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Complete spacelike hypersurfaces with positive
r-th mean curvature in a semi-Riemannian
warped product
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Abstract

In this paper, by supposing a natural comparison inequality on the
positive r-th mean curvatures of the hypersurface, we obtain some new
Bernstein-type theorems for complete spacelike hypersurfaces immersed
in a semi-Riemannian warped product of constant sectional curvature.
Generalizing the above results, under a restriction on the sectional cur-
vature or the Ricci curvature tensor of the fiber of a warped product,
we also prove some new rigidity theorems in semi-Riemannian warped
products. Our main results extend some recent Bernstein-type theorems
proved in [12, 13, 14].

1 Introduction

One of the basic problems on spacelike hypersurfaces is the problem of unique-
ness of spacelike hypersurfaces with constant mean curvature, more generally,
that of spacelike hypersurfaces with geometric condition which is characterized
by higher order mean curvature. The aim of this paper is to study such type
problem of spacelike hypersurfaces immersed in a semi-Riemannian warped
product. Before giving details of our main results, we shall first present a brief
outline of some recent papers concerning uniqueness theorems related to ours.
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By applying a key lemma proved in [11], F. Camargo, A. Caminha and H.
F. De Lima [12] proved some Bernstein-type theorems concerning complete
and connected spacelike hypersurfaces in steady state-type spacetimes and
hyperbolic-type spaces. Generalizing the above results, A. G. Colares and H.
F. de Lima [13] obtained some rigidity theorems in semi-Riemannian warped
products.

Later, by replacing null convergence condition by (In f)” < 0, L. J. Alilas,
D. Impera and M. Rigoli [5] obtained uniqueness theorems concerning com-
pact spacelike hypersurfaces with constant higher order mean curvature im-
mersed in a spatially closed generalized Robertson-Walker spacetime. They
also investigated the uniqueness of complete spacelike hypersurfaces by using
a generalization of the Omori-Yau maximal principal. We also refer the reader
to [2, 4] for some relevant results concerning higher order mean curvature.

Recently, by supposing a natural comparison inequality between the r-th
mean curvatures of the hypersurface immersed in a semi-Riemannian warped
product, H. F. de Lima and J. R. de Lima [14] proved a uniqueness theorem
with the null convergence condition, i.e., k > sup,;(ff” — f?). In fact, there
is a little mistake in the proof of Theorem 1.1 of [14], we give the details
about that mistake (see Remark 5.1) in section 5. Note that the conclusion of
Theorem 1.1 in [14] still holds if we correct an inequality in the assumption of
this theorem.

In this paper, following [2] and [5] we consider the action of the second or-
der linear differential operator L, (see section 2) on the integral of the warping
function, which makes us to obtain some more accurate estimates. It is worth
to point out that the Laplacian of integral of the warping function was studied
by the present authors in [20, 21] to obtain some uniqueness results. Through-
out this paper, we denote by £(3") the space of Lebesgue integrable functions
on spacelike hypersurface ¥". Then, by applying a result proved by Caminha-
Sousa-Camargo [11] and supposing a natural comparison inequality between
the r-th mean curvature of a hypersurface, we obtain new Bernstein-type the-
orem (whose proof can be seen in section 4) as follows.

Theorem 1.1. Let M = —1 X s M™ be a Lorentzian warped product of con-
—n+1

stant sectional curvature. Let ¢ : X" — M be a complete and connected
spacelike hypersurface with bounded second fundamental form and bounded
away from the infinity of m Suppose that H, and H,.41 are positive for
some 1l <r <n-—1 such that

Hr+1>]il
H, — f

(h) > 0. (1)

If h has local minimum on "™ and |Vh| € L(E™), then X" is a slice oanH.
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With regard to spacelike hypersurfaces in Robertson-Walker spacetimes, we
also obtain the following rigidity result which generalizes the above Theorem
1.1.

Theorem 1.2. Let M = —I X ¢ M™ be a Robertson-Walker spacetime
whose Riemannian fiber M™ has constant sectional curvature k satisfying
k< inf(Ff— 1), )

Let ¢ : X" — M e a complete and connected spacelike hypersurface with
the bounded second fundamental form and bounded away from the infinity of
—n+1

M . Suppose that H, and H,y1 are positive for some 1 < r <n—1 and
satisfy (1). If h has local minimum on X" and |Vh| € L(X"), then X" is a

slice of M

This paper is organized as follows. We shall first recall some notations and
collect some basic facts in a preliminaries section, then some key lemmas used
to prove our main rigidity theorems are given in section 3. Section 4 is devoted
to proving some uniqueness theorems and their corollaries concerning hyper-
surfaces in semi-Riemannian warped product of constant sectional curvature.
Finally, in section 5, we obtain some generalizations of the results proved in
section 4 concerning hypersurfaces in semi-Riemannian warped products. The
Riemannian version of Theorem 1.1 and 1.2 are given in section 4 and 5 re-
spectively. Some applications of our main results on some physical models are
also presented in section 4 and 5 respectively.

2 Preliminaries

In this section, following [5, 6] we shall recall some basic notations and facts
that will appear along this paper. We first introduce some notations on Rie-
mannian immersions in semi-Riemannian manifolds.

Let """ be a connected semi-Riemannian manifold with metric g = (, )
for index ¥ < 1 and V be the semi-Riemannian connection. In what follows,
we consider Riemannian immersion ¢ : 3" — HHH, and we orient X" by
the choice of a unit normal vector field N on it. We denote by A the shape
operator of . For 0 < r < n, let S,(p) be the r-th elementary symmetric
function of the eigenvalues of A, for p € ¥". Then S, : X" — R is given as

follows n

det(t] — A) =Y (~1)FSpt"F,

k=0
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where Sy = 1 by the definition. If p € £™ and {e;} is a basis of T,X™ formed by
eigenvectors of A, with corresponding eigenvalues {\;}, one can immediately
get

Sy = Ur()\la o a)\n)v

where o, € R[Xy,---,X,] is the r-th elementary symmetric polynomial on
the indeterminates X1,---, X,,. Also, for 0 < r < n we define the r-th mean
curvature H,. of ¢ by

CrH, =€ySr=0r(eNA1,  * ,ENA).

It is easy to see that Hy = 1 and H; is the usual mean curvature H of X".
We also notice that the Hilbert-Schmidt norm of the shape operator A of 3"
is given by

|A|? = n?H? —n(n — 1)H,. (3)

We may define the r-th Newton transformation P, on X" by setting Py = I
(the identity operator) for 0 < r < n via the recurrence relation

PT = €7JGVSTI - ENAP’I‘—].' (4)
A trivial induction shows that
Po=en(Sid — Sp 1A+ Sp 9A? — - (=1)"AT),

so that the Cayley-Hamilton theorem gives P, = 0. Moreover, since P, is
a polynomial in A for every r, it is also self-adjoint and commutes with A.
Therefore, all basis of T,X" diagonalizing A at p € ¥" also diagonalize all of
the P, at p. Let {e;} be such the basis. Denote by A; the restriction of A to
{e;)t C T, X", it is easy to see that

det(tI — A;) = Z(_l)ksk(Ai)tn—l_k7
k=0

where

Se(A) = D> NN
1<41 < <dp<n
J1 g #i
From [8], it is also immediate to check that P.e; = € S,(A4;)e;, then an
easy computation gives the following result.

Lemma 2.1 (Lemma 2.1 of [8]). With above notations, the following formulas
hold:
(a) ST(AZ) = ST — )\Zsrfl(Al)
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(0) tr(Pr) =€y > Sr(A;) = en(n—1)S, = b H,.
i=1
(c) tr(AP,) = €y > NiSp(Ai) = €y (r+1)Sp41 = enbrHppq.
i=1

(d) tr(A2Fy) = e}y 35 APSH(Ai) = ey (S18r41 = (1 +2)Sr12),
i=1
where by, = (n —r)C).

Associated to each Newton transformation P, one has the second order
linear differential operator L, : D(X") — D(X") given by

Ly(f) = tr(P, o Hessf), (5)

where D(X"™) denotes the set of all smooth functions on ™. In particular,
Lo = A and from [10] we know that if M has constant sectional curvature,
then L, (f) = div(P.Vf), where div denotes the divergence on X".

For a smooth function ¢ : R — R and h € D(X"), it follows from the
properties of the Hessian of functions that

Ly(poh) = (h)Lr(h) + ¢" (h)(P,Vh, Vh). (6)

Now, we give some facts on semi-Riemannian warped products. Let M™
be a connected, n-dimensional (n > 2) oriented Riemannian manifold, I C R
an open interval and f : I — R a positive smooth function. We consider the
product differential manifold I x M™ and denote by 7; and 7,; the projections
onto the base I and the fiber M™, respectively. A particular class of semi-
Riemannian manifolds is the one obtained by furnishing I x M™ with the
metric

(v,w)p = ()50, (w1)aw) + (f 0 71 (p))*{(war) v, (Tar)sw),

for all p € M and all v, W € Tpﬂnﬂ, where € = €y, and 0, is the standard
unit vector field tangent to I and f is known as the warping function and we
denote the space by M = X ¢ M™. In particular, —I x; M" is called a
Robertson-Walker spacetime if M"™ has constant sectional curvature. Accord-
ing to Proposition 42 of [19], we know that a generalized Robertson-Walker
spacetime has constant sectional curvature k if and only if, the Riemannian
fiber M™ has constant sectional curvature k and the warping function f sat-
isfies the following differential equation
" 2
I k= H (7)
f f?
It follows from [17] that the vector field (f o my)0; is conformal and closed
(in this sense that its dual 1-form is closed) with conformal factor ¢ = f' oy,
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where the prime denotes differentiation with respect to ¢t € I. For tg € I,
we orient the slice X} := {to} x M™ by using the unit normal vector field
04, then from [6, 17] we know that X} has constant r-th mean curvature

H, = fe(’;'((tt;)))r with respect to 0;.

A smooth immersion ¢ : X" — €l Xy M" of an n-dimensional connected
manifold X" is said to be a spacelike hypersurface if the induced metric via
1 is a Riemannian metric on ¥". Let ¥ be a Riemannian immersion with
3" oriented by the unit vector field N, one obviously has € = €0y = ey. We
denote by h the vertical (height) function naturally attached to X" defined by
h = (W])‘En. o

We denote by V and V the gradient with respect to the metrics of eI x y M™
and X" respectively. Then by a simple computation we have the gradient of
mr on €l Xy M™ which is given by

Vrr = e(N7y,0;) = €by, (8)

and the gradient of h on X" is given by

Vh= (V)" =ed] =ed; — (N,0,)N. (9)
In particular, we have
VA" = e(1—(N,0,)*), (10)
where | - | denotes the norm of a vector field on ™.

3 Key Lemmas
We give some important lemmas in order to prove our main theorems. First,
following a simple computation we have

n

Lo(f) =tr(P, o Hessf) = Y (P(Ve, V), )

} i=1 i (11)
= (Ve Vi Po(es)) = > (Vb (e) V] e:) = tr(Hessf o P,),
i=1 i=1
where {e1, -+ ,e,} is a local orthonormal frame on X™. It follows from [10]
that
divs (P, Z Ve, POV e + Z (Ve V), e) 12)
i= i=1

(dlvPr,Vf> + Lo (f),
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where the divergence of P, on X" is given by

n

divP, = tr(VP) = > (Ve Pr)(es). (13)

i=1

From relation (12) we know that the operator L, is elliptic if and only if
P, is positive definite. Notice that Ly = A is always elliptic. The following
two lemmas were proved by L. J. Alias and A. G. Colares [2] in which the
authors gave some geometric conditions for guaranteeing the ellipticity of L,
and L, for 2 < r < n, respectively.

Lemma 3.1 (Lemma 3.2 of [2]). Let ¢ : " — M be a Riemannian

immersion in a semi-Riemannian manifold M If Hy > 0 on X7, then Ly
is elliptic or, equivalently, Py is positive definite for an appropriate choice of
the Gauss map N.

Lemma 3.2 (Lemma 3.3 of [2]). Let ¢ : " — " be a Riemannian

. . . R . . ——n+1 . L.
immersion in a semi-Riemannian manifold M~ . If there exists an elliptic

point of X", with respect to an appropriate choice of the Gauss map N, and
Hyp1>0o0n X" for2 <r <n-—1, then for all 1 < k < r the operator Ly
is elliptic or, equivalently, Py is positive definite (for an appropriate choice of
the Gauss map N, if k is odd).

Notice that when we say po € X" being an elliptic point in a semi-
Riemannian immersion ¢ : ¥ — M "*! into a semi-Riemannian manifold

Mnﬂ, we mean that all principal curvatures \;(po) of this point have the same
sign. Moreover, we also need a sufficient condition to guarantee the existence
of an elliptic point in Riemannian immersions. The following result follows
from A. G. Colares and H. F. de Lima [13], which is the semi-Riemannian

version of Lemma 5.4 of L. J. Alfas, A. Brasil Jr and A. G. Colares [1].

Lemma 3.3 (Lemma 5.3 of [13]). Let = eIx p M™ be a semi-Riemannian
warped product manifold and v : X" — M 4 Riemannian immersion. If

—ef(h) attains a local minimum at some p € X" such that f'(h)(p) # 0, then
p is an elliptic point for X",

Moreover, we also need some properties on operator L,. Notice that F.
Camargo, A. Camimha and H. F. de Lima [12] proved the following lemma.
In the Lorentzian setting, the following result is just a particular case of the
one obtained by A. J. Alfas and A. G. Colares in Lemma 4.1 of [2].



COMPLETE SPACELIKE HYPERSURFACES WITH POSITIVE 7-TH MEAN CURVATURE 266

Lemma 3.4 (Lemma 2.2 of [12]). Let ¢ : X" — el x;y M™ be a Riemannian
immersion in a semi-Riemannian warped product manifold. If h = (7r)|gn :
3™ — I is the height function of X", then

L,(h) = (In f) (etrP, — (P,Vh, Vh)) + (N, ,)tr(AP,). (14)

Using equations (6.2) and (6.16) of [2], H. F. de Lima and H. R. de Lima
[14] obtained the following result.

Lemma 3.5 (Lemma 3.4 of [14]). Let ¢ : " — el x;y M™ be a Riemannian
immersion in a semi-Riemannian warped product manifold. If h = (7r)|gn :
3" — I is the height function of X", then

<diVEn Pl, Vh>

. " 2 (15)
= — ¢ (Rican (N*, N*) + e(n — 1)(In f)"(h)|Vh[?) (N, 0),

where Ricym denotes the Ricci curvature tensor of the fiber M™ and N* =
N — €(N, 0;)0; is the projection of the unit normal vector field N of ¥™ onto
M™. Moreover, if the fiber M™ has constant sectional curvature k, then

(divs Py, VA = —e(n — 1) (lezh) +e(In f)”(h)) (P,_1Vh,Vh)(N,d,). (16)

In view of Lemma 3.4 and Lemma 3.5, and making use of equation (6), we
obtain the following key lemma.

Lemma 3.6. Let ¢ : X" — el xy M"™ be a spacelike hypersurface in a semi-
Riemannian warped product manifold whose fiber M™ has constant sectional
curvature k. Denoted by h = (my)|sn : X™ — I the height function of X", if

o(t) = /t F(s)ds, (17)

then we obtain
divs. (P-(Vo(h)))
=eby (f'(h)H, + f(h)Hri1 (N, 0;))
= eln =) (8) (g + elln ) (1) (Pra T VRN, 0.

Proof. Tt follows from relation (6) that

(18)

Lyr(o(h)) = f(h)Ly(h) + f'(R)(P-(Vh), Vh). (19)



COMPLETE SPACELIKE HYPERSURFACES WITH POSITIVE 7-TH MEAN CURVATURE 267

Applying Lemma 2.1 and Lemma 3.4 on relation (19) implies that

Lo(o(h)) =f(h)((n f)' (b H, — (P,Vh, VhY) + €(N, )b, H, 1)
+ f'(W){P-(Vh),Vh) (20)
=eby(f'(h)Hy + f(R)Hy11(N,0)).

Replacing f(h) by o(h) in (12), we have
divs (P (Va(h))) = f(h)(divE,, V) + Ly (o (h)). (21)

Thus, our proof follows from Lemma 3.5, (20) and (21). O

4 Warped products of constant sectional curvature

According to [7, 20, 21], we may say that a spacelike hypersurface ¢ : ¥ —
el x ¢ M" is bounded away from the future infinity of el x ¢ M™ if there exists
t € I such that

Y(E") C {(t,p) € el xy M™:t <t}

Analogously, a spacelike hypersurface ¢ : ¥ — el x ; M™ is said to be bounded
away from the past infinity of eI x y M™ if there exists ¢ € I such that

Y(X") C {(t,p) € el xy M™:t >t}

Finally, ¥" is said to be bounded away from the infinity of el x ¢y M™ if it is
both bounded away from the past and future infinity of el xy M™.

Lemma 4.1 (Corollary 1 of [11]). Let M has constant sectional curvature,

and ¢ : X" — M be a complete Riemannian immersion with bounded
second fundamental form. Let g : ¥™ — R be a smooth function such that
[Vg| € L(X™). If L.g does not change sign on X", then L,.g =0 on X".

Now, we give our main uniqueness theorems for spacelike hypersurfaces
immersed in Lorentzian warped product. Assuming that N is the orientation
of the spacelike hypersurface ¢ : ¥" — —I xy M"™ and its angle function
satisfies (N, ;) < 0, then, by applying the reverse Cauchy-Schwarz inequality,
we obtain

(N,0:) < —-1<0. (22)

Proof of Theorem 1.1. Letting ¢ = —1, then it follows from (20) that

Ly(o(h)) = =br(f'(h)Hy + f(h)Hy11 (N, Or)). (23)
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Noting that both H, and H,,; are positive, then, making use of the as-
sumption (1) and (22) in (23) we obtain

Lo (o) = b 1(8) (L0 + v 00)
o 24
> —b.H, f(h) (J;(h) - h;[“) > 0.

On the other hand, since the spacelike hypersurface X" is bounded away
from the infinity of —I x  M™, then the height function & is also bounded on
3", Also, we have

[Va(h)| = F(h)|Vh], (25)

this means that |Vo(h)| is integrable since that |Vh| is integrable on ™.
The above arguments guarantees that Lemma 4.1 is applicable, then applying
Lemma 4.1 on the smooth function o(h) on X" we have

L. (o(h)) = 0. (26)

Putting the above equation into (32) and noting that b, is positive, then
we obtain f'(h)H, + f(h)H,+1(N,d;) = 0, thus, making use of inequality (1)
in this equation gives that

f/

Notice that hypothesis (1) guarantees that f—f/ > 0 on I, then it follows
from the above inequality that —(N,d;) < 1, comparing this inequality with

inequality (22) we obtain equation (N, d;) = —1. Finally, using e = —1 and
(N, 0;) = —1 in relation (10) gives that

Hr+1
H,

f/

IVh]> = — (1= (N,8,)%) = 0. (28)

Thus, we prove that X" is a slice of M (|

Remark 4.1. Theorem 5.4 of [13] attains the same conclusion as our Theorem
1.1, however, in our hypotheses we do not need the condition that the warping
function f has convex logarithm.

Next we consider the steady state-type spacetime, i.e., the Lorentzian
warped product —R X, M™, where the fiber M™ is an n-dimensional com-
plete and connected Riemannian manifold. The importance of considering
Kt = —R x.+ R™ comes from the fact that, in cosmology, 7* is the steady
model of the universe proposed by H. Bondi and T. Gold [9], and F. Holy [15].
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Moreover, following [12] we see that in physical context the steady state space
appears naturally as an exact solution for the Einstein equations, being a cos-
mological model where matter is supposed to travel along geodesic normal to
horizontal hyperplanes. We refer the reader to [?] for an alternative descrip-
tion of the steady state space "1, Consider a steady state-type spacetime
—R %t M™ of constant sectional curvature, then from (7) we see that the fiber
M™ of —R X+ M™ is of constant sectional zero. Thus, the following result is
true.

Corollary 4.1 (Theorem 3.6 of [12]). Let = R Xet M™ be a steady
state-type spacetime whose fiber is of constant sectional curvature zero. Let 1) :
w7 M be a complete and connected spacelike hypersurface with bounded

second fundamental form and bounded away from the infinity of m Sup-
pose that the r-th mean curvatures satisfy 0 < H, < H,.y1 for some 1 <r <

n—1. If [Vh| € L(Z™) on X", then X" is a slice ofﬂnﬂ.

Now, we give the uniqueness theorems (which is Riemannian version of
Theorem 1.1) for spacelike hypersurfaces immersed in Riemannian warped
product. Assuming that IV is the orientation of the spacelike hypersurface
P X" — I xy M™ and its angle function satisfies (N, ;) < 0, then, by
applying the Cauchy-Schwarz inequality, we obtain

~1 < (N,d,) < 0. (29)

Theorem 4.1. Let M ' =1 X ¢ M™ be a Riemannian warped product of con-
stant sectional curvature. Let v : X™ — M be a complete and connected
spacelike hypersurface with bounded second fundamental form and bounded
away from the infinity of m Suppose that H, and H,.y1 are positive for
some 1 <r <n—1 such that

Hr+1<£
H, — f

(h). (30)
If h has local mazimum on X" and |Vh| € L(E™), then X" is a slice ofﬁnﬂ.
Proof. Letting ¢ = 1, then it follows from (20) that

Ly(a(h)) = by (f(R)Hy + f(h)H;41(N, ). (31)

Noting that both H, and H, . are positive, then, making use of assumption
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(29) and (30) in (31) we obtain

il
f
! HH) (32)
f

On the other hand, since the spacelike hypersurface X" is bounded away
from the infinity of I X7 M™, then the height function A is also bounded on
Y™, Also, we have |Vo(h)| = f(h)|Vh], this means that |Vo(h)| is integrable
since that |Vh| is integrable on ¥™. The above arguments implies that Lemma
4.1 is applicable, then applying Lemma 4.1 on the smooth function o(h) on
>" we have

L.(o(h)) =0. (33)

Putting the above equation into (32) and noting that b, is positive, then
we obtain f'(h)H, + f(h)H,+1(N,d;) = 0, thus, making use of inequality (30)
in this equation gives that

!/
0 < f7 = —<N, 8t>

H,. I
< L
H = (N, O) 7

(34)

Notice that hypothesis (30) guarantees that fTI > 0 on I, then it follows
from the above inequality that —(N, ;) > 1, comparing this inequality with
inequality (29) we obtain equation (N, d;) = —1. Finally, making use of ¢ = 1
and (N, 0;) = —1 in (10) gives that

|IVh?=1—(N,0,)? =0. (35)

Thus, we prove that X" is a slice of m O]

The hyperbolic-type space is defined by R x.+ M™, where M™ is a com-
plete connected Riemannian manifold. The motivation for investigating the
hyperbolic-type space R X, M™ comes from the fact that, the
(n + 1)-dimensional hyperbolic space H"*! is isometric to R x .+ R". Noting
that an explicit isometry between the half-space model and this hyperbolic-
type model has been pointed out by L. J. Alias and M. Dajczer in [3].

Now letting the warping function be f = ¢! for ¢t € R, then the following
result follows from Theorem 4.1 and Lemma 5.2.

Corollary 4.2 (Theorem 3.7 of [12]). Let M =1 Xt M™ be a hyperbolic-
type space whose fiber is of constant sectional curvature zero. Let ¢ : X —
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M be a complete and connected spacelike hypersurface with bounded second

Sfundamental form and bounded away from the infinity oanH. Suppose that
the r-th mean curvatures satisfy 0 < Hyy1 < H, for some 1 <r <n—1. If
[Vh| € L(Z™) on X", then X" is a slice oanH.

Remark 4.2. We refer the reader to S. Montiel [18] and B. O’Neill [19] for
some examples of semi-Riemannian warped products whose warping functions
are not necessarily to have convex logarithm. Without requiring the condition
that the warping function f has convex logarithm, Theorem 4.1 attains the

same conclusion as Theorem 5.8 of [13]. That is, our Theorem 4.1 is an
extension of Theorem 5.8 of [13].

5 Semi-Riemannian warped products

In this section, in order to prove our main theorems, we shall make use of
the following lemma obtained by A. Caminha [10]. Notice that the following
lemma extends a result of S. T. Yau [22] on a version of Stokes theorem for
an n-dimensional complete and noncompact Riemannian manifold.

Lemma 5.1 (Proposition 2.1 of [10]). Let X be a smooth vector field on the n-
dimensional complete, noncompact, oriented Riemannian manifold M™, such
that divpm X does not change sign on M™. If | X| € L(M™), then divpm = 0.

By using Proposition 42 of [19] proved by B. O’Neill, we obtained the
following result. Here we omit the proof of Lemma 5.2 since that it is similar
to that of Corollary 2.4 of [16] proved by T. H. Kang,.

—n+1 . .
Lemma 5.2. Let M = eI X ¢ M™ be a semi-Riemannian warped product
whose fiber is of constant sectional curvature k. Then, M s of constant
sectional curvature if and only if the warping function satisfies

eff" —ef?+k=0.

Proof of Theorem 1.2. We assume that IV is the orientation of the spacelike
hypersurface ¢ : ¥ — —I xy M™ and its angle function satisfies (N, 9;) < 0,
then inequality (22) folds. Letting ¢ = —1, then it follows from relation (18)
that

divgn (Pr(Va(h)))
— b f(WH, (f/(h) Hy iy

oy T H, <N’8t>> (36)
k

— (ff"(h) = 2(h)
f2(h)

+(n—r)f(h) (P,_1Vh,VR)(N,d,).
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Next we claim that under the assumption of Theorem 1.2, the Newton
transformation P, is positive definite for some 1 < r < n — 1. In fact, first,
if Ho > 0 then by applying Lemma 3.1 we know P; is positive. Otherwise,
noticing the assumption (1) that f’(h) does not vanish on X", then applying
Lemma 3.3 we see that there exists an elliptic point py € ™. Since both H,
and H,;; are positive, applying Lemma 3.2 we know that L, is elliptic or,
equivalently, P, is positive definite.

From (1) and (2) we see that HI;%J:%N, O) < 7%, this means that the
first term of the right hand side of (36) is nonnegative. Together with the
assumption (1), (2), the fact that f is always positive on " and P, is positive
definite on X", thus, it follows from (36) that

divse (Pr(Va(h))) > 0. (37)

On the other hand, since ¥" is bounded away from the infinity of M™*!
and the eigenvalues are continuous functions on X", and noting that the shape
operator A is bounded on X", then it follows from (4) that |P,.| is bounded
on ™. That is, there exists a positive constant C' > 0 such that |P.| < C on
", which means that |P.(Vh)| < |P.||Vh| < C|Vh|. As |[Vh| € L(E™) then
we obtain

|P-(Vh)| € L(Z™). (38)

Furthermore, taking into account (37) and (38) and applying Lemma 5.1
to vector field X = P.(V(o(h))) we get that divss (P.(Vo(h))) = 0. Noticing
that both the two terms on the right hand side of (36) are nonnegative in this
case, then both the two terms are zero. Consequently, in view of (22) and (1),
it follows from (36) that (P._1Vh,Vh) = 0. In fact, if there exists p € X"
such that |Vh|(p) > 0, by using divgn (P.(Vo(h))) = 0 and the second term of
the right hand side of (36) is nonnegative, it follows from the above arguments
that k— (ff"”(h)— f?(h)) = 0. Applying Lemma 5.2 we know that in this case

M is of constant sectional curvature, then the proof follows from Theorem
1.1. If not, since that P._; is positive definite on X" for some 2 < r < n, then
the above analyses imply that

Vh =0, (39)

i.e., h is a constant on ¥". Thus, we prove that X" is a slice of —I x¢ M™. [

Before giving the Riemannian version of above theorem concerning space-
like hypersurface in Riemannian warped product manifold, we present the
following remark.

Remark 5.1. Noticing that (N,0;) < —1 and P._1 is positive definite, then
the assumption (1) of [14] does not assures that equation (23) in [14] is non-
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negative. Only if we correct the equation (1) in [14] as follows:
k< mf(f 7~ ),

the proof of Theorem 1.1 of [14] can continue and in this case the conclusion
of this theorem still holds. However, the proof need the assumption that In f
is a convex function, i.e., (In f)” >0 on X".

Theorem 5.1. Let M =1 X ¢ M™ be a Riemannian warped product whose
Riemannian fiber M™ has constant sectional curvature k satisfying

k> Stllp(f’2 — ). (40)

Lety : ¥ — M bea complete noncompact and connected spacelike hyper-
surface with bounded second fundamental form and bounded away from the in-
finity ofﬂnﬂ. Suppose that H,. and H,1 are positive for some 1 <r <n-—1
and satisfy (30). If h has local mazimum on ™ and |Vh| € L(Z™), then X"
is a slice.

Proof. Assuming that N is the orientation of the spacelike hypersurface 1) :
X" — I xy M™ and its angle function satisfies (IV,0;) < 0, then (29) holds.
In Riemannian case letting € = 1, then it follows from (18) that

divsn (P.(Vo(h)))
by, (L0 4 Bt ) "
Y Lt Ol £ D) TR R RTINS

f2(n)

Since both H,_; and H, are positive, then (29) implies that f’(h) is always
positive on ™. As discussed in proof of Theorem 1.2, applying Lemma 3.1,
3.2 and 3.3 we see that the Newton transformation P, is positive definite under
the assumptions of Theorem 5.1. Moreover, from (29) and (30) it is easy to

see HIil%jl(N, O) > f%, this means that the first term of the right hand side
of (41) is nonnegative. Together with the assumption (29) and (30), and the
fact that f is always positive on X" and P, is positive definite on X", then we
see from (41) that (37) still holds.

On the other hand, notice that the shape operator A is bounded on X",
then it follows from (4) that | P,| is bounded on X", i.e., there exists a positive
constant C' > 0 such that |P,| < C on 37", which means that |P.(Vh)| <

|P,||Vh| < C|Vh| € £(Z™).
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Moreover, taking into account inequality (37) and the fact that |P,.(Vh)| €
L(X™), applying Lemma 5.1 to vector field X = P,(V(o(h))) we conclude that
divgn (Pr(Va(h))) = 0. Notice that both two terms on the right hand side
of (41) are nonnegative, then both the two terms are zero. Consequently, it
follows from (29) and (30) that (P._1Vh, Vh) = 0. Since that P,_; is positive
definite on X" for some 2 < r < n, then from the above arguments and the
proof of Theorem 1.2 we have that

Vh =0,
i.e., h is a constant. This means that X" is a slice of I xy M". O

As discussed in Remark 4.2, the condition In f being convex plays an im-
portant role in proof of Theorem 1.2 of [14]. Our Theorem 5.1 extends the
conclusion of Theorem 1.2 of [14] without requiring this condition. Also, we
refer the reader to [5] for an another use of this condition.

Lemma 5.3. Let ¢ : ¥ — el xy M™ be a spacelike hypersurface in a semi-
Riemannian warped product manifold. Denoted by h = (7y)|gn : ¥™ — I the

height function of X", if o(t) = ftto f(s)ds, then

divgn (Pr(Va(h)))
= —cf(h) (Ricarn (N*, N*) +e(n = 1)(ff" = f*)(N*, N*)arm ) (N, 8;) (42)
+ by (f'(h)Hy + f(h)Hr41(N, 0y)) -

Proof. Noticing that N* = N — (N, 9;)0;, then it follows from (9) that

(N*, N*)ppn = f%(h)whﬁ (43)

Thus, putting (15), (20) and (43) into relation (21) proves (42). O

Theorem 5.2. Let M = 1 X ¢ M™ be a Lorentzian warped product whose
Riemannian fiber M™ has Ricci curvature Ric satisfying

Ricpm > (n — 1)Sl}p(ff” =) e (44)

Let ¢ : 3" — M bea complete noncompact and connected spacelike hyper-
surface with bounded second fundamental form and bounded away from the in-
finity ofﬁnﬂ. Suppose that H, and H,1 are positive for some 1 <r <n—1
and satisfy inequality (1). If h has local minimum on ¥™ and |Vh| € L(Z™),
then X" is a slice.
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Proof. In this context, letting e = —1 and hence inequality (44) assures that
the first term of the right hand side of (42) is nonnegative. Moreover, in-
equality (1) assures that the second term of the right hand side of (42) is
nonnegative. Thus, the proof follows from Theorem 1.1. O

Theorem 5.3. Let M =1 X ¢ M™ be a Riemannian warped product whose
Riemannian fiber M™ has Ricci curvature Ric satisfying

Ricpn > (n—1) Sl}p(f/2 =G ) (45)

Lety : ¥" — M bea complete noncompact and connected spacelike hyper-
surface with bounded second fundamental form and bounded away from the in-
finity ofﬁnﬂ. Suppose that H, and H,1 are positive for some 1 <r <n-—1
and satisfy inequality (30). If h has local mazimum on X" and |Vh| € L(Z"™),

then X" is a slice oanH.

Proof. In this case, letting ¢ = 1 and hence inequality (45) assures that the
first term of the right hand side of (42) is nonnegative. Thus, the proof follows
from Theorem 5.1. O
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