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Positive solutions for singular nonlocal
boundary value problems involving integral
conditions with derivative dependence
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Abstract

In this paper using a fixed point theory on a cone we present some
new results on the existence of multiple positive solutions for singular
nonlocal boundary value problems involving integral conditions with
derivative dependence.

1. Introduction.

In this paper we consider the existence of positive solutions of nonlinear
nonlocal boundary value problems (BVP) of the form

—a" = q(t)f(t,2(),2 (D)), ¢ € (0,1) (L1)

with integral boundary conditions

2(0) =0, 2(1) = ala] :/0 2(s)dA(s) (1.2)

involving a Stieltjes integral, where A € BV|0, 1].
II'in and Moiseev first considered the existence of a solution to

2() = f(ta(t), 2/ (1)), t € (0,1),
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2(0) =0, z(1) = > _ a;z(n;)
=1

(see [10, 11]). Using degree-theoretic arguments, Gupta et al obtained condi-
tions on the existence of solutions for the m-point boundary problem

2"(t) = J(ta(t). 2/ (1)) + e(t), t € (0,1),

z(0) =0, z(1) = Zaiaz(m)

(see [7, 8]). In [12] using a Leray-Schauder alternative Ma showed the existence
of at least one solution of

2/ (t) = f(t,z(t), 2" (t)) +e(t), t € (0,1),

2'(0) = 0,2(1) = Y aim(ns).
i=1
In [22, 24], Webb and Infante considered

-2 =qt)f(t,z(t)),t € (0,1) (1.3)

with boundary conditions

2(0) = 0,2(1) = afa] :/0 2(s)dA(s), (1.4)

where dA(s) has a signed measure, and established the existence of positive
solutions and multiple positive solutions for BVP (1.3)-(1.4) when f is contin-
uous and independent of z’.

The boundary condition in BVP (1.1)-(1.2) generalizes the boundary con-
ditions in [7-8, 10-13] and (1.1) generalizes the equations in [9,13-18,21-24]
(there f is independent of z’). One goal in this paper is to attempt to fill
a gap in the theory of singular nonlocal boundary value problems involving
integral conditions with derivative dependence.

Our paper is organized as follows. In Section 2, we present some lemmas
and preliminaries. In Section 3, two theorems are listed to show that z’ of
f(t,z,z") can lead to BVP (1.1)-(1.2) having no positive solutions. In section
4, we discuss the existence of multiple positive solutions for BVP (1.1)-(1.2)
when f has no singularities. Section 5 presents the multiplicity of positive
solutions for BVP (1.1)-(1.2) when f is singular at = 0 but not at ' = 0. In
Section 6, we discuss the multiplicity of positive solutions for BVP (1.1)-(1.2)
when f is singular at 2/ = 0 but not at = 0. In Section 7, we consider the
case f is singular at x = 0 and 2’ = 0.
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2. Preliminaries

Let R = (—o00, +00), R* = (0,400), B = [0,+00), R~ = (—00,0) and we
list the following conditions for convenience.

(C1) A € BV[0,1] with [ G(t,5)dA(t) > 0 for a.e. s €[0,1],0 < [ dA(s)
and fol |dA(t)| < 1, where

— <s<t<
G(t’s):{1 t, 0<s<t<l1

1—5s5, 0<t<s<1,
(C2)

g€ C0,1], q(t)>0 on (0,1) and f € C([0,1] x R* x R~,R ") with
0 < f(t.,y) < [h(x) + w@)][r(ly) + o(y)] on [0,1] x R x R,
where w,v € C(RT, RT) are nonincreasing or w = 0,v = 0 and

1
h,r e C(E+,§+) are nondecreasing with / q(s)r(ko
0
for all k¢ > 0,

ds <
1_8) s < 400,

(Cs)
there exists a constant a € (0, ) such that
t
AGL) — oo,
r—+400 X

uniformly for (¢,y) € [a,1 — a] x (—o0,0).

Let p(t) = 1 —t, t € [0,1] and C}[0,1] = {z : [0,1] — R| z is continu-
ous on [0,1] and continuously differentiable on (0,1) with sup p(t)|z'(t)| =
te(0,1)
sup (1—t)]2'(t)| < +oo}. For 2 € C}, define ||z]| = max{||z||1, 2|2} where
t€(0,1)
lzll = mas [2(®)], llzll> = sup (1 - DIEOIE

te(0,1] i
Lemma 2.1 C} is a Banach space. Also for any = € Cy, |2'(t)] < 1||Ji||t,
te(0,1).
Let
P = {x € C,|x(t) is concave and nonincreasing on
[0,1] and z(0) > [|z[|2, afz] > 0}. (2.1)

It is easy to see that P is a cone in C}[0,1].

We note the definition of the fixed point index i(A, QN P, P). Suppose that
Q) is a bounded open set in real Banach space E with 6 € Q as its vectoreal zero,
Pis aconeof E and A: QNP — P is continuous and compact. Assume that
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r: E — P is a retraction mapping, i.e., r is continuous and r(x) = « for all
x € P. Choose R > 0 big enough such that T = {z € E : ||z]| < R} 2 QN P.
Then

i(A, QN P, P):=deg(I — A-r, TR Nr 1 (QN P),H),

where I : E — F is an identity operator and deg(I— A -r, TR Nt~}(Q2NP),0)
is the Leray-Schauder degree (see [6]). The following lemmas are needed in
Section 4-7.

Lemma 2.2(see[6]) Let €2 be a bounded open set in real Banach space F,
P beaconeof E, 0 € Qand A: QNP — P be continuous and compact.

Suppose
Mz # ¥z € 90N P, € (0,1].

Then
(A, QNP P)=1.

Lemma 2.3(see[6]) Let €2 be a bounded open set in real Banach space F,
P beaconeof E, 0 € Qand A: QNP — P be continuous and compact.

Suppose
Ax L x,Vx € 00N P.

Then
i(A,QN P, P)=0.

Remark: Az L x <=z — Ax ¢ P.
Lemma 2.4 If z € P (defined above in (2.1)), then ||z|| = ||z|1.
Proof. If z € P, one has

[z]ly = max{[z(t)[t € [0,1]} = 2(0) = [|z[]2.

Then
2]l = max{|[z||1, [|z][2} = [lz]|.

The proof is complete.

1
Lemma 2.5 Assume ® € C((0,1),R") with /E(t)dt < oo and
0

1
F(t) = / G(t,s)®(s)ds+c, where ¢ > 0 is a constant. Then F € P.
0
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Proof. From the definition of F, we have

F'(t) <0, te(0,1),
c>0,

F'(0)=0, F(1)=
which means that
F is nonincreasing and concave down on [0, 1] (2.2)

with F'(1) = ¢ > 0. Now (2.2) implies that for ¢ € [0,1], F(¢t) = F((1 — )0 +
t-1)> (1 —t)F(0)+tF(1) > (1 —t)F(0) = (1 — )| F|l1, Vt € (0,1) and

Then
[Fllz = sup [(1—t)F'(t)|
te(0,1)

¢

= sup [(1 *t)/ O(s)ds| < sup |[F(t)| = |[FllL = F(0).  (23)
te(0,1) 0 te(0,1)

Moreover, from (Cy), one has

1
0

a[F] :c/oldA(s)—i—/ F(s)dA(s)
—e /O CaA(s) + /0 () /0 ' Gls1)dA(s)dr > 0. (2.4)

Hence, (2.2), (2.3) and (2.4) guarantee that F' € P. The proof is complete.

For xz € P, define an operator by

(Bz)(t) = alz] +/0 G(t,3)q(s) f(s,z(s) +71(5),2'(s) +72(s))ds, Vt € [0,1],

(2.5)
where Y1 € C[O, 1], Y2 € C[O, 1] with minte[OJ] Y1 (t) > 0 and maxse(o,1] ’yg(t) <
0.

Lemma 2.6 Assume that (C1) and (Cs) hold. Then B : P — P is continuous
and compact.
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Proof. First we show B : P — P is well defined. For z € P, from (C;) and
(Cs), we have

1
(B2)(t)] = |afa] + / G(t, 8)a(s) (s, 2(5) + 7(5),2'(5) + 72(5))ds]
< / dA(s)] + / (1= 5)q(s)|f (s, 2(5) + 71(5), 2'(5) + () ds

<lall [ laa@)+ [ (1= salhlas) + ()

Fua(s) + (D (5) + () + vlla'(5) + 7(s) Dlds

<llel [ 1aA@I+ [ (0= sablel + Fl) + ol min ()

+o( min |y(s)])]ds < +oo, t € [0,1]

0
]l + [l
[T( S ) s€[0,1]

1—
and

(1-1) \(Bx) < >\ < |(Ba) (1)
iy / 8) +71(5), 2 (s) + 72 (s))ds]

s/ ()] + ) + w min 1(5))

i
r (M) +o( min_|ya(s))]ds < 400, t € [0,1].
1-—s s€[0,1]

Then B is well defined. For every 6 P let D(t) =q(t) f(t,z(t)+y (), 2" (t)+
v2(t)), ¢ = afz] and F(¢ fo s)ds + c. It is easy to see that all
conditions of Lemma 2 5 hold, Wthh 1mphes that Bz € P. As a result,
BP C P. Moreover, since

(B2 (1) - (Ba) (1)
-y / 4(5) (5, 2(5) + 71 (), 2/(5) + 2(5))ds]

t2

< | a@Rdlzl + llyall) 4w min 9 (s)

[l 4 ofaminego ) ra(s)Nds,
the Cauchy Principle guarantees that

. / . .
tgrgl+(Bx) (t) exists and hm | (Bx)'(t) exists,

which means that Bx € C*[0, 1].
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Next we show that B : P — P is continuous. Assume that {z,}o0_; C P
and g € P with lim =z, = x¢. Then, there exists an M > 0 such that

m—»—+0o0
M
|xm|| < M for allm € {1,2,---} (Lemma 2.1 guarantees that |a},(¢)| < T3
vt € (0,1)). Thus,
lm (2, (¢) +71(t) = zo(t) + 11 (t), t€]0,1],
moteo , (2.6)
(@, () +92(8)) = a(t) +2(t),  t€(0,1)

and

[t 2m (£) +71(8), 20 () + 72(1))]
< [A@m (t) + 71(8) + w(@m () +71(0))] [ (127 () + 72(8)]) + v(|27 (2) + 72(8)])]
< b + I )+ i 7 @2 4 o min oo

(2.7)
From (2.6) and (2.7), the Lebesgue Dominated Convergence Theorem guar-
antees that

| Bxm — Bxo|x

< |alzm — xo]| + max |/ G(t, s) (8, Zm (8) + Y1(8), T () + 72(5))
— (s, wols )+171( 9. zhis )+ s ))1ds|

< N —aoll [ IAG)+ [ (1= 5)a(6)17 (520 (5) + 72(5), 20 () + 72(5)

—F(5,20(5) + 71(5), 7(5) + 72())ds
— 0, as m — +o0

and
| By — Bol|2
= sup (1*t)|*/ a(8)[f (s, 2m(s) +71(s), T (s) +72(s))
t€(0,1)

—f(s, zo(s) +71(8), 7o (s) + 72(s))]ds|
S/O a(s)|f (5, 2m(s) +71(8), 2 (5) +71(5)) = f(s,20(s) +m(s), 20(s) +72(s))lds
— 0, as m — +o0,
which imply that
LHE || B, — Bzl = 0.

Hence, B : P — P is continuous.
Finally we show for any bounded D C P, B(D) is relatively compact.
Since D is bounded, there exists an M > 0 such that ||z| < M for all x € D
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M

(Lemma 2.1 guarantees that |2/ (t)| < T3

Vt € (0,1) ). Thus, (Cy) gives

1
| B[y =trerl[g§]la[x]+/() G(t, 5)q(s)f (s, 2(s) + 71(s),2"(5) + 72(s))ds]
<zl [ 1dAs)[+ [ (1= s)q(s)[f (s, 2(s) +71(s),2"(5) + 72(s))lds
J e

SMA|wmn+A<LwM@w@@+mw»+MM@+mwm
T(5)+ 7205)) - 0(02'(5) + 2 (6) s
<M [ 1aa@)+ [ 0= e BT+ ) +w( min 21(5)

0 ]
M + .
) o i (o)

and

sup |(Bx)'(t)|
te(0,1)

=sw|—/q@ﬁwﬂ$+%®%ﬂ$+w®ﬂﬂ
te[0,1] 0
s/q@v@m@+mwwwwwmmw

0

; (s)[I(x(s) +71(5)) + w(z(s) +71(s))]

q(s)
[T(Ilw’(é’) +72(8)]) +v(|2'(s) +72(s)])]ds
q(s)

(8)[P(M + Il +w(sggg] 71(8))]

M + |2l
1—s

<
<),
0
I )+ o( min |75(s)])]ds.
s€[0,1]

Consequently,

the functions belonging to {(BD)(t)} are uniformly bounded on [0,1] (2.8)
and

the functions belonging to {(BD)’(t)} are uniformly bounded on [0, 1] (2.9)

and so

functions belonging to {(Bx)(t), x € D} are equicontinuous on [0, 1]. (2.10)
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Since
|(Bff)’t(t1) — (Bz)'(t2)]
= | t q(s) f(s,x(s) +71(s),2"(s) +71(s))ds|
" M + |||

<1 [ @I+ )+ w( min ()] =2 + o min (),

for any € > 0, there exists a § > 0 such that
[(Bz)'(t1) — (Bz)'(t2)| <&, V[t1—t2| <6, z €D,
which means that
the functions from {(Bz)'(t), € D} are equicontinuous on (0,1). (2.11)

Now {Bz,z € D} C C'0,1], where C'[0,1] = {y : [0,1] — R : y(t)
is continuously differentible on [0,1]} is a Banach space with norm ||y|lo =
max{maxeo,1) |y(t)],

maxeo,1] [4'()[}-

From (2.8)-(2.11), the Arzela-Ascoli theorem guarantees that B(D) is rela-
tively compact in C1[0,1]. Then, for any {x,,} C D, there exists a yo € C*[0, 1]
and a subsequence {z,,} of {z,} such that

oJim | Bz, = yollo = 0.
Now since

[Bn, — yoll
= max{max{|(Bzn,)(t)=yo(t)[t € [0, 1]}, sup{p(t)|(Bzn,)" () =6 (t)[t € (0,1)}}
< max{max{|(Bxy,)(t) — yo(t)[t € [0, 1]}, max{|(Bxn,)"(t) — yo(t)|t € [0,1])}}
= [IBn; = wollo,

we have

i [Bra, — ol =0,

i.e., BD is relatively compact in C’;.
Hence, B : P — P is continuous and compact.

Remark 1: We use the two functions v; € C[0,1], v € C]0,1] with
minepo,171(¢) > 0 and maxy¢jo,1) 72(t) < 0 to help us remove the singularity
of f(t,x,y) at =0 and y = 0. If f(¢,z,y) is continuous at = 0 and y = 0,
we would take v1 =0, 2 =0, t € [0, 1].
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Remark 2: Suppose that = € P satisfies z = Bz, i.e.,

x(t) = alz] +/O G(t,5)q(s)f(s,z(s) +71(5),2'(s) + y2(s))ds, Vt € [0,1].

Obviously, z(1) = afz] and direct differentiating yields that

'(t) = —/O q(s)f(s,2(s) +1(s), 2'(s) + 12(s))ds, t € (0,1),

which together with q(s)f(s, z(s) + v1(s),2'(s) + 12(s)) € C0, 1] means that
Z'(0) =0
and
a”(t) = —q() f(t, x(t) + N (1), 2 (t) +72(2)), t € (0,1).
Hence, x(t) satisfies
2”(t) = —q() f(t, x(t) + M (1), 2" (t) +72(t)), t € (0,1)
with s
2'(0) =0, z(1) :/ x(s)dA(s).
0
Lemma 2.7 Assume that (Cy), (C2) and (C3) hold. Then there exists Ry > 0

such that
i(B,QRﬁP,P):O, VR > Ry,

where Qr = {z € C,||z|| < R}.

Proof. Let N* = . From (Cj3), there exists R’ > 0 such that

2
a [l7%(1—s)q(s)ds
ft,z,y) > N*z, Vo> R, y € (—0,0), t € [a,1— a. (2.12)
Let Ry = & For all R > Ry, set
Qr ={z € Gylllz|| < R}

Now we show that
Bx £ x, Vo € PN OQg. (2.13)

In fact, suppose that there is a xg € P N 9N g with Bxg < zg. Lemma 2.4
implies that xo(t) > (1 —t)||zol|, ¥t € (0,1), and so zo(t) > al|lxo|| > aR > R’
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for all t € [a,1—a]. Thus, zo(t)+v1(t) > a|lzo|| > aR > R for all ¢ € [a,1—a]
also. Then, from (2.12), we have

f(t,zo(t) +71(t), zo(t) +72(t) > N*(zo(t) + 71(t))

> N*zo(t) > N*aR, Vi€ la,1—al,

20(0) = (Bzo)(0)

l1—a
> [ W Salo s (s) + ) (5) +2(5))ds
alfa
> / (1 —9)q(s)N™(zo(s) +1(s))ds
> 1—a(1 —s)q(s)dsN*aR
>R,

which implies that ||zo|| > [|zol|1 > R, a contradiction to xg € P N OSQ. Then,
(2.13) is true. From Lemma 2.3, it is easy to see that

i(B,PNQ,P)=0.

The proof is complete.

3. Nonexistence of positive solutions to BVP(1.1)-(1.2)

In this section, we notice that the presence of z in f(¢,z,2) can lead to the
nonexistence of positive solutions to (1.1)-(1.2).

Theorem 3.1 Suppose that there is a § € C((0,1), (0,400)) and § > 0 such
that

fty,2) < =B(1), ¥(t,y,2) € (0,1) x (0,+00) x [=6,0). (3.1)
Then (1.1)-(1.2) has no positive solutions.
Proof. Suppose yo(t) is a positive solution to (1.1)-(1.2). Then
vo (8) +a()f (. 90(t), 9o (t) = 0, € (0,1)

¥6(0) =0, yo(1) = afy],
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which means that there is a ¢t € (0,1) with y{(t0) < 0, yo(to) > 0 (oth-
erwise y'(t) > 0 for all ¢ € (0,1) which would contradict y(1) = afy] <
maxyeo,1) ¥(t) fol |dA(s)] < maxyejoqy(t)). Let t. = inf{t < tolyy(s) < 0 for
all s € [t,to]}. Clearly,

t. >0 and y,(t.) = 0,y,(t) < 0 for all ¢t € (¢, to). (3.2)

The continuity of y{(¢) implies that there is a v > 0 such that 0 > y{(t) > —6
for all t € (¢, ts +7]. Then (3.1) guarantees that f(t, yo(¢),y,(t)) < —pB(t) for
all t € (t«,t« + 7], which implies that

Yo (t) > B(t) >0, Vte (ta,te +11,

and so

which contradicts (3.2).
Consequently, (1.1)-(1.2) has no positive solutions.

Theorem 3.2 Suppose g € C[0,1] with q(t) > 0 for all t € (0,1) and here are
two functions h € C((0,400), (0,4+00)), g € C((—00,0), (0, +00)) with

£y, 2)| < h(2)g(2), ¥(t,y, 2) € [0,1] x (0, +00) x (=00,0),

where / Ldr = +o0 for all z < 0.
2 9(r)

(3.3)

Then (1.1)-(1.2) has no positive solutions.
Proof. Suppose yo(t) is a positive solution to (1.1)-(1.2). Then

Yo (t) + a(t) f (£ yo(£), yo(t)) = 0,¢ € (0,1)

Y0(0) =0, yo(1) = afy],
which means that there is a tg € (0,1) with y(t9) < 0, yo(to) > 0 (oth-
erwise y/'(t) > 0 for all ¢ € (0,1) which would contradict y(1) = afy] <
max;e(o,1] ¥(t) fol |dA(s) < maxecjo,1)y(t)). Let t. = inf{t < tolyo(s) < 0 for
all s € [t,tg]}. Clearly,

t. >0 and y,(t.) = 0,94(t) < 0 for all t € (L., to)- (3.4)

Then, from (3.3),
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and so
Y@
9(yp(1))

Integration from ¢, to ty yields

< q(t)h(yo(t)), t € (t«, to].

0 t
1 0
+o0 = ——dr < / q(s)h(yo(s))ds < +o0.
v (to) 9(7) .
This is a contradiction.

Consequently, (1.1)-(1.2) has no positive solutions.

Example 3.1. Consider the boundary value problems

2’ + (1 =)L = (]2) ")z’ + 279 =0, t € (0, 1), (3.5)
1
2'(0) =0, z(1) = /0 x(s)dA(s), (3.6)
where dA(t) = §sin2rtdt, a > 0,b >0, d > 0.

It is easy to see that f(t,z,z) = (1—t)*(1—(|2)*)[x®+2~9] for all (t,z, 2) €
[0, 1] % [0, +00) X (—00, +00). Since lim, o1 (20 +2~%) = lim, 4 oo (2P +279) =
+00, there is a ¢y > 0 such that 2° + 279 > ¢y for all z € (0,400). Then
[tz 2) < (1—)"(1—2%)co for all (¢,z,2) € (0,1) x (0, +00) x [—3,0). Then
Theorem 3.1 guarantees that (3.5)-(3.6) has no positive solutions.

Example 3.2. Consider the boundary value problems

" 4 (=) 1+ 2% =0, te(0,1), (3.7)

2(0) =0, x(1)=/0 2(s)dA(s), (3.8)

where dA(s) = gsds,a>1,b>1, u>0,t€[0,1].
Let h(z) =1 +2°, g(y) = (—y)®. It is easy to see that

[t @ y)| = [1+2"](=y)* = h(@)g(y), ¥(t,2,y) € [0,1] x [0, +00) x (~00,0]

and

01
/—dy:+oo, Vz < 0.
2 9y
(

)
Theorem 3.2 implies that (3.7)-(3.8) has no positive solutions.
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4. Multiple positive solutions to BVP(1.1)-(1.2) without
singularities

In this section, f is continuous for (¢,z,y) € [0,1] x [0,400) x (—00,0] and

co = / JdAGs)

Theorem 4.1 Suppose (Cy) — (Cs) hold with w(t) = 0 and v(t) = 0 for all
t € 0,+00) and

sup ! 1 >1,
ce(0+00) I71(h(e) o ( )ds) (4.1)

where 1(z) = / %du z € RT, I(+00) = +o0.

Then (1.1) has at least two positive solutions zg 1, xo2 € C'[0,1] N C?(0,1)
with x¢1(t) > 0 and xo2(t) > 0 on (0,1).

Proof. From (4.1), choose an Ry > 0 with
Rl(l - Co)
171 (h(Ry) Jy a(5)ds)

From (Cs), choose an Ry > max{Ry, %,} (R’ is defined as in (2.12)).
For x € P, define

(T2)(t / G(t,s) a(s), ' (s))ds, te[0,1].  (4.3)

It is easy to see that Lemma 2.6 guarantees that the operator T in (4.3) is
continuous and compact from P to P (note here v;1(¢) = 0 and ~2(t) = 0, for
t € [0,1]).

Let

0 = {z € Glllz]| < R1}

and

Then, we claim that
uTz £z, Yue (0,1, € PNoQ. (4.4)

Now we show that (4.4) is true. Suppose there exists an xg € PN 0€; and
a 1o € (0,1] such that g = poTzo. Then

x5(0) =0, x0(1) = afzo), ‘



SINGULAR NONLOCAL BOUNDARY VALUE PROBLEMS 293

which means that xq(t) > 0 is on (0,1) with z3(0) = 0 and z{(¢) is nonin-
creasing on (0,1). Without loss of generality, we assume that z((¢) < 0 for all
t € (0,1) (obviously, (4.7) is true for x{(¢) = 0). From (4.5), we have

—x(t) < q(t)f (t, 20(t), (1)) < q(O)h(xo(t))r(—x(t)), VE € (0,1),

which means that

L(t) < h(zo(t))q(t) < h(R1)q(t), Vte (0,1). (4.6)
r(—zo(t))

Integration from 0 to ¢ yields

I(~aly(t)) — I(~a(0)) = I(~a}(t)) < h(Ry) / a(s)ds,
and so )
—Zl(t) < rl(h(Rl)/O q(s)ds), ¥t € (0, 1). (4.7)

Now integrate from 0 to 1 to obtain

Rl — o) < 20(0) — mo(1) < I‘l(h(Rl)/O o(s)ds),

a contradiction to (4.2). Then, (4.4) is true. Lemma 2.1 implies that

(T, NP, P)=1. (4.8)
From Lemma 2.7, we have

i(T,PNQo, P)=0,

and so B
i(T,PN(Qy—Q),P)=—1. (4.9)

As a result, there exist #; € PNQy and 2o € PN(Qy—Qy) such that 2y = Ty
and xo = T'zs.

Consequently, BVP(1.1)-(1-2) has at least two different nonnegative solu-
tions x1(t) and zo(t) with ||z1]] < Ry < [|z2].

Example 4.1. Consider the boundary value problems

o+ p[l+ 2|21+ 2 =0, te(0,1) (4.10)
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1
2'(0) =0, x(1) :/ x(s)dA(s), (4.11)
0
with dA(t) = §sin2mtdt, 0 <a <1,b>1and > 0. If

(1—co)e 1
J. ds
0 1+4s2
< _ 4.12
K cE(SOl,lfoo) 1+ c ’ ( )

then BVP(4.10)-(4.11) has at least two different positive solutions z¢ 1, zo 2 €
Cl0,11nC?(0,1).

It is easy to see that all conditions of Theorem 4.1 hold. Then, Theorem
4.1 guarantees that BVP(4.10)-(4.11) has at least two different positive solu-
tions xg 1, zo2 € C*[0,1] N C?(0,1).

5. Multiple positive solutions to BVP(1.1)-(1.2) with
singularity at x = 0 but not at '’ =0

In this section our nonlinearity f may be singular at z = 0 but not at 2’ = 0
1
and ¢ :/ |dA(s)] .
0

Theorem 5.1 Suppose (Cy) — (C3) hold with w € C((0,+0), (0,+00)) N
Lic[0,4+00) and v(t) =0 for all t € [0, +00) and

sup (1= co)e > 1, where
ce(0.+00) I (llallolch(c) + Jo w(s)ds]) ~ (5.1)
U
(2) /0 7n(u)du, z € (0,400), I(+00) = +0o0, |gllo tren[aaﬁ] q(t)

Then (1.1) has at least two positive solutions xg 1, Tg2 € C1[0,1] N C?(0,1)
with xo.1(t) > 0 and xo2(t) > 0 on (0,1).

Proof. From (5.1) and the continuity of =% and h, choose an R; > 0, and a

R
5>Owithe<71with

Rl(l — Co)

1. 5.2
I (Ry + )h(Ry +2)lgllo + llallo fo = w(s)ds) ] o

From (C3), choose a Ry > max{R, %/} (R’ is defined as in (2.12)).
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1
Let ng € {1,2,---} be chosen so that — < ¢, and let Ng = {ng,no+1,---}.
no
For each n € Ny, for x € P, define

%’x’(s))d& tel0,1. (53)

(T ) (t /Gts ,z(s) +

Lemma 2.6 implies that T, : P — P is continuous and compact (here
71(t) = L and y2(t) = 0, for t € [0,1]).
Let
O ={ze€ C;|||x|| < Ri}

and
Q = {z € |||z < Ra}.

Then, for each n € Ny, we claim that
plyx #x, Vpe (0,1, ze€PNo. (5.4)

Now we show that (5.4) is true. Suppose there exists an 29 € PN 0 and
a o € (0,1] such that xg = poThzo. Then

{ w40+ ot () ¢ Foap®) =0, teO) o
20(0) = 0, (1) = afz],
which means that zo(t) > 0 is on (0,1) with z((0) = 0 and z{(¢) is nonin-

creasing on (0,1). Without loss of generality, we assume that x{(t) < 0 for all
€ (0,1) (obviously, (5.7) is true for z{(t) = 0). From (5.5), we have

(1) < a0 (1 20+, 75(0)) < a@) ACro(t)+— ) Huwleo(t)+)r(~ah (1),

vt € (0,1),

which means that

and so

(ff(t()f)) < (o) + 1)+ wlwo(t) + N(~h(B)a(t), Vi€ (0,1). (5:6)

Integration from 0 to ¢ yields
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z0(0)+ %

< laloh(zo(®) + )0l + )+l [ " wisjas,

and so
Ryi+e
—z6(t) < I ' (lglloh(Ry +&)(Ry +¢) + IIQIlo/ w(s)ds), vt € (0,1], (5.7)
0

Now integrate from 0 to 1 to obtain

Ri+e
Ri(1=co) < 20(0) —x0(1) < I (llglloh (R +€)(R +5)+||q||0/0 w(s)ds),

a contradiction to (5.2). Then, (5.4) is true.
From Lemma 2.2, for each n € Ny, we have

i(Tn, PNy, P)=1. (5.8)
Lemma 2.7 implies that
(T, PNy, P) =0,

and so B
Z(Tn7p N (QQ — Ql),P) =—-1, n € Ny. (59)

As aresult, for each n € Ny, there exist z, 1 € PNQ; and z,2 € PN(Q2—)
such that x,,1 = Tz, and 0 = T 2p 2.

Now we consider {1 nen, and {Tn 2} nen,. Obviously, since {zp 1 }nen,
is bounded, it is easy to see that

{Zn1(t)} is uniformly bounded on [0, 1] (5.10)

with max |z, 1(t)] < Ry, n € No.
t€[0,1]

Using z,,1 instead of z¢ in (5.2), from (5.7), one has

Ri+e
—a1(t) < I (lalloh(Ry +)(Ry +€) + IIQ\\o/ w(s)ds), vt € (0,1,
0
which yields that

{7, 1(t)} is uniformly bounded on [0, 1] (5.11)

and so
{zn1(t)} is equicontinous on [0, 1]. (5.12)
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Using x,,1 instead of =g in (5.6), we have

1 ()21 (1)
(=1 (1))

Integration from ¢; to ty yields

< (s (6)+ 1)+ wlaea(t) + la(t), Vi€ (0,1)

—Zn,1(t2) r

Hewta) ~ Tel) =1 [

—an,1(t2)+1
< [P(Ry 4 )|z (t) — wna(t2)| + | w(r) dr|]llglo-
—Zn1(t1)+ 4
Since w € Ljoc[0, +00), from (5.12), we have
{I(=x7, ,(t))} is equicontinous on [0,1]. (5.13)
Since
25,1 (1) =y (t2)] = [T (I (=27, 1 (1) = IT7HI (=, 4 (22)))]
and I~! is uniformly continuous on [0, I(R;)], we have
{a:;ll(t)} is equicontinuous on [0, 1]. (5.14)

From (5.10), (5.11), (5.12) and (5.14), the Arzela-Ascoli Theorem guar-
antees the existence of a subsequence N = (n,;) of Ny and a function z¢; €
C'0,1] with lim 2y, 1 — xo; with

Jj—+oo

w1(0) = 0. (5.15)

From

lim f(t, 2,1 (8) + . 1) = £(t 201 (D), 01 (1), ¥E€ (0,1),

j—+oo n;

1 1 1
= (2) o0 (2) (-

4 [ (5= 006 Fls.0,05) + -l 1)) ds

bl J

for t € (0,1) and
1
T, (1) = / T, 1(s)dA(s),
0
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the Lebesgue Dominated Convergence Theorem guarantees that

a0 =r0a (3) 4200 (3) (1= 3)+ ] 60060 5620069, 5%, (0
’ (5.16)

z01(1) = /O 201 (s)dA(s) = afo.1]. (5.17)

Hence, from (5.15)-(5.17), x¢,1(¢) is a positive solution to BVP(1.1)-(1.2) with
lzo.1]] < Ry. Also (5.2) guarantees that ||zg 1| < R;.

For the set {n2}nen, C (22 — Q1) N P, from the same proof for the set
{Zn1}nen,, we can obtain a convergent subsequence {z,, 2} of {z, 2} with

im z,,2 =02 € C'. Moreover, x5 is a positive solution to equation (1.1)
imtoo TV ' '

with Ry < ||£0,2|| < Rs.
Consequently, BVP(1.1)-(1.2) has at least two different positive solutions
"Eo,l(t) and 33'072(0 with ||SC071|| < Rl < ||$072||.

Example 5.1. Consider the boundary value problems

"+ pl+ 201+ 2t 427 =0, te(0,1) (5.18)
1
2'(0) =0, z(1)= /O z(s)dA(s), (5.19)

1
with dA(t) = gsin27rtdt70<a< 1,b>1,0<d<1and pu>0.If

(1—co)e 5
o 505
< su £ , 5.20
H cE(O,-‘:I-)oo) c+ cbtl + 1idcl_d ( )

then BVP(5.18)-(5.19) has at least two different positive solutions z¢ 1, zo 2 €
C10,1]nC?(0,1).

It is easy to see that all conditions of Theorem 5.1 hold. Then, Theorem
5.1 guarantees that BVP(5.18)-(5.19) has at least two different positive solu-
tions o 1, zo,2 € C1[0,1] N C?(0,1).

6. Multiple positive solutions to BVP(1.1)-(1.2) with
singularity at ' =0 but not at z =0

In this section our nonlinearity f may be singular at 2’ = 0 but not z = 0 and

co=/01|dA<s>|.
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Theorem 6.1 Suppose (Cy) — (C3) hold with v € C((0,+0o0), (0,400)) and
w(t) =0 for all t € [0,4+00) and

sup (1= clo)c > 1, where
<ot TR I} o) o
I(z) = /0 mdu, z € (0,+00), I(+00) = +00.

Then BVP(1.1)-(1.2) has at least two positive solutions zg 1, 292 € C1[0,1] N
C?(0,1) with zo 1(t) > 0 and 9 2(t) > 0 on (0,1).

Proof. From (6.1) and the continuity of I~ and h, choose an R; > 0, and a

R
5>0With5<71with

Rl(l — Co)

: > 1.
I71(I(e) + h(Ry) Jy a(s)ds)

From (C3), choose a Ry > max{R;, %} (R’ is defined as in (2.12)).
1
Let ng € {1,2,-- } be chosen so that — < ¢, and let Ny = {ng,no+1, - }.
ng
For each n € Ny, for x € P, define

! 1
(Thz)(t) = alz] +/0 G(t,s)q(s)f(s,x(s),2'(s) — =)ds, t€[0,1].

n

Lemma 2.6 guarantees that for each n € Ny, T,, : P — P is continuous
and compact (here 1 (t) = 0 and 1o(t) = —1, for ¢ € [0,1]).
Let
O ={ze C;|||:v|| < R:}

and

An argument similar to that in the proof of (5.4) shows that for each
n € Ny, we have that

pThx #x, Yue (0,1, x€ PNoQy,
which together with Lemma 2.2 implies
i(T,, PNy, P)=1, n € Np.
Since Lemma 2.7 guarantees that

i(Tn,PﬂQQ,P) =0, n € Ny
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we have -
i(Tn,Pﬂ(Qg—Ql),P):—l, n € Np.

As a result, for each n € Ny, there exist x,, 1 € PNQy and 2,2 € PN(Q2— Q)
such that x,, 1 = T, 2,1 and x, 0 = T, Ty 2.
An argument similar to that in the proof of (5.10)-(5.12) and (5.14) shows
that
{Zn1()}, {zn2(t)} are uniformly bounded on [0, 1],

{7, 1 (1)}, {z}, 2(t)} are uniformly bounded on [0, 1],
{Zn1(t)}, {zn2(t)} are equicontinous on [0, 1],

and
{=25, 1 (1)}, {2, »(t)} are equicontinuous on [0,1],

which together with the Arzela-Ascoli Theorem guarantees the existence of a
subsequence {n;} of Ny and a function z¢; € C[0,1] with _1ir+n Tn;1 — To,1
J—+o0

with
336,1(0) =0
and the existence of a subsequence {ny} of Ny and a function zg2 € C*[0,1]
with lim Ty ,2 — 20,2 with
k—+o00

556,2(0) =0

An argument similar to that in the proof of (5.16)-(5-17) shows that ¢ 1 (¢) and
x0,2(t) are two different positive of BVP(1.1)-(1.2) with ||zo1]| < R1 < ||zo.2]|.

Example 6.1. Consider the boundary value problems

"+ op[l 22T+ 2% =0, te(0,1) (6.2)
Z(0)=0, z(1)= /0 2(s)dA(s), (6.3)

1
with dA(t) = gsinQﬂ'tdt7 0<a<1l,b>1,0<dand p>0.If

(I=co)c s?
0 sTrseragrds

)

u < sup
c€(0,400) 14cb

then BVP(6.2)-(6.3) has at least two different positive solutions x¢ 1, zo2 €
C0,1] N C?(0,1).
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It is easy to see that all conditions of Theorem 6.1 hold. Then, Theorem
6.1 guarantees that BVP(6.2)-(6.3) has at least two different positive solutions
0,1, 0,2 € Cl[O, 1] N 02(0, 1)

7. Multiple positive solutions to BVP(1.1)-(1.2) with
singularity at xt =0 and =’ =0

In this section our nonlinearity f may be singular at x = 0 and 2’ = 0 and

1
o= [ 1A

Theorem 7.1 Suppose (C1) — (Cs) hold and

(1 —co)e
Sup c > 1, where
ce(o-+00) L1 (llalloleh(e) + Jy w(s)ds])
u
&)= J o I = = t).
&)= [ ariade =€ 0450, 1(+00) = +oc. lallo = ma a(t)

(7.1)
Then (1.1) has at least two positive solutions zg 1, T92 € C1[0,1] N C?(0,1)
with xo.1(t) > 0 and xo2(t) > 0 on (0,1).

Proof. From (7.1) and the continuity of 1!, choose an R; > 0, and a € > 0
. Ry .
with € < 5 with

Rl(l — Co)

. > 1.
I (I(e) + (Ba + e)h(Ra +€)llgllo + llallo Jo ™ w(s)ds)

From (C3), choose a Ry > max{R, %} (R’ is defined as in (2.12)).

2
Let ng € {1,2,--- } be chosen so that — < ¢, and let Ny = {ng,no+1,- - }.
no
For each n € Ny, for z € P, define

! 1 1 1
(Thz)(t) = a[ﬂc]—i—/ G(t, s)q(s)f(s,m(s)—&—ﬁ(l—s)—i—ﬁ,a:’(s)—g)ds, t €10,1].
0
Lemma 2.6 guarantees that T;, : P — P is continuous and compact (here
1) =2(1—-t)+ 21 and 1(t) = -1, for t € [0,1]).
Set
O = {z € Gpll|l=|| < Ra}

and
Q) = {z € Gylllz] < Ra).
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An argument argument to that in the proof in Theorem 6.1 yields two different
positive solutions ¢ 1 (¢) and xg 2 (¢) with 2o 1 € QNP and zg 2 € (22—N1)NP.

Example 7.1. Consider the boundary value problems

o+ p[l+ |20+ 2T+ 2+ 27 =0, te(0,1) (7.2)
, 1
2'(0) =0, z(1) = /0 x(s)dA(s), (7.3)

1
WithdA(t):gsin27rtdt,0<a<1,b>1,0<d<1,e>0andu>0. If

(I—co)c sett d
—T ar 7 as
0 setsat 1
M< Sup C+cb+1 + 1 cl_dﬂ
c€(0,+00) S

then BVP(7.2)-(7.3) has at least two different positive solutions x¢ 1, zo2 €
C0,1] N C?(0,1).

It is easy to see that all conditions of Theorem 7.1 hold. Now Theorem
7.1 guarantees that BVP(7.2)-(7.3) has at least two different positive solutions
20,1, 20,2 S Cl[O, 1} N 02((), 1)
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