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Abstract

In this article we characterize the ideal unimodular singularities in
terms of their invariants. On the basis of this characterization we give
an implementation of a classifier for ideal unimodular singularities in
the computer algebra system SINGULAR.

1 Introduction

In [1] Arnold, V. I. and in [10] Schappert, A. classified the unimodular plane
curve singularities with respect to right and contact equivalence respectively.
And then Drozd and Greuel in [5] introduced the notion of ideal-unimodal
plane curve singularities (IUS). In characteristic zero ideal-unimodal singu-
larities and contact unimodal singularities coincide. Nguyen Hong Duc in [6]
introduced some invariants for IUS and also gave pre-normal forms of all IUS
by using the theorem on parametrization finite determinacy.
In this article we will give a sufficient condition for a plane curve singularity
to be an IUS in terms of certain invariants and also give the implementation
of a classifier for IUS in the computer algebra system SINGULAR [4], [8].
The classifier is based on the computation of several invariants. This com-
putation turns out to be difficult for reducible curves. Therefore we show
in section-2 how to reduce this computations to compute the corresponding
invariants for the branches. This turn out to be much more efficient.

Key Words: Ideal unimodular singularities, Conductor, Intersection multiplicity
2010 Mathematics Subject Classification: Primary 14B05; Secondary 14H20.
Received: December, 2013.
Revised: January, 2014.
Accepted: January, 2014.

59



A Classifier For Ideal Unimodular Singularities 60

2 computation of invariants

The aim of this section is to present an algorithm which reduces the com-
putation of the delta invariant and the conductor of a reduced plane curve
singularity to that of their irreducible branches. We want to compare the two
different approaches to compute the delta invariant of any reduced plane curve
singularity. From the computational point of view, one approach computes the
delta invariant by using the Humburger-Noether expansion of a reduced plane
curve singularity and our new approach computes the delta invariant of a
reduced plane curve singularity by using the Humburger-Noether expansion
of the irreducible components. For details see [2]. Examples show that our
approach is much faster (see section-4).

Remark 2.1. We will compare our procedure with the procedure delta from
the SINGULAR library hnoether.lib.

Let R be a plane curve singularity, m its maximal ideal and R0 be its
integral closure. It follows from [7], [3] that R0

∼= ⊕r
i=1K[[t]], where r is the

number of branches of f . Then the following definitions can be found in [6].

Definition 2.2. Let 0 6= f∈ m ⊂ K[[x, y]] be reduced and R = K[[x, y]]/ <
f >↪→ R0 be its normalization. Then a composition ψ of the natural pro-
jection K[[x, y]] � R, the normalization R ↪→ R0 and an isomorphism
R0
∼= ⊕r

i=1K[[t]] is called parametrization of f .

Definition 2.3. Let f ∈ K[[x, y]] be reduced and fi the irreducible compo-
nents of f . Also let ψ be a parametrization of f .
1. We call δ(f) = dimKR/R0 the δ-invariant of f .
2. We introduce the valuation maps

v = (v1, . . . , vr) : R→ (Z≥0 ∪∞)r

defined by
g 7→ ord(g(xi(t), yi(t)))i=1,...,r,

where (xi(t), yi(t))i=1,...,r is the parametrization of each irreducible branch of
f . Its image S(f) = v(R) is a semigroup.
3. Let C = (R : R0)= {u ∈ R : uR0 ⊂ R} be the conductor ideal of R in
R0 of the form < (tc11 , . . . , t

cn
n ) > (see- [11]). We call c(f)= (c1, . . . , cn) the

conductor, mt(f)= (mt(f1), . . . ,mt(fn)) the multi-multiplicity and , c(f)=
(c(f1), . . . , c(fn)) the multi-conductor of f , where c(fi) is the conductor of i-th
component of f .

Definition 2.4. 1. Let g ∈ K[[x, y]] be irreducible and (x(t), y(t)) a
parametrization. Then intersection multiplicity of any f ∈ K[[x, y]] with g



A Classifier For Ideal Unimodular Singularities 61

is given by
i(f, g) = ord(f(x(t), y(t))).

If u is a unit then we define i(f, u) = 0.
2. The intersection multiplicity with reducible g = g1, . . . , gs, where gi are
irreducible is defined by the following sum

i(f, g) = i(f, g1) + · · ·+ i(f, gs).

The following propositions give the conductor and delta invariant in terms
of irreducible branches and their intersection multiplicities.

Proposition 2.5. Let f = f1...fr with fi irreducible, then

c(f) = (c(f1) +
∑
j 6=1

i(f1, fj), . . . , c(fr) +
∑
j 6=r

i(fr, fj))

In particular if f is irreducible then c(f) = 2δ(f).

Proof. See [9].

Proposition 2.6. Let f = f1...fr with fi irreducible, then

δ(f) =

r∑
i=1

(δ(fi) +
∑
j 6=i

i(fi, fj))

Proof. See [6].

3 The Algorithm

In this section we present the algorithm to compute delta invariant, conductor,
multi-conductor, number of branches and multi-mutiplicity of any plane curve
singularity f . This algorithm has been implemented in SINGULAR ([8],[4]).

4 Timings and Table

In this section we provide some examples and a table which gives a time com-
parison between the algorithm delta (already implemented in SINGULAR)
and our algorithm redInvariant described above.Timings are conducted by us-
ing Singular 3-1-3 on an Intel R©T2400, dual core 1.83 GHz processor, 1 GB
RAM under the Window 2007 operating system.



A Classifier For Ideal Unimodular Singularities 62

Algorithm 1 Computing delta invariant, conductor, multi-conductor, num-
ber of branches and multi-mutiplicity of the reduced plane curve singularity
(redInvariant)

Require: a polynomial f , (f defines a reduced curve singularity).
Ensure: a list L containing the delta invariant, conductor, multi-conductor,

number of branches and multi-mutiplicity of the reduced plane curve sin-
gularity.

1: factorize f = f1, ..., fr (In SINGULAR this can be done by using the
procedure factorize(f).).

2: compute a list H, the Hamburger-Noether expansion (In SINGULAR this
can be done by using the procedure hnexpansion(fi) from hnoether.lib .)
for all fi.

3: compute the matrix of intersection multiplicities (if h1, h2 is the output of
hnexpansion then in SINGULAR the procedure intersection(h1, h2) com-
putes the intersection multiplicity of the branches corresponding to h1 and
h2.) corresponding to the irreducible branches.

4: compute delta invariant as described in proposition-2.6.
5: compute conductor of f as described in proposition-2.5.
6: compute parametrization (if h is the output of hnexpansion then in SIN-

GULAR the procedure param(h) computes the parametrization of the
branch corresponding to h.)of each branch of f

7: compute multi-conductor and multi-multiplicity as defined in definition-
2.3.

8: add delta invariant, conductor, multi-conductor and multi-multiplicity to
the list L.

9: return L.
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We consider the following polynomials:

f1 =((x7 − y6)4 − x20y10 + x35) · ((x7 − y6)3 − x24 + y25) · ((x7 − y5)3 − x24 − y25)

f2 =(x14 + x5y5 + y10 + y15) · (x16 + x18 + y20 + y23)

f3 =(x14 − y12 + x10y4 + y19) · (x12 − y14 + x15 + y15) · ((x6 − y5)4 − x26y12+

x28 + y30) · (x14 + y18 + y21)

f4 =(x8 + 2y14) · (x10 + 5y10) · (y2 − x3) · (x2 − y3)

f5 =(x18 + y24 + x29) · (x14 + y18 + y21) · (x9 − x3y3 + y11) · (x15 − y10 − y19)

f6 =(x16 + 3y18) · (x5 + 7y5)

f7 =((x7 − y6)4 − x20y10 + x35) · ((x7 − y6)3 − x24 + y25)

f8 =(x18 + y24 + x29) · (x14 + y18 + y21) · (x9 − x3y3 + y11)

Table 1

Poly redInvariant delta
f1 10 sec 25 sec
f2 2 sec >1 hr
f3 15 sec 5 min
f4 5 min >1 hr
f5 10 sec >1 hr
f6 2 sec >1 hr
f7 8 sec 3 sec
f8 8 sec 25 sec

5 Drozd-Greuel’s Ideal-Unimodal
Plane Curve Singularities

The following definition can be found in [5].

Definition 5.1. A plane curve singularity with complete local ring R ⊂ R0 is
called ideal-unimodal plane curve singularity (IUS) if its maximal ideal admits
generators x, y whose valuation satisfies the condition in Table-2. Moreover
we say that R is of type E, T, W and Z, if R belongs to the corresponding
class.
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Table 2
Type r v(x) v(y) Condition Name

1 (3) (l) l = 7, 8, 10, 11 E2l−2

E 2 (1, 2) (∞, l) l = 4, 5, 6, 7 E2,2q−1, E13,
E3,2q−1, E19, (q ≥ 1)

3 (1, 1, 1) (∞, l, k) l = 2, 3, k ≥ l El,2(k−1)

2 (2, k) (l, 2) l, k odd, lk > 4 Tk+2,l+2,2

T 3 (1, 1, k) (∞, l, 2) k odd, lk ≥ 2 Tk+2,2l+2,2

4 (1,∞, 1, k) (∞, 1, l, 1) lk ≥ 1 T2k+2,2l+2,2

1 (4) (l) l = 5, 6, 7 (*) W12,W
]
1,2q−1,

W18, (q ≥ 1)
W 2 (1, 3) (∞, l) l = 4, 5 W13,W17

2 (2, 2) (3, l) l = 3, l ≥ 5 odd (*) W1,0,W
]
1,2q,

W1,l−3, (q ≥ 1)
3 (1, 1, 2) (∞, l, 3) l ≥ 2 W1,2l−3

2 (1, l) (∞, 3) l = 4, 5, 7, 8 Z11, Z13, Z17, Z19

Z 3 (1,∞, 2) (∞, 1, l) l = 2, 3, 4, 5 Z0,2q−1, Z12, Z1,2q−1,
Z18, (q ≥ 1)

4 (1,∞, 1, 1) (∞, 1, l, k) l = 1, 2, k ≥ l Zl−1,2(k−1)

In Table-2, r denotes the number of branches and v(x), v(y) denote the
valuation of x and y respectively.
(*) If char(K) = 2, extra conditions in case W are required: if r = 1 then
l = 5, if r = 2, v(x) = (2, 2) and l = 3 then x2 − y3 /∈ t7R0.

(This excludes W18 (r = 1) and all W ]
1,q (r = 1) or (r = 2)). For details see

[5], [6].

Remark 5.2. The index q depends on the delta invariant of the corresponding
singularity. The relation between q and the delta invariant of the correspond-
ing singularity is given in [6].

The following proposition indicates the overlapped classes of ideal-unimodal
singularities given in Table-2.

Proposition 5.3. The following classes of singularities coincide.
(i) E2,2q−1 = T2q+3,3,2; q ≥ 1; (r = 2).
(ii) E2,2(l−1) = T3,3l+2,2; l ≥ 2; (r = 3).
(iii) Tk+2,l+2,2 = Tl+2,k+2,2 and T2k+2,2l+2,2 = T2l+2,2k+2,2.
(iv) Z0,2q−1 = T2q+3,4,2; q ≥ 1; (r = 3).
(v) Z0,2(k−1) = T2k+2,4,2; k ≥ 1; (r = 4).

Proof. See [6].

The following proposition gives us the several invariants of ideal-unimodal
singularities.
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Proposition 5.4. The conductor (c), multi-multiplicity (mt) and the multi-
conductor (c) of the ideal-unimodal singularities are given in the Table-3.

Proof. See [6].

The following definition and lemma can be found in [3].

Definition 5.5. Let f ∈ K[[x, y]] be reduced and fi the irreducible compo-
nents of f . Let γ ∈ K[[x, y]] be regular. Then we call β1(f) = sup{ min
i(fi, γ) : γ is regular } the maximal contact multiplicity of f .

Lemma 5.6. Let f ∈ K[[x, y]] be irreducible s.t. m = mt(f) = ordf(0, y) and
let n = ordf(x, 0). Then
1. If f is non-singular, then there exist a coordinate change Φ ∈ AutKK[[x, y]]
such that Φ(f)(x, y) = y.
2. If f is singular, then there exist a coordinate change Φ ∈ AutKK[[x, y]] of
the form

Φ(x) = x+ c1y
d1 + c2y

d2 + . . .

and
Φ(y) = y

such that m - k, where k = ordΦ(f)(x, 0). In particular, if m/n then c1 6= 0
and d1 = n

m . If m - n then ci = 0 for all i ≥ 1. Moreover β1(f) = k.

Following corollary and lemma can be found in [6].

Corollary 5.7. Let char(K) 6= 2 and let f ∈ K[[x, y]] be irreducible with
mt(f) = 2 and δ(f) = k ≥ 1. Then f is contact equivalent to x2k+1 − y2.

Lemma 5.8. Let f is an irreducible plane curve singularity having a parametriza-
tion (x(t), y(t)) with ordx(t) = n, ordy(t) = m and gcd(m,n) = 1. Then

c(f) = (m− 1)(n− 1).

6 Characterization of ideal-unimodal singularities in terms
of their invariants

In this section we give the sufficient condition for a plane curve singularity to
be an ideal-unimodal singularity in terms of its branches, multi-multiplicity,
multi-conductor and the conductor.

Lemma 6.1. Let f ∈ K[[x, y]] such that f = f1f2 and mt(f1) = 2 = mt(f2),
where each fi is irreducible. Assume that µ(f1) ≤ µ(f2) and i(f1, f2) < ∞.
If the tangent cones of f1 and f2 are different then i(f1, f2) = 4 otherwise
i(f1, f2) ≥ 2(µ(f1) + 1).
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Proof. We may assume that f1 = x2 − yl and f2 = (αx + βy)2+ terms of
degree≥ 2. If β 6= 0 then i(f1, f2) = 4. If β = 0 then we may assume that
α = 1. We may write f2 = x2(1+ terms of degree ≥ 1) + x(γys+ terms of
degree ≥ s) + yk(δ+ terms of degree ≥ 1), δ 6= 0 because f2 is irreducible.
Since by assumption µ(f1) ≤ µ(f2) we obtain k ≥ l and 2s ≥ l. This implies
i(f1, f2) = f2(tl, t2) ≥ 2l = 2(µ(f1) + 1).

Lemma 6.2. Let f ∈ K[[x, y]] be irreducible such that mt(f) = 4.
1- If τ(f) = 18 = µ(f) then f ∈W18

2- If τ(f) = 16 < µ(f) = 18 then f ∈W ]
1,3.

Proof. We may assume that x(t) = t4+ higher degree terms and y(t) = ta+
higher degree terms, a > 4 and 4 - a.
1- If a is odd then lemma-5.8 gives v(x) = 4 and v(y) = 7, this implies f ∈W18.
2- If a is even then the characteristic exponents are k0 = 4, k1 = a and k2 =
some odd number. This implies µ(f) = k0 + k1 + k2 − 1. As a ≥ 6 this
implies a = 6 and k2 = 9. So we obtain a singularity parametrized by x = t4

, y = t6 + t9, which gives f ∈W ]
1,3.

Proposition 6.3. A singularity f ∈ K[[x, y]] is an ideal-unimodal singularity
if and only if its number of branches, its multi-multiplicity (mt), its multi-
conductor (c) and its conductor (c) are given as in the Table-3.

Proof. If f is an ideal-unimodal singularity then its number of branches, its
multi-multiplicity (mt), its multi-conductor (c) and its conductor (c) are given
by Proposition-5.4.
Now let f ∈ K[[x, y]] having number of branches, multi-multiplicity, multi-
conductor and the conductor as given in Table-3, then we need to show that
f is an ideal-unimodal singularity.
For the class E2l−2: Let f ∈ K[[x, y]] be such that r = 1, mt = (3), c =
(2l − 2), c = (2l − 2) and p 6= 2. Since gcd(3, l) = 1 then lemma-5.8 gives
v(x) = 3 and v(y) = l and hence f is an ideal-unimodal singularity of type
E2l−2.
The proof for the classes W12 and W18 is similar to the proof of the class
E2l−2.
For the class E3,2(k−1): Let f ∈ K[[x, y]] be such that r = 3, mt = (1, 1, 1),

c = (0, 0, 0), c = (k + 3, 6, k + 3) and p 6= 2. Then f = f1.f2.f3 with
mt(f1) =mt(f2) = mt(f3) = 1. By a suitable coordinate change we may as-
sume that f1 = y. By using proposition-2.5 we can deduce that i(f1, f2) = 3,
i(f2, f3) = 3 and i(f1, f3) = k. This implies that i(f1, y) = ∞, i(f2, y) = 3
and i(f3, y) = k and therefore i(f1, x) = 1, i(f2, x) = 1 and i(f3, x) = 1 since
mt(f1) =mt(f2) = mt(f3) = 1. It yields v(x) = (1, 1, 1) and v(y) = (∞, 3, k)
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and hence f ∈ E3,2(k−1).
The proof for the classes E13, E19, E3,2q−1, Tk+2,2l+2,2, T2k+2,2l+2,2, W13,
W17, W1,2l−3, Z2l+3, Z12, Z18, Z1,2q−1 and Z1,2(k−1) is similar to the proof of
the class E3,2(k−1).
For the class Tk+2,l+2,2: Let f ∈ K[[x, y]] be such that r = 2, mt = (2, 2),

c = (l − 1, k − 1), c = (l + 3, k + 3). Then f = f1.f2 with mt(f1) = 2 and
mt(f2) = 2. We need to show that v(x) = (2, k) and v(y) = (l, 2). If p 6= 2
then corollary-5.7 gives f1 is contact equivalent to x2 − yl and f2 is contact
equivalent to x2 − yk. Let ϕ be an automorphism such that

ϕ(f1) = x2 − yl.

We may assume f1 = x2−yl and f2 = (αx+βy)2+ higher degree terms. Now
if f1 and f2 have different tangent cones then lemma-6.1 implies i(f1, f2) = 4
and then proposition-2.5 gives c = (l+ 3, k+ 3) and this implies v(x) = (2, k)
and v(y) = (l, 2). So f ∈ Tk+2,l+2,2. And for the other case c 6= (l+ 3, k + 3).

The proof for the classes W1,0, W ]
1,2q, W ]

1,2q−1 and W1,l−3, is similar to the
proof of the class Tk+2,l+2,2.

Remark 6.4. To distinguish the classes W18 and W ]
1,3 we need one more in-

variant which is Tjurina number (see lemma-6.2).

7 Short Description of the Classifier

The formal algorithm of our classifier takes too much space, so we describe it
shortly in the following two steps.

• It computes the number of branches, delta invariant, multi-multiplicity,
multi-conductor and conductor of the given plane curve singularity
(Algorithm-1).

• It compares the invariants of a given plane curve singularity with the
invariants given in table-3 and if the given plane curve singularity is IUS
then it returns to which class it belongs.
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Table 3
Name r Condition mt c c char(K)

= p
E2l−2 1 l = 7, 8, 10, 11 (3) (2l− 2) (2l− 2) p 6= 2

E13, E19 2 l = 5, 7 (1, 2) (0, l− 1) (l, 2l− 1) −
E3,2q−1 2 − (1, 2) (0, 2q + 4) (6, 2q + 10) −
E3,2(k−1) 3 k ≥ 3 (1, 1, 1) (0, 0, 0) (k+3, 6, k+

3)
p 6= 2

Tk+2,l+2,2 2 k ≥ l odd, lk >
4

(2, 2) (l− 1, k − 1) (l+3, k+3) p 6= 2

Tk+2,2l+2,2 3 k odd, lk ≥ 2 (1, 1, 2) (0, 0, k − 1) (l + 2, l +
2, k + 3)

p 6= 2

T2k+2,2l+2,2 4 k ≥ l ≥ 1 (1, 1, 1, 1) (0, 0, 0, 0) (l + 2, k +
2, l+2, k+2)

−

W12 1 l = 5 (4) (3l− 3) (3l− 3) p 6= 3
W18 1 l = 7 (4) (3l− 3) (3l− 3) p 6= 2, 3

W ]
1,2q−1 1 − (4) (2q + 14) (2q + 14) p 6= 2

W13,W17 2 l = 4, 5 (1, 3) (0, 2l− 2) (l, 3l− 2) −
W1,0 2 − (2, 2) (2, 2) (8, 8) p 6= 2

W ]
1,2q 2 − (2, 2) (2, 2) (q+8, q+8) p 6= 2

W1,l−3 2 l ≥ 5 odd (2, 2) (2, l− 1) (8, l + 5) p 6= 2
W1,2l−3 3 l ≥ 2 (1, 1, 2) (0, 0, 2) (l + 3, l +

3, 8)
p 6= 2

Z2l+3 2 l = 4, 5, 7, 8 (1, 3) (0, 2l− 2) (3, 2l + 1) −
Z12, Z18 3 l = 3, 5 (1, 1, 2) (0, 0, l− 1) (l+1, 3, 2l+

1)
p 6= 2

Z1,2q−1 3 − (1, 1, 2) (0, 0, 2q + 2) (5, 3, 2q+8) p 6= 2
Z1,2(k−1) 4 k ≥ 2 (1, 1, 1, 1) (0, 0, 0, 0) (k +

3, 3, 5, k+3)
−

Acknowledgements We would like to thank Dr. Gerhard Pfister and Dr.
Nguyen Hong Duc for useful conversations.

References

[1] Arnold, V. I.; Classification of unimodal critical points of functions,
Funct. Anal. App. 7(1973), 230-231.

[2] Binyamin, M. A.; Improving the computation of invariants of plane curve
singularities, An. St. Univ. Ovidius Constanta, Vol. 21(1), 2013, 51-58.

[3] Campillo, A.; Algebroid Curves in Positive Characteristics. Lecture Notes
in Mathematics 813, Springer (1980).

[4] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.; Singu-
lar 3-1-1 — A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de (2010).



A Classifier For Ideal Unimodular Singularities 69

[5] Drozd Y.A.; Greuel, G.-M.; On Schappert’s characterization of strictly
unimodal plane curve singularities, In: V.I. Arnold, G.-M. Greuel, J.H.M.
Steenbrink:Singularities, The Brieskorn Anniversary Volume. Birkhuser
(1998), 326.

[6] Duc, N. H.; Classification of singularities in positive characteristic, Phd
Thesis from University of Kaiserlautern (2012).

[7] Greuel, G.-M.; Lossen, C.; Shustin, E.; Introduction to Singularities and
deformations, Math. Monographs, Springer-Verlag (2006).

[8] Greuel, G.-M.; Pfister, G.; A Singular Introduction to Commutative
Algebra. Second edition, Springer (2007).

[9] Herzog, J.; Kunz, E.; Die Wertehalbgruppe eines lokalen Rings der Di-
mension 1, Springer (1971).

[10] Schappert, A.; Kurvensingularitäten und Isomorphieklassen von Mod-
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