On the efficiency of some p-groups

Firat Ateş

Abstract

Let p be a prime number. In this paper, we work on the efficiency of the p-groups G_{1} and G_{2} defined by the presentations, $$
\mathcal{P}_{G_{1}}=\left\langle a, b, c ; a b=b a c, b c=c b, a c=c a, a^{p^{\alpha}}=1, b^{p^{\beta}}=1, c^{p^{\gamma}}=1\right\rangle
$$ where $\alpha \geq \beta>\gamma \geq 1$ and $$
\mathcal{P}_{G_{2}}=\left\langle a, b ; a b=b a^{1+p^{\alpha-\gamma}}, a^{p^{\alpha}}=1, b^{p^{\beta}}=1\right\rangle
$$ where $\alpha \geq 2 \gamma, \beta>\gamma \geq 1$ and $\alpha+\beta>3$. For example, if we let $p=2$, then by [1], the groups defined by these presentations becomes 2 -groups. It is known that these groups play an important role in the theory of groups of nilpotency class 2 .

1 Introduction

Let G be a finitely presented group with a presentation

$$
\begin{equation*}
\mathcal{P}=\langle\mathbf{x} ; \mathbf{r}\rangle . \tag{1}
\end{equation*}
$$

Then the deficiency of this presentation is defined by $|\mathbf{r}|-|\mathbf{x}|$, and is denoted by $\operatorname{def}(\mathcal{P})$. Moreover, the group deficiency of a finitely presented group G is given by
$\operatorname{def}_{G}(G)=\min \{\operatorname{def}(\mathcal{P}): \mathcal{P}$ is a finite group presentation for $G\}$.

[^0]One can apply similar definitions for the semigroup deficiency of a finitely presented semigroup $S, \operatorname{de} f_{S}(S)$. Let us consider the second integral homology $H_{2}(G)$ of a finite group G. It is well known that the group G (or semigroup S) is efficient as a group (or as a semigroup), if we have $\operatorname{def}_{G}(G)=\operatorname{rank}\left(H_{2}(G)\right)$ (or $\operatorname{def}_{S}(S)=\operatorname{rank}\left(H_{2}\left(S^{1}\right)\right.$) where S^{1} is obtained from S by adjoining an identity). We can refer to the reader $[2,3,8,9,10]$ for more details.

One of the most effective way to show efficiency for the group G is to use spherical pictures ([7, 18]) over \mathcal{P}. These geometric configurations are the representative elements of the second homotopy group $\pi_{2}(\mathcal{P})$ of \mathcal{P} which is a left $\mathbb{Z} G$-module. They are denoted by \mathbb{P}.

Suppose \mathbf{Y} is a collection of spherical pictures over \mathbb{P}. Then, by [18], one can define the additional operation on spherical pictures. Allowing this additional operation leads to the notion of equivalence (rel \mathbf{Y}) of spherical pictures. Then, again in [18], Pride proved that the elements $\langle\mathbb{P}\rangle(\mathbb{P} \in \mathbf{Y})$ generate $\pi_{2}(\mathcal{P})$ as a module if and only if every spherical picture is equivalent (rel \mathbf{Y}) to the empty picture. Therefore one can easily say that if the elements $\langle\mathbb{P}\rangle(\mathbb{P} \in \mathbf{Y})$ generate $\pi_{2}(\mathcal{P})$, then \mathbf{Y} generates $\pi_{2}(\mathcal{P})$.

For any picture \mathbb{P} over \mathcal{P} and for any $R \in \mathbf{r}$, the exponent sum of R in \mathbb{P}, denoted by $\exp _{R}(\mathbb{P})$, is the number of discs of \mathbb{P} labeled by R minus the number of discs labeled by R^{-1}. We remark that if any two pictures \mathbb{P}_{1} and \mathbb{P}_{2} are equivalent then $\exp _{R}\left(\mathbb{P}_{1}\right)=\exp _{R}\left(\mathbb{P}_{2}\right)$, for all $R \in \mathbf{r}$. Let n be a nonnegative integer. Then \mathcal{P} is said to be n-Cockcroft if $\exp _{R}(\mathbb{P}) \equiv 0(\bmod n)$, (where congruence $(\bmod 0)$ is taken to be equality) for all $R \in \mathbf{r}$ and for all spherical pictures \mathbb{P} over \mathcal{P}. Then a group G is said to be n-Cockcroft if it admits an n-Cockcroft presentation. To verify that the n-Cockcroft property holds, it is enough to check for pictures $\mathbb{P} \in \mathbf{Y}$, where \mathbf{Y} is a set of generating pictures. The case $n=0$ is just called Cockcroft. One can refer [11], [13], [14], [15] and [17] for the Cockcroft property and [9], [17] for the n-Cockcroft property.

The subject efficiency, for the presentation \mathcal{P} as in (1) and so for the group G, is related to the q-Cockcroft property (see Theorem 1.1 below). We can refer, for example, [4] and [10] for the definition and applications of efficiency. We then have the following result.

Theorem 1.1 ([12, 17]). Let \mathcal{P} be as in (1). Then \mathcal{P} is efficient if and only if it is q-Cockcroft for some prime q.

2 Main results

In [6], Bacon and Kappe worked on two-generator p-groups of nilpotency class 2 where $p \neq 2$. Also, in [16], Kappe, Sarmin and Visscher worked on
two-generator 2-groups of nilpotency class 2. Also let us consider the following semigroups defined by the presentations:

$$
\begin{equation*}
\left\langle a, b, c ; a b=b a c, b c=c b, a c=c a, a^{p^{\alpha}+1}=a, b^{p^{\beta}+1}=b, c^{p^{\gamma}+1}=c\right\rangle \tag{2}
\end{equation*}
$$

where $\alpha \geq \beta \geq \gamma \geq 1$ and

$$
\begin{equation*}
\left\langle a, b ; a b=b a^{1+p^{\alpha-\gamma}}, a^{p^{\alpha}+1}=a, b^{p^{\beta}+1}=b\right\rangle \tag{3}
\end{equation*}
$$

where $\alpha \geq 2 \gamma, \beta \geq \gamma \geq 1$ and $\alpha+\beta>3$. In [1], the authors showed that the semigroups defined by the presentations (2) and (3) have the orders

$$
p^{\alpha+\beta+\gamma}+p^{\alpha}+p^{\beta}+p^{\gamma}+p^{\alpha+\beta}+p^{\beta+\gamma}+p^{\alpha+\gamma} \text { and } p^{\alpha+\beta}+p^{\alpha}+p^{\beta}
$$

respectively.
Now let us again think the following presentations for the groups G_{1} and G_{2} which are given in abstract

$$
\begin{equation*}
\mathcal{P}_{G_{1}}=\left\langle a, b, c ; a b=b a c, b c=c b, a c=c a, a^{p^{\alpha}}=1, b^{p^{\beta}}=1, c^{p^{\gamma}}=1\right\rangle \tag{4}
\end{equation*}
$$

where $\alpha \geq \beta \geq \gamma \geq 1$ and

$$
\begin{equation*}
\mathcal{P}_{G_{2}}=\left\langle a, b ; a b=b a^{1+p^{\alpha-\gamma}}, a^{p^{\alpha}}=1, b^{p^{\beta}}=1\right\rangle \tag{5}
\end{equation*}
$$

where $\alpha \geq 2 \gamma, \beta \geq \gamma \geq 1$ and $\alpha+\beta>3$. In [1], the authors showed that the groups defined by the presentations (4) and (5) have the orders

$$
p^{\alpha+\beta+\gamma} \text { and } p^{\alpha+\beta}
$$

In this paper, our aim is to study on the efficieny of the groups G_{1} and G_{2} presented by (4) and (5), by using the works given $[2,3,5,8,9,10]$.

Therefore we can give the main results of this paper as follows.
Theorem 2.1. For every prime number p and integers α, β and γ with $\alpha \geq$ $\beta>\gamma \geq 1$, the group G_{1} presented by (4) is efficient.

Theorem 2.2. For every prime number p and integers α, β and γ with $\alpha \geq$ $2 \gamma, \beta>\gamma \geq 1$ and $\alpha+\beta>3$, the group G_{2} presented by (5) is efficient.

3 Proof of the main results

3.1 Proof of Theorem 2.1

Consider the group G_{1}. Since we have the following relations $a b=b a c, b c=$ $c b, a c=c a, a^{p^{\alpha}}=1, b^{p^{\beta}}=1, c^{p^{\gamma}}=1$, we have to think about the following

Figure 1
overlapping word pairs $a b^{p^{\beta}}, a^{p^{\alpha}} b, a c^{p^{\gamma}}, b c^{p^{\gamma}}, a^{p^{\alpha}} c$ and $b^{p^{\beta}} c$ for defining the elements of $\pi_{2}\left(\mathcal{P}_{G_{1}}\right)$. It is known that spherical pictures which are obtained from the resolutions of these pairs give the elements of $\pi_{2}\left(\mathcal{P}_{G_{1}}\right)$ by [5].

Now, let us consider the pairs $a b^{p^{\beta}}$ and $a^{p^{\alpha}} b$. Then by using the relations of the group G_{1}, the resolutions for these pairs can be given as pictures \mathbf{P}_{1} and \mathbf{P}_{2}, respectively in Figure 1.

Now, let us also consider the discs in the pictures \mathbf{P}_{1} and \mathbf{P}_{2}. To prove this theorem, we need to count the exponent sums of the discs in these pictures. So let us calculate the number of S_{1}-discs, S_{2}-discs, S_{3}-discs, S_{4}-discs, S_{5}-discs and S_{6}-discs in $\mathbf{P}_{1}, \mathbf{P}_{2}$ where $S_{1}: b^{p^{\beta}}=1, S_{2}: c^{p^{\gamma}}=1, S_{3}: a b=b a c$, $S_{4}: a^{p^{\alpha}}=1, S_{5}: b c=c b$ and $S_{6}: a c=c a$. At this point, it can be seen that

$$
\begin{aligned}
& \exp _{S_{1}}\left(\mathbf{P}_{1}\right)=1-1=0, \quad \exp _{S_{2}}\left(\mathbf{P}_{1}\right)=p^{\beta-\gamma} \\
& \exp _{S_{2}}\left(\mathbf{P}_{2}\right)=p^{\alpha-\gamma}, \quad \exp _{S_{3}}\left(\mathbf{P}_{1}\right)=p^{\beta} \\
& \exp _{S_{3}}\left(\mathbf{P}_{2}\right)=p^{\alpha}, \quad \exp _{S_{4}}\left(\mathbf{P}_{2}\right)=1-1=0 \\
& \exp _{S_{5}}\left(\mathbf{P}_{1}\right)=1+2+3+\cdots+\left(p^{\beta}-1\right)=\frac{\left(p^{\beta}-1\right) p^{\beta}}{2} \\
& \exp _{S_{6}}\left(\mathbf{P}_{2}\right)=1+2+3+\cdots+\left(p^{\alpha}-1\right)=\frac{\left(p^{\alpha}-1\right) p^{\alpha}}{2}
\end{aligned}
$$

Figure 2
and to q-Cockcroft property be hold for some prime q, we need to have

$$
\begin{aligned}
& \exp _{S_{2}}\left(\mathbf{P}_{1}\right) \equiv 0(\bmod q) \quad \Leftrightarrow p^{\beta-\gamma} \equiv 0(\bmod q), \\
& \exp _{S_{2}}\left(\mathbf{P}_{2}\right) \equiv 0(\bmod q) \quad \Leftrightarrow p^{\alpha-\gamma} \equiv 0(\bmod q), \\
& \exp _{S_{3}}\left(\mathbf{P}_{1}\right) \equiv 0(\bmod q) \quad \Leftrightarrow p^{\beta} \equiv 0(\bmod q), \\
& \exp _{S_{3}}\left(\mathbf{P}_{2}\right) \equiv 0(\bmod q) \quad \Leftrightarrow p^{\alpha} \equiv 0(\bmod q), \\
& \exp _{S_{5}}\left(\mathbf{P}_{1}\right) \equiv 0(\bmod q) \quad \Leftrightarrow \quad \frac{\left(p^{\beta}-1\right) p^{\beta}}{2} \equiv 0(\bmod q), \\
& \exp _{S_{6}}\left(\mathbf{P}_{2}\right) \equiv 0(\bmod q)
\end{aligned} \quad \Leftrightarrow \quad \frac{\left(p^{\alpha}-1\right) p^{\alpha}}{2} \equiv 0(\bmod q) .
$$

Now, let us consider the pairs $a c^{p^{\gamma}}$ and $b c^{p^{\gamma}}$. Then by using the relations S_{2}, S_{5} and S_{6}, the resolutions for these pairs can be given as pictures \mathbf{P}_{3} and \mathbf{P}_{4}, respectively in Figure 2.

Similarly, as in the above, we need to count the exponent sums of the discs in these pictures. Therefore let us give the number of S_{2}-discs, S_{5}-discs and S_{6}-discs in $\mathbf{P}_{3}, \mathbf{P}_{4}$ as follows;

$$
\begin{array}{ll}
\exp _{S_{2}}\left(\mathbf{P}_{3}\right)=1-1=0, & \exp _{S_{2}}\left(\mathbf{P}_{4}\right)=1-1=0 \\
\exp _{S_{5}}\left(\mathbf{P}_{4}\right)=p^{\gamma}, & \exp _{S_{6}}\left(\mathbf{P}_{3}\right)=p^{\gamma} .
\end{array}
$$

So in order to give q-Cockcroft property for some prime q, we need to have

$$
\exp _{S_{5}}\left(\mathbf{P}_{4}\right)=\exp _{S_{6}}\left(\mathbf{P}_{3}\right) \equiv 0(\bmod q) \quad \Leftrightarrow \quad p^{\gamma} \equiv 0(\bmod q) .
$$

Similarly, let us consider the pairs $a^{p^{\alpha}} c$ and $b^{p^{\beta}} c$. Then by using the relations S_{1}, S_{4}, S_{5} and S_{6}, the resolutions for these pairs can be given as pictures \mathbf{P}_{5} and \mathbf{P}_{6}, respectively in Figure 3.

Figure 3

Here one can give the exponent sums of the discs in these pictures as follows;

$$
\begin{array}{ll}
\exp _{S_{1}}\left(\mathbf{P}_{6}\right)=1-1=0, & \exp _{S_{4}}\left(\mathbf{P}_{5}\right)=1-1=0 \\
\exp _{S_{5}}\left(\mathbf{P}_{6}\right)=p^{\beta}, & \exp _{S_{6}}\left(\mathbf{P}_{5}\right)=p^{\alpha}
\end{array}
$$

Thus in order to give q-Cockcroft property for some prime q, we have

$$
\begin{aligned}
& \exp _{S_{5}}\left(\mathbf{P}_{6}\right) \equiv 0(\bmod q) \quad \Leftrightarrow \quad p^{\beta} \equiv 0(\bmod q) \\
& \exp _{S_{6}}\left(\mathbf{P}_{5}\right) \equiv 0(\bmod q) \quad \Leftrightarrow \quad p^{\alpha} \equiv 0(\bmod q)
\end{aligned}
$$

Figure 4
Also let us consider the pictures in Figure 4. Here we have
$\exp _{S_{1}}\left(\mathbf{C}_{1}\right)=1-1=0, \quad \exp _{S_{2}}\left(\mathbf{C}_{2}\right)=1-1=0, \quad \exp _{S_{4}}\left(\mathbf{C}_{3}\right)=1-1=0$.
Finally, we can see that $\pi_{2}\left(\mathcal{P}_{G_{1}}\right)$ consists of the pictures $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \mathbf{P}_{4}, \mathbf{P}_{5}$, $\mathbf{P}_{6}, \mathbf{C}_{1}, \mathbf{C}_{2}$ and \mathbf{C}_{3}. Thus in order to get q-Cockcroft property, we must calculate the exponent sums of the discs in these pictures. Then, by using the
above arguments, for getting q-Cockcroft property for some prime q, we must have

$$
\begin{aligned}
p^{\beta-\gamma} & \equiv 0(\bmod q), \quad p^{\alpha-\gamma} \equiv 0(\bmod q) \\
p^{\beta} & \equiv 0(\bmod q), \quad p^{\alpha} \equiv 0(\bmod q), p^{\gamma} \equiv 0(\bmod q) \\
\frac{\left(p^{\beta}-1\right) p^{\beta}}{2} & \equiv 0(\bmod q), \frac{\left(p^{\alpha}-1\right) p^{\alpha}}{2} \equiv 0(\bmod q)
\end{aligned}
$$

Then by Theorem 1.1 we may say that the group G_{1} is efficient if and only if it is q-Cockcroft for some prime q. At this point, since we have $\alpha \geq \beta>\gamma \geq 1$, then we choose $p=q$. This gives that the group G_{1} presented by (4) is q Cockcroft. This says that G_{1} is efficient.

Remark 3.1. We realised that we choose $\alpha \geq \beta>\gamma \geq 1$. If we choose $\alpha \geq \beta \geq \gamma \geq 1$, then we may have $\beta=\gamma$ or $\alpha=\gamma$. This gives that $p^{\beta-\gamma}=$ $p^{0}=1$ is not equivalent to 0 by the modulo q or $p^{\alpha-\gamma}=p^{0}=1$ is not equivalent to 0 by the modulo q, for some prime q. Also, for $p=2$, if we choose $\alpha \geq \beta \geq \gamma \geq 1$, then we may have $\beta=1$ or $\alpha=1$. This says that $\frac{\left(p^{\beta}-1\right) p^{\beta}}{2}=1$ is not equivalent to 0 by the modulo q or $\frac{\left(p^{\alpha}-1\right) p^{\alpha}}{2}=1$ is not equivalent to 0 by the modulo q, for some prime q.

Remark 3.2. In [3, 8], it was shown that for a finitely presented group G with non-negative deficiency we have $\operatorname{de} f_{S}(G)=d e f_{G}(G)$. This says that a group G with non-negative deficiency is efficient as a group if and only if G is efficient as a semigroup. Therefore, since the group G_{1} presented by (4) has non-negative deficiency and it is efficient as a group, then it is also efficient as a semigroup. Hence we get that the semigroup related to the certain group presentation (2) is also efficient.

3.2 Proof of Theorem 2.2

Let us consider the group G_{2}. Here we have the following relations $a^{p^{\alpha}}=1$, $b^{p^{\beta}}=1$ and $a b=b a^{1+p^{\alpha-\gamma}}$. Thus we cocern about the following overlapping word pairs $a b^{p^{\beta}}$ and $a^{p^{\alpha}} b$ for defining the elements of $\pi_{2}\left(\mathcal{P}_{G_{2}}\right)$.

Now, let us consider the pairs $a b^{p^{\beta}}$ and $a^{p^{\alpha}} b$. Then by using the relations of the group G_{2}, the resolutions for these pairs can be given as pictures \mathbf{K}_{1} and \mathbf{K}_{2}, respectively in Figure 5.

Now, let us also think the discs in the pictures \mathbf{K}_{1} and \mathbf{K}_{2}. To prove this theorem, we need to count the exponent sums of the discs in these pictures. So let us calculate the number of R_{1}-discs, R_{2}-discs and R_{3}-discs in $\mathbf{K}_{1}, \mathbf{K}_{2}$

Figure 5
where $R_{1}: a^{p^{\alpha}}=1, R_{2}: b^{p^{\beta}}=1$ and $R_{3}: a b=b a^{1+p^{\alpha-\gamma}}$. Here, it is seen that
$\exp _{R_{1}}\left(\mathbf{K}_{1}\right)=\frac{\left(1+p^{\alpha-\gamma}\right)^{p^{\beta}}-1}{p^{\alpha}}$,
$\exp _{R_{1}}\left(\mathbf{K}_{2}\right)=\frac{p^{\alpha}\left(1+p^{\alpha-\gamma}\right)}{p^{\alpha}}-1=p^{\alpha-\gamma}$, $\exp _{R_{2}}\left(\mathbf{K}_{1}\right)=1-1=0$,
$\exp _{R_{3}}\left(\mathbf{K}_{1}\right)=1+\left(1+p^{\alpha-\gamma}\right)+\left(1+p^{\alpha-\gamma}\right)^{2}+\cdots+\left(1+p^{\alpha-\gamma}\right)^{p^{\beta}-1}=\frac{\left(1+p^{\alpha-\gamma}\right)^{p^{\beta}}-1}{p^{\alpha-\gamma}}$, $\exp _{R_{3}}\left(\mathbf{K}_{2}\right)=p^{\alpha}$
and for the q-Cockcroft property to be held for some q, we need to have

$$
\begin{aligned}
& \exp _{R_{1}}\left(\mathbf{K}_{1}\right) \equiv 0(\bmod q) \quad \Leftrightarrow \quad \frac{\left(1+p^{\alpha-\gamma}\right)^{p^{\beta}}-1}{p^{\alpha}} \equiv 0(\bmod q) \\
& \exp _{R_{1}}\left(\mathbf{K}_{2}\right) \equiv 0(\bmod q) \quad \Leftrightarrow \quad p^{\alpha-\gamma} \equiv 0(\bmod q) \\
& \exp _{R_{3}}\left(\mathbf{K}_{1}\right) \equiv 0(\bmod q) \quad \Leftrightarrow \quad \frac{\left(1+p^{\alpha-\gamma}\right)^{p^{\beta}}-1}{p^{\alpha-\gamma}} \equiv 0(\bmod q) \\
& \exp _{R_{3}}\left(\mathbf{K}_{2}\right) \equiv 0(\bmod p) \quad \Leftrightarrow \quad p^{\alpha} \equiv 0(\bmod q)
\end{aligned}
$$

Here let us denote $\frac{\left(1+p^{\alpha-\gamma}\right)^{p^{\beta}}-1}{p^{\alpha}}$ by A and $\frac{\left(1+p^{\alpha-\gamma}\right)^{p^{\beta}}-1}{p^{\alpha-\gamma}}$ by B.
Therefore, since we have

$$
\begin{aligned}
\left(1+p^{\alpha-\gamma}\right)^{p^{\beta}}-1=p^{\beta} p^{\alpha-\gamma} & +\frac{1}{2} p^{\beta}\left(p^{\beta}-1\right) p^{2(\alpha-\gamma)}+\frac{1}{6} p^{\beta}\left(p^{\beta}-1\right)\left(p^{\beta}-2\right) p^{3(\alpha-\gamma)} \\
& +\cdots+p^{p^{\beta}(\alpha-\gamma)}
\end{aligned}
$$

then we get that

$$
\begin{aligned}
A=p^{\beta-\gamma} & +\frac{1}{2} p^{\beta}\left(p^{\beta}-1\right) p^{(\alpha-2 \gamma)}+\frac{1}{6} p^{\beta}\left(p^{\beta}-1\right)\left(p^{\beta}-2\right) p^{(2 \alpha-3 \gamma)} \\
& +\cdots+p^{p^{\beta}(\alpha-\gamma)-\alpha}
\end{aligned}
$$

and

$$
\begin{aligned}
B=p^{\beta} & +\frac{1}{2} p^{\beta}\left(p^{\beta}-1\right) p^{(\alpha-\gamma)}+\frac{1}{6} p^{\beta}\left(p^{\beta}-1\right)\left(p^{\beta}-2\right) p^{(2 \alpha-2 \gamma)} \\
& +\cdots+p^{p^{\beta}(\alpha-\gamma)-\alpha+\gamma}
\end{aligned}
$$

Finally, we can see that $\pi_{2}\left(\mathcal{P}_{G_{2}}\right)$ consists of the pictures $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{C}_{1}$ and \mathbf{C}_{3}. Thus in order to get q-Cockcroft property, we must calculate the exponent sums of the discs in these pictures. Then, by using the above arguments, in order to get q-Cockcroft property for some prime q, we must have

$$
\begin{aligned}
A & \equiv 0(\bmod q), \quad p^{\alpha-\gamma} \equiv 0(\bmod q) \\
B & \equiv 0(\bmod q), \quad p^{\alpha} \equiv 0(\bmod q)
\end{aligned}
$$

Then by Theorem 1.1 we can say that the group G_{2} is efficient if and only if it is q-Cockcroft for some prime q. Here since we have $\alpha \geq 2 \gamma$ and $\beta>\gamma \geq 1$, then we choose $p=q$. So we get that the group G_{2} presented by (5) is q-Cockcroft. This says that G_{2} is efficient.

Remark 3.3. We realised that we take $\beta>\gamma \geq 1$. If we take $\beta \geq \gamma \geq 1$, then we may have $\beta=\gamma$. This says that A is not equivalent to 0 by the modulo q for some prime q.

Remark 3.4. By using smilar argumets as in Remark 3.2, since the group G_{2} presented by (5) has non-negative deficiency and it is efficient as a group, then it is also efficient as a semigroup. So we deduce that the semigroup related to the certain group presentation (3) is also efficient.

References

[1] Arjomandfar, A., Campbell, C. M., Doostie, H., Semigroups related to certain group presentations, Semigroup Forum, Volume 85, Issue 3, (2012), 533-539.
[2] Ates, F., Cevik, A. S., The p-Cockcroft Property of Central Extensions of Groups II, Monatshefte fr Math., 150 (2007), 181-191.
[3] Ayık, H., Kuyucu, F., Vatansever, B., On Semigroup Presentations and Efficiency, Semigroup Forum, Vol. 65, (2002) 329335.
[4] Baik, Y.G., Pride, S.J. On the Efficiency of Coxeter Groups, Bull. of the London Math. Soc. 29 (1997), 32-36.
[5] Baik, Y.G., Harlander, j., Pride, S.J., The Geometry of Group Extensions, Journal of Group Theory 1(4) (1998), 396-416.
[6] Bacon, M.R., Kappe, L.C., The nonabelian tensor square of a 2-generator p-group of class 2. Arch. Math. (Basel) 61, (1993) 508516.
[7] Bogley W., A., and S., J., Pride, Calculating generators of π_{2}, in TwoDimensional Homotopy and Combinatorial Group Theory, edited by C. Hog-Angeloni, W. Metzler, A. Sieradski, C.U. Press, 1993, pp. 157188.
[8] Campbell, C.M., Mitchell, J.D., Ruskuc, N., On defining groups efficiently without using inverses, Math. Proc. Cambridge Philos. Soc., 133 (2002), 31-36.
[9] Çevik, A.S., The p-Cockcroft Property of Central Extensions of Groups, Comm. Algebra 29(3) (2001), 1085-1094.
[10] Çevik, A.S., Minimal but inefficient presentations of the semidirect products of some monoids, Semigroup Forum 66, 1-17 (2003).
[11] Dyer, M.N., Cockroft 2-Complexes, preprint, University of Oregon, 1992.
[12] Epstein, D.B.A., Finite presentations of groups and 3-manifolds, Quart. J. Math. 12(2), 205-212 (1961).
[13] Gilbert, N.D., Howie, J., Threshold Subgroups for Cockcroft 2-Complexes, Communications in Algebra 23(1) (1995), 255-275.
[14] Gilbert, N.D., Howie, J., Cockcroft Properties of Graphs of 2-Complexes, Proc. Royal Soc. of Edinburgh Section A-Mathematics 124(2) (1994), 363-369.
[15] Harlander, J., Minimal Cockcroft Subgroups, Glasgow Journal of Math. 36 (1994), 87-90.
[16] Kappe, L.C., Sarmin, N., Visscher, M., Two generator two-groups of class two and their non-Abelian tensor squares. Glasg. Math. J. 41, (1999), 417430.
[17] Kilgour, C.W., Pride, S.J., Cockcroft presentations, J. Pure Appl. Alg. 106(3), 275-295 (1996).
[18] Pride, S.J., Identities among relations of group presentations', in Group Theory from a Geometrical Viewpoint, Trieste 1990, edited by E. Ghys, A. Haefliger, A. Verjovsky, editors, World Sci. Pub., 1991, pp. 687-717.

Firat Ateş,
Department of Mathematics, Balikesir University,
10145 Balikesir, Turkiye
Email: firat@balikesir.edu.tr

[^0]: Key Words: Efficiency, pictures, p-groups
 2010 Mathematics Subject Classification: Primary 20E22, 20J05; Secondary 20F05, 57M05.

 Received:February, 2014.
 Revised: May, 2014.
 Accepted: May, 2014.

