij

 , M i12
j − M̃

i12
j = N i12

i1
N i1

j +N i12
i2
N i2

j .

Thus, a vector field X and a 1-form θ on T 2M are split into invariant
blocks as

X = xiXi + xi1X
1
i + xi2X

2
i + xi12X

12
i , θ = θiU

i
3 + θ1iU

i
13 + θ2iU

i
23 + θ12i U

i
123.

Remark 4.2. With respect to coordinate changes on T 2M, the connection coefficients
transform as:

N
i′α
j′
β

= ai
′
i(a

j
j′N

iα
jβ

+ aiα
j′
β

), (44)

M
i′12
j′ = ai

′
i(a

j
j′M

i12
j + aj1

j′N
i12
j1

+ aj2
j′N

i12
j2

+ ai12
j′ ), α, β ∈ {1, 2, (12)}, (45)

where indices designated by the same letter have the same numerical values (and are subject

to Einstein summation convention) if and only if they correspond to the same local chart,

e.g., i = iα (and we perform summation by these), but i is not equal to i′ (and no summation

is performed). Conversely, if the functions N iα
jβ

and M i12
j obey the rules (44), (45), they

define a connection on T 2M .

Consider now:

• a smooth curve u : [0, 1]→M and
• a variation α : [0, 1]× (−ε0, ε0)→M of u, with fixed endpoints.

The variation α determines a 2-dimensional surface α̃ in T 2M :

α̃(t, ε) = (α(t, ε), α′t(t, ε)), α
′
ε(t, ε), α

′′
tε(t, ε)). (46)

Its coordinate curve ε = 0 is a curve on T 2M , which we will call the lift of the
variation α. Along this curve, we have:

u = u(t), u1 =
du

dt
, u2 = v, u12 =

dv

dt
,

where v = α′ε(t, 0) is the deviation vector field.

Remark 4.3. In particular, if αi(t, ε) = ui(t) + εvi(t), the deviation vector field

v = α̃′ε|ε=0 coincides with the velocity vector u̇. The lift to T 2M of the variation is ũ(t) =

20These conditions are to insure that the vector fields Xi are projectable onto TM (with
respect to both fibrations ρ1 and ρ2).
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(u(t), u̇(t), u̇(t), ü(t)), which can be identified with the curve t 7→ (u(t), u̇(t), ü(t)) on the

osculating bundle OscM . This way, the lift of u to OscM ⊂ T 2M is a particular case of a

lift of a variation of u to T 2M.

Raising to T 2M, geodesics parametrized by the arclength t = s of the base
manifold M are described by

dui1
dt

+ γijku
j
1u
k
1 = 0. (47)

The geodesic deviation equation :

∇ 2vi

dt2
= R i

j klu̇
jvku̇l,

is written, in terms of partial derivatives (and substituting u̇i = ui1, v
i = ui2),

as :
dui12 + (γilku

k
2)dul1 + (γilku

k
1)dul2+

+

[
d

dt
(γiklu

k
2) + (γikhu

h
1 )(γkjlu

j
2)− uj2uh1R i

h jl

]
dul = 0.

(48)

This suggests us to define a linear connection:

N i1
l = N i12

l2
:= γilku

k
1 , N

i2
l = N i12

l1
:= γilku

k
2 , (49)

M i12
l = C1(N i2

l ) +N i1
kN

k2
l − u

j
2u
h
1R

i
hj l , (50)

where C1 is an arbitrary vector field of the form:

C1 = uk1 ∂k + uk12 ∂
2
k +Gk1 ∂

1
k +Gk12 ∂

12
k .

For the functions N i2
l = N i2

l (u, u2), we have, actually,

C1N
i2
l = uk1 ∂kN

i2
l + uk12 ∂

2
kN

i2
l .

These functions obey the rules of transformation (44), (45), hence, they define
a connection on T 2M .

In terms of this connection, the geodesic equation is written U i13(
·
ũ) = 0,

while the 1-forms U i123 serve to describe the Jacobi equation. More precisely,

Proposition 4.2. Let c : u = u(t) be a curve on M, v be a vector field
along u and the following curve on T 2M :

ũ(t) :=
(
u = u(t), u1 =

du

dt
(t), u2 = v(t), u12 =

dv

dt

)
.

Then:
a) c is a geodesic if and only if U i13( ˙̃u) = 0;
b) if c is a geodesic, then v is a Jacobi field along c iff U i123( ˙̃u) = 0.
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5 Historical background

Subsequent differentiation, or the so-called differential prolongation defined
an important problem in the geometry of the last century. We shall men-
tion here three directions. First of all, if to the coordinate functions (ui) one
successively adjoins the differentials dui, d2ui, . . ., then the dimension of the
space is each time increased by their number: n, 2n, 3n, . . . In this direction,
it was done a substantial work (E. Bompiani, V. Vagner) and, in particular,
by the Romanian school of geometry (R. Miron, Gh. Atanasiu, [3, 10]). Sec-
ond, French mathematicians promoted the so-called jet bundle approach (Ch.
Ehresmann, A. Roux, [5, 14]), which was adopted also in other countries (I.
Kolař, W.F. Pohl [11]). Third, differential prolongations were remarked in the
iterations of the tangent functor. This is the approach that we have adopted
here. Its cornerstone is the fact that the tangent bundles (floors) have a struc-
ture of multiple vector bundles. French mathematicians were also the first to
pay attention to this fact (Ch. Ehresmann, J. Pradines, [7, 12]). Cl. Godbil-
lon noticed the fundamental role of the second floor in the interpretation of
Hamiltonian systems, [8]. A more detailed analysis was made more recently
(W. Bertram, J.T. White, [5, 17], the second author started to study floors
from 1962, [13]). From a technical point of view, it was necessary to introduce
new notations and a convenient indexing, in order to obtain a comfortable
description of iterative structures. It was thus born a new theory: the theory
of sector-forms, which is added to jet structures. Moreover, floors include the
theory of higher order motions, in particular, of the interactions between fields
and flows, a domain which has been little studied up to now.

We have insisted a little more on the subject of connections in bundles.
The structure 4h⊕4v (Ch. Ehresmann, [6]) is a generalization of the idea of
line integral, where the transport of fibers depends on the choice of the path.
Still, a deeper meaning is hidden in the interaction of non-commuting fields
and of curvature of the space. One had to give up holonomic reference frames
and the first decisive step in this direction was made by J.A. Schouten, by the
use of nonholonomic bases and of nonholonomy objects, [15]. Specializing the
basis in the structure 4h ⊕4v, it is designed a scheme which includes a se-
ries of classical theories: Lie groups, representations, symmetries, movements,
curvature of the space, morphisms of bundles with connections, invariants of
mappings, Cartan’s test etc. One can also speak about higher order connec-
tions, given by structures of the type 4h⊕4hv⊕4v and 4⊕41⊕42⊕412,
in which it is performed a specialization of the basis of the required type, [2, 4].

The beauty of the category-theoretic approach consists of the fact that
the structures are defined in an invariant manner, without resorting to any
coordinate system and that the transition from a floor to the next one is a
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repetitive process – i.e., it is thus created an iterative calculus.
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