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Block Power Method for SVD Decomposition

A. H. Bentbib and A.Kanber

Abstract

We present in this paper a new method to determine the k largest
singular values and their corresponding singular vectors for real rect-
angular matrices A ∈ Rn×m. Our approach is based on using a block
version of the Power Method to compute an k-block SV D decomposi-
tion: Ak = UkΣkV

T
k , where Σk is a diagonal matrix with the k largest

non-negative, monotonically decreasing diagonal σ1 ≥ σ2 · · · ≥ σk. Uk

and Vk are orthogonal matrices whose columns are the left and right
singular vectors of the k largest singular values. This approach is more
efficient as there is no need of calculation of all singular values. The QR
method is also presented to obtain the SV D decomposition.

1 Introduction

The singular value decomposition SVD is a generalization of the eigen-
decomposition used to analyse rectangular matrices(see [7]). It is an important
useful tool in many applications, including mathematical models in economics,
physical and biological processes (see [3]). For example, one way of estimating
the eigenvalues of covariance matrix is singular value decomposition (SVD).
Covariance matrix is used by many researchers in image processing applica-
tions. Singular value analysis has also been applied in data mining applications
and by search engines to rank documents in very large databases, including
the Web (see [6]). Several numerical methods for calculating eigenvalues of a
real matrix is based on the asymptotic behaviour of successive power of this
matrix. This is the case, for instance, of the so called power method. Using
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a block version of the power method, we obtain a new algorithm for comput-
ing the singular values and corresponding singular vectors for a matrix. The
paper is organized as follows. In section 2 we recall the power method to find
the largest eigenvalue in magnitude of a square matrix and the corresponding
eigenvector (see [4] and [8] ). The power method is adapted to compute the
largest singular value in section 3. In section 4, a block power method for
computing the SVD decomposition for a real matrix is given. In section 5, the
very useful QR method (see [2] ) is applied to compute the SVD decomposi-
tion. The proofs of the presented methods are given and numerical examples
are provided to illustrate the effectiveness of the proposed algorithms.

2 Power Method

2.1 Classical Power Method

Computing eigenvalues and eigenvectors of matrices play an important roles in
many applications in the physical sciences. For example, they play a prominent
role in image processing applications. Measurement of image sharpness can be
done using the concept of eigenvalues. The power method is one of the oldest
techniques for finding the largest eigenvalue in magnitude and its correspond-
ing eigenvector. We describe below the theory of the method. Briefly, given a
square matrix A, one picks a vector v and forms the sequence : v,Av,A2v, . . .
In order to produce this sequence, it is not necessary to get the powers of A
explicitly, since each vector in the sequence can be obtained from the previ-
ous one by multiplying it by A. The sequence converges in direction of the
dominant eigenvector. The proof of the convergence is usually given if the
eigenvalues of A are ordered so that

|λ1|>|λ2| ≥ . . . ≥ |λn|.

However, the method has some disadvantages such as when the largest
eigenvalue is multiple or when we may to compute other eigenvalues. To
obtain the smallest eigenvalue in magnitude, one consider powers of A−1, a
method which is called the inverse power method or inverse iteration.

2.2 Algorithm

Algorithm 2.2: Power Method
1. Input : A square matrix A ∈ Rn×n and a vector u(0) ∈ Rn,
2. Output : The largest eigenvalue λ1 and the associated eigenvector
3. for k = 1, 2, · · · (repeat until convergence)

w(k) = Au(k−1), u(k) = w(k)

‖w(k)‖ , λ
(k) = u(k)T

(
Au(k)

)
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2.3 Convergence

Let us examine the convergence of the power iteration in the case when A ∈
Rn×n is diagonalizable with p distinct eigenvalues |λ1| > |λ2| > . . . > |λp|
(p ≤ n). Let u(0) ∈ Rn, such that ‖u(0)‖ = 1. Since A is diagonalizable, then
Rn = Eλ1 ⊕ · · · ⊕ Eλp where Eλi is the eigenspace of A corresponding to the

eigenvalue λi. We set u(0) = u1 + u2 . . . + up where ui ∈ Eλi . By induction,
we obtain

u(k) =
1

γk

λk1u1 +

p∑
j=2

λkjuj

with γk =

∥∥∥∥∥∥λk1u1 +

p∑
j=2

λkjuj

∥∥∥∥∥∥
=

λk1
γk

u1 +

p∑
j=2

(
λj
λ1

)k
uj


Since ‖u(k)‖ = 1, then

|λ1|k

γk
=

1

‖u1 +

p∑
j=2

(
λj
λ1

)k
uj‖

that leads us to prove that

lim
k→+∞

|λ1|k

γk
=

1

‖u1‖
and then

lim
k→+∞

=
u1
‖u1‖

and λ(k) = u(k)T
(
Au(k)

)
→ λ1

2.4 Block Power Method

In this section we give a block version of the power method to compute the
first s eigenvalues of a square matrix. The proposed algorithm, used the QR
factorization at the normalization step. [4] and [5].
Algorithm 2.4: Block Power Method
1. Input : A square matrix A ∈ Rn×n, and a block of s vectors V ∈ Rn×s.
2. Output : A diagonal matrix Λ with the first s eigenvalues
3. . While err > precision

B = AV , B = QR (QR factorization),
V = Q(:, 1 : s) and Λ = R(1 : s, :). (Here Matlab notation is used)
err = ‖AV − V Λ‖;

End
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2.5 Numerical Example :

In this example, we tested the numerical block method given in Algorithm 2.4
compared with Matlab function eig. The rectangular matrix A ∈ Rn×m is
defined as A = QΣQT where Q is a random orthogonal matrix. We compute
relative error occurred when computing eigenvalues.

Σ = diag([40, 40, 40, 32, 15, 2, 1.5, 1]), n = 80, rank(A) = 8

eigenvalues Alg 2.4 Matlab

40 0.3553e− 015 0.0533e− 014
40 0.1776e− 015 0.1421e− 014
40 0.1776e− 015 0.1421e− 014
32 0.2220e− 015 0.3331e− 014
15 0.2368e− 015 0.0474e− 014
2 0.2220e− 015 0.0222e− 014

1.5 0.2961e− 015 0.1480e− 014
1 0.4441e− 015 0.2440e− 014

3 SV D Power Method

In this section we give an algorithm to compute the SV D decomposition for a
real matrix A ∈ Rn×m. We know that there exists an orthogonal real matrix
U ∈ Rn×n, an orthogonal matrix V ∈ Rm×m and a positive diagonal matrix
Σ =diag(σ1, σ2, . . . , σr, 0...) ∈ Rm×n such that A = UΣV T (r = rank(A)).
Let us set U = [u1, . . . , un] and V = [v1, . . . , vm] where (ui)1≤i≤n ∈ Rn and

(vj)1≤j≤m ∈ Rm. We obtain A =

r∑
k=1

σkukv
T
k , Auk = σkvk and AT vk = σkuk

for k = 1, · · · , r.

3.1 Algorithm

We present here an algorithm that compute the dominant singular value σ1 =
σmax of a rectangular real matrix and its associate right and left singular
vector. The convergence proof of the presented algorithm is given below.

Algorithm 3.1: SVD Power Method
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Input : A matrix A ∈ Rn×m, a vector v(0) ∈ Rm,
Output : The first singular value σ1 and

the corresponding right and left singular vector: Av = σ1u
for k = 1, 2, · · · (repeat until convergence)
While error > ε do :
w(k) = Av(k−1), αk = ‖w(k)‖, u(k) = α−1k w(k)

z(k) = ATu(k), βk = ‖z(k)‖, v(k) = β−1k z(k)

error := ‖Av(k) − βku(k)‖ and σ1 := βk
EndDo

3.2 Convergence

It is known that there exists orthonormal bases U = [u1, . . . , un] and V =

[v1, . . . , vm], respectively, of Rn and Rm, such that A =

r∑
j=1

σjujv
T
j . Let

v(0) ∈ Rm, v(0) =

m∑
j=1

yjvj where yj = vTj v
(0). If w(1) = Av(0) and α1 =

‖w(1)‖−1, then we set u(1) = α1w
(1), z(1) = ATu(1) and v(1) = β1z

(1) where
β1 = ‖z(1)‖−1. We repeat the process until convergence is obtained.

Indeed, since A =

r∑
j=1

σjujv
T
j and v(0) =

m∑
j=1

yjvj , then w(1) =

r∑
j=1

σjyjuj ,

u(1) = α1

r∑
j=1

σjyjuj , z
(1) = ATu(1) = α1

m∑
j=1

σ2
j yjvj and v(1) = α1β1

r∑
j=1

σ2
j yjvj .

By induction we obtain

v(k) = δ2k

r∑
j=1

σ2k
j yjvj ‘ and u

(k) = δ2k+1

r∑
j=1

σ2k+1
j yjuj

Where δ2k and δ2k+1 are the corresponding normalization factors (δ2k and
δ2k+1 are positive). We can easily see that v(k) and u(k) converge to the first,
right and left singular vector, respectively.

Since ‖u(k)‖2 = δ22k+1

r∑
j=1

σ4k+2
j y2j = 1 and ‖v(k)‖2 = δ22k

r∑
j=1

σ4k
j y

2
j = 1, then

‖u(k)‖2

‖v(k)‖2
= 1 = σ2

1

(
δ22k+1

δ22k

)
C +

r∑
j=µ1+1

(
σj
σ1

)4k+2α2
j

C +

r∑
j=µ1+1

(
σj
σ1

)4kα2
j


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Where µ1 is the multiplicity of the singular value σ1 and C =

µ1∑
j=1

y2j . Thus

δ2k+1

δ2k
−→ σ1 and since Av(k) = δ2k+1

δ2k
u(k), then ‖Av(k) − σ1u(k)‖ −→ 0.

4 Block SV D Power Method

The main goal in this section is to give a block iterative algorithm that com-
putes the singular value decomposition. The idea is based on the technique
used in the block power method. From a block-vector V (0) ∈ Rm×s, we con-
struct two block-vector sequences V (k) ∈ Rm×s and U (k) ∈ Rn×s that con-
verges respectively to the s first right and left singular vectors corresponding
to singular values σ1 ≥ . . . ≥ σs.

4.1 Algorithm

Algorithm 4.1: Block SVD Power Method

Input : A matrix A ∈ Rn×m, a block-vector V = V (0) ∈ Rm×s and a
tolerance tol

Output : An orthogonal matrices U = [u1, . . . , us] ∈ Rn×s,
V = [v1, . . . , vs] ∈ Rm×s and a positive diagonal matrix
Σ1 = diag (σ1, σ2, . . . , σs) such that : AV = UΣ1

While err > tol do
AV = QR (factorization QR), U ←− Q(:, 1 : s) (the s first vector colonne of Q)

ATU = QR, V ←− Q(:, 1 : s) and Σ1 ←− R(1 : s, 1 : s)

err = ‖AV − UΣ1‖
End

4.2 Convergence

Let s be an integer such that r = qs where r is the rank of A and

σ1 ≥ . . . ≥ σs> σs+1 ≥ . . . ≥ σqs > 0

the singular values of A. We can write A as A =

q∑
i=1

UiΣiV
T
i where Σi is a

diagonal matrix with nonzero, monotonically decreasing diagonal σ(i−1)s+1 ≥
σ(i−1)s+2 ≥ . . . ≥ σis > 0. Ui and Vi are the orthogonal matrices whose
columns are respectively the corresponding left and right singular vectors.
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Let V (0) ∈ Rm×s, V (0) =

q∑
i=1

ViXi + V (0)∗, where

span
(
V (0)∗) ⊆ span {vr+1, vr+2, · · · , vm} = ker {A}. We have

W (0) = AV (0) = U1Σ1X1 +

q∑
i=2

UiΣiXi.

Suppose that the component X1 = Is, then

AV (0) = U1R1 (QR factorization)

= U1Σ1 +

q∑
i=2

UiΣiXi

UT1 U
(1)R1 = Σ1 that prove R1 is non singular and then

U (1) = U1Σ1R
−1
1 +

q∑
i=2

UiΣiXiR
−1
1

and
ATU (1) = V (1)R2(QR factorization)

= V1Σ2
1R
−1
1 +

q∑
i=2

ViΣ
2
iXiR

−1
1

V T1 V
(1)R2 = Σ2

1R
−1
1 , R2 is non singular

V (1) = V1Σ2
1R
−1
1 R−12 +

q∑
i=2

ViΣ
2
iXiR

−1
1 R−12

and so on, if we note Nt = R−11 R−12 · · ·R
−1
t , at step k we have

AV (k−1) = U (k)R2k−1(QR factorization)

= U1Σ2k−1
1 N2(k−1) +

q∑
i=2

UiΣ
2k−1
i XiN2(k−1)

U (k) = U1Σ2k−1
1 N2k−1 +

q∑
i=2

UiΣ
2k−1
i XiN2k−1

and
ATU (k) = V (k)R2k(QR factorization)

= V1Σ2k
1 N2k−1 +

q∑
i=2

ViΣ
2k
i XiN2k−1

V (k) = V1Σ2k
1 N2k +

q∑
i=2

ViΣ
2k
i XiN2k
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U (k) and V (k) are orthogonal matrices, then

Is =
(
U (k)

)T
U (k) = NT

2k−1Σ4k−2
1 N2k−1 +

q∑
i=2

NT
2k−1X

T
i Σ4k−2

i XiN2k−1

Is =
(
V (k)

)T
V (k) = NT

2kΣ4k
1 N2k +

q∑
i=2

NT
2kX

T
i Σ4k

i XiN2k

by left and right-factoring, we obtain

Is = NT
2k−1Σ2k−1

1

(
Is +

q∑
i=2

Σ−2k+1
1 XT

i Σ4k−2
i XiΣ

−2k+1
1

)
Σ2k−1

1 N2k−1

Is = NT
2kΣ2k

1

(
Is +

q∑
i=2

Σ−2k1 XT
i Σ4k

i XiΣ
−2k
1

)
Σ2k

1 N2k

Since
∥∥Σ−11

∥∥ = 1
σs

and ‖Σi‖ = σ(i−1)s+1 then,∥∥∥Σ−p1 XT
i Σ2p

i XiΣ
−p
1

∥∥∥ ≤ ‖Σi‖2p
∥∥Σ−11

∥∥2p ‖Xi‖2

≤
(
σ(i−1)s+1

σs

)2p
‖Xi‖2−→p→∞0

Thus

limp−→∞
(
NT
p Σp1

)
(Σp1Np) = limp −→∞ (Σp1Np)

T
(Σp1Np) = Is.

Moreover, the matrix Σp1Np is triangular with positive diagonal entries, then
limp−→∞Σp1Np = limp−→∞N−1p Σ−p1 = Is. Otherwise

ATU (k)
(
N−12k−1Σ

−(2k−1)
1

)
Σ−11 = ATU (k)R−12k

(
N−12k Σ−2k1

)
= V (k)

(
N−12k Σ−2k1

)
= V1 +

q∑
i=2

ViΣ
2k
i XiΣ

−2k
1 −→k→∞V1

AV (k)
(
N−12k Σ−2k1

)
Σ−11 = AV (k)R−12k+1

(
N−12k+1Σ

−(2k+1)
1

)
= U (k+1)

(
N−12k+1Σ

−(2k+1)
1

)
= U1 +

q∑
i=2

UiΣ
2k+1
i XiΣ

−(2k+1)
1 −→k→∞U1

That implies that limk→∞V
(k) = V1, limk→∞U

(k) = U1 and limk→∞R2k =
limk→∞R2k+1 = Σ1.
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5 The QR Method for SV D

Our main goal in this section is to give an iterative algorithm that compute
the singular value decomposition. The idea is based on the QR method.

5.1 Algorithm

Algorithm 5.1: The QR Method for SV D

Input : A matrix A ∈ Rn×m

Output : The Singular Value Decomposition
Initialization T0 = A and S0 = AT

For k = 1, 2, · · · (repeat until convergence)
Tk−1 = UkRk, Sk−1 = VkZk (QR Factorization)
Tk = RkVk and Sk = ZkUk

The algorithm given above is nothing but the QR method applying to the

symmetric matrix M =

(
0n A
AT 0m

)
to compute eigenvalues of M which are

nothing but the singular values of A. In deed, by setting T0 = A, S0 = AT

and M0 =

(
0n T0
S0 0m

)
, we have

For k = 1, 2, · · ·

Mk−1 =

(
0n Tk−1
Sk−1 0m

)
=

(
Uk 0
0 Vk

)(
0n Rk
Zk 0m

)
(QR Factorization)

Mk =

(
0n Tk
Sk 0m

)
=

(
0n Rk
Zk 0m

)(
Uk 0
0 Vk

)
5.2 Numerical examples

We compared and tested the numerical results obtained by Algorithm 4.1
with Matlab svd function. Let A ∈ Rn×m be a rectangular matrix defined
as : A = QΣUT where Q and U are random orthogonal matrices. We give
below relative errors occurred when computing the singular values. We also
compare the CPU time. The started block-vector in Algorithm 4.1 is given
by V = V (0) = eye(m, s) (Matlab notation). The results are given from
Algorithm 4.1 after only at most k = 2 iterations. We stopped the algorithm
4.1 whenever the error of the reduction err = ‖AV −UΣ‖ is smaller than that
achieved by Matlab svd function.
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Example 1:

Σ = diag(105, 105, 105, 10−1, 10−1, 10−3, 10−3, 10−3, 10−5, 10−5, 10−5, 10−5)
n = 10000, m = 1000, s = rank(A) = 12,

In this example, the error ‖AV − UΣ‖ obtained using Matlab svd function
is equal to 6.0570e − 011. After k = 2 iterations of algorithm 4.1 we obtain
‖AV − UΣ‖ = 5.5582e− 011.

Alg 4.1 Matlab svd

CPU time 22.9491 55.0144

Relative errors occurred when computing the singular values:

Singular values Alg 4.1 Matlab svd
10−5 9.6055e− 12 1.3281e− 07
10−3 2.5977e− 13 3.4005e− 07
10−1 9.7145e− 16 5.7468e− 12
105 1.4552e− 16 4.3656e− 16
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Example 2:

Σ = diag(103, 103, 103, 10−12, 10−12, 10−13, 10−13, 10−13, 10−13, 10−13, 10−13, 10−13)
n = 10000, m = 1000, s = rank(A) = 12,

Here, the error ‖AV − UΣ‖ obtained using Matlab svd function is equal to
2.8961e− 012. After only k = 1 iterations of algorithm 4.1 we obtain
‖AV − UΣ‖ = 1.1372e− 012.

Alg 4.1 Matlab svd

CPU time 3.1021 53.4363

Relative errors occurred when computing the singular values:

Singular values Alg 4.1 Matlab svd
10−13 2.6894e− 06 12.6631
10−12 5.6916e− 07 3.4664
103 3.4106e− 16 9.0949e− 16
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Example 3:

Σ = diag(104, 104, 10−11, 10−11, 10−12, 10−12, 10−13, 10−13, 10−14, 10−14)
n = 10000, m = 1000, s = rank(A) = 10,

Here, the error ‖AV − UΣ‖ obtained using Matlab svd function is equal to
1.6384e−011. After k = 2 iterations of algorithm 4.1 we obtain ‖AV −UΣ‖ =
1.3313e− 011.

Alg 4.1 Matlab svd

CPU time 6.1170 49.7370

Relative errors occurred when computing the singular values:

Singular values Alg 4.1 Matlab svd
10−14 6.8008e− 04 3.8380e+ 01
10−13 3.8362e− 05 6.7545e+ 00
10−12 6.8116e− 07 1.1270e− 01

1 2 3 4 5 6 7 8 9 10
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Lo
g1

0 
of

 r
el

at
iv

e 
er

ro
r 

of
 s

in
gu

la
r 

va
lu

es

n=10000 m=1000 r=10

 

 
The SVD by Matlab
Block SVD Power Method



BLOCK POWER METHOD FOR SVD DECOMPOSITION 57

Example 4:

Σ = diag (σ1, σ2, . . . , σ50) such that

σ1 = σ2 = · · · = σ5 = 104,

σ5i+1 = σ5i+2 = · · · = σ5(i+1) = 10−(4+i), for i = 1 . . . 9

And in this example, the error ‖AV − UΣ‖ obtained using Matlab svd
function is equal to 1.5080e− 010. After k = 2 iterations of algorithm 4.1 we
obtain ‖AV − UΣ‖ = 8.1825e− 011.

Alg 4.1 Matlab svd

CPU time 22.3978 54.3242

Relative errors occurred when computing the singular values:

Singular values Alg 4.1 Matlab svd
10−13 2.4255e− 03 8.9669e+ 00
10−12 9.0965e− 06 2.5287e+ 00
10−11 2.1635e− 06 2.2190e− 03
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6 Conclusion

A new approach using block version of the power method is used for the esti-
mation of singular values. The proposed method is very simple and effective
for computing all singular values. The numerical examples show the effective-
ness of the presented method. The computational time and relative errors
corresponding to the computed singular values are considerably reduced.
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