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Spectral characterization and Schrodinger
operator of space-like submanifolds
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Abstract

In this paper, we would like to study space-like submanifolds in a de
Sitter spaces Sg*p(l). We define and discuss three Schrédinger opera-
tors Ly, Lr, Lr/y and obtain some spectral characterizations of totally
umbilical space-like submanifolds in terms of the first eigenvalue of the
Schrodinger operators Ly, Lr and Ly, respectively.

1 Introduction

Let M}*P(c) be an (n + p)-dimensional connected semi-Riemannian manifold
of constant curvature ¢ whose index is p. It is called an indefinite space form
of index p and simply a space form when p = 0. If ¢ > 0, we call it a de Sitter
space of index p, and denote it by S;}“’(c). A submanifold in a de Sitter space
is said to be space-like if the induced metric on the submanifold is positive
definite. It was pointed out by Marsden and Tipler [11] and Stumbles [16] that
space-like hypersurfaces with constant mean curvature in arbitrary space-time
get interested in the relativity theory. Therefore, space-like hypersurfaces in a
de Sitter space have recently been investigated by many mathematicians from
both physics and mathematical points of view, see for instance [1, 4, 10, 12].
We know that hypersurfaces with constant mean curvature in a Rieman-
nian manifold M™*(c) of constant sectional curvature c¢ are critical points of
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the area functional under variations that keep constant a certain volume func-
tion. Barbosa, do Carmo and Eschenburg [3] studied the stability for hyper-
surfaces of constant mean curvature in Riemannian manifolds. In analogy with
the case of constant mean curvature, questions of stability can be considered
for hypersurfaces with constant scalar curvature. In [2], Alencar, do Carmo
and Colares extended the study of stability to hypersurfaces with constant
scalar curvature. As researched in C. Wu [17] for minimal submanifolds in a
unit sphere, A.A. Barros et al. [6] and Cheng [8] studied the first eigenvalues
of some Schrédinger operators of submanifolds with parallel mean curvature
vector or hypersurfaces with constant scalar curvature in a unit sphere and
obtained some spectral characterizations of so called Veronese surface, Clifford
torus or Riemannian product S™(r) x S* ™ (v/1—7r2), 1 <m <n-—1.

In connection with the stability for hypersurfaces with constant mean cur-
vature or constant scalar curvature in Riemannian manifolds, Barbosa-Oliker
[4] and Liu-Deng [10] studied the stability for space-like hypersurfaces with
constant mean curvature or constant scalar curvature in Lorentz manifolds.
From Barbosa-Oliker [4] and [5], we know that constant mean curvature space-
like hypersurfaces are solutions to a variational problem. In fact, they are crit-
ical points of the area functional for variations that leave constant a certain
volume function.

In the present paper, we would like to study space-like submanifolds in a de
Sitter spaces Sg+p(l). We will define and discuss three Schrodinger operators
Ly, Lg, Lr/y and obtain some spectral characterizations of totally umbilical
space-like submanifolds in terms of the first eigenvalue of the Schrodinger
operators Ly, Lg and Ly, respectively.

Take an immersion ¢ : M" — S;}“’(l) and choose a suitable pseudo-
orthonormal frame field {ey, ..., en, €nt1,.. -, enﬂ,} adapted to the immersion
¢ and its associated coframe {wr,...,wn,Wnt1,...,Wntpt- Now recall the
symmetric traceless tensor introduced by Cheng and Yau in [9], which may
be given by ¢ = Zi)jﬂd);}‘jwi ® wj ® we, where 4,j = 1,...,n, a« = n+
L...,n+p, ¢ = hi — LerH*6;;, H* = (hg;) and h; are the coefficients
of the second fundamental form in the direction e,. It is easy to verify that
161> =32, .o (0%)? = |h|> = nH?, where |h|*> denotes the squared norm of the
second fundamental form of M"™. We know that |¢|> = 0 if and only if M™ is
totally umbilical.

Before announcing our main results, we introduce three Schrédinger oper-
ators:

n(n —2)

Vn(n—1)

1 1— H?
Lp=-0 4 2 1.2
R +an|¢>| g |67, (1.2)

Ly = —A+%\¢|27 H|4), (1.1)
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1 1—H?
L =—-L+ 44 2 1.
R/H an|¢| H lo1°, (1.3)

where A is the Laplace-Beltrami operator, [J is the differential operator O f =
Sori(nH; — bt fiy and L = O + (k/2n)A is a differential operator
defined by the linear combination of A and .

Now we state the spectral characterizations of totally umbilical space-like
submanifolds in terms of the first eigenvalue of the Schrédinger operators Ly,

Lg and Lg,g as follows:

Theorem 1.1. Let M™ be an n-dimensional compact orientable space-
like submanifold in an (n+p)-dimensional de Sitter space Sy P (1) with nonzero

parallel mean curvature vector field. Denote by /\1LH the first eigenvalue of the
Schrédinger operator Lyr. If NF# > —n(1— H?), then M™ is totally umbilical.

Theorem 1.2. Let M™ be an n-dimensional compact orientable space-like
submanifold in an (n+p)-dimensional de Sitter space Sy*P(1) with constant
scalar curvature n(n — 1)R, R < 1 and parallel normalized mean curvature
vector field. Denote by AlLR the first eigenvalue of the Schrodinger operator
Lgr. Then )\fR < —"=2_ max|¢|®, and )\fR = —2=2_max|¢|® if and only

vn(n—1) n(n—1)

if M™ is totally umbilical.

Theorem 1.3. Let M™ be an n-dimensional compact orientable space-like
submanifold in an (n+p)-dimensional de Sitter space SpP(1) with parallel
normalized mean curvature vector field and let the scalar curvature n(n —1)R
be proportional to the mean curvature H of M™, that is, there exists a con-
stant k such that n(n — 1)R = kH. Denote by )\fR/H the first eigenvalue

of the Schréodinger operator Lp . Then AlLR/H < %max\qﬁﬁ and

Ao n-2 max || if and only if M™ is totally umbilical.

1 - v/ n(n—1)

Corollary 1.4. Let M™ be an n-dimensional compact space-like hypersur-
face in an (n+ 1)-dimensional de Sitter space ST (1) and let the scalar cur-
vature n(n—1)R be proportional to the mean curvature H of M™, that is, there

exists a constant k such that n(n—1)R = kH. Denote by AlLR/H the first eigen-

value of the Schridinger operator Lp p. Then /\1LR/H < ﬁmax\qﬁﬁ,
and )\fR/H = —"=2_max|¢|® if and only if M™ is totally umbilical.

v/n(n—1)

Remark 1.5. If p = 1, then Theorem 1.1 and Theorem 1.2 reduce to
Theorem 1 and Theorem 2 of [15], respectively. Therefore, we generalize the
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previous results obtained by [15] to general submanifolds with higher codi-
mension.

2 Preliminaries

Let Sp+?(1) be an (n + p)-dimensional de Sitter space with index p and con-
stant curvature 1 . Let M™ be an n-dimensional connected space-like sub-
manifold immersed in S}*P(1). We choose a local field of semi-Riemannian
orthonormal frames ey, ..., e,1p in S;P(1) such that at each point of M™",
e1, .- .,en span the tangent space of M™ and form an orthonormal frame there.
We use the following convention on the range of indices:

1<ABC,...<n+p; 1<ijk,...<n, n+1<a,8,7,...<n+p.

Let wi,...,wnyp be its dual frame field so that the semi-Riemannian metric
of SPFP(1) is given by ds* = wa N §5Awi, where ¢; = 1 and
3 (6%

eq = —1. Then the structure equations of S;L"’p(l) are given by

de:ZEBwAB/\wB, wap +wpa =0, (2.1)
B
1
dwap = ZECOJAC Nwep — 5 Z ecepKapepwe Awp, (2.2)
c C,D

Kapcp = €4eB(0acdBp — 0AaDOBC)- (2.3)

If we restrict these form to M™, then
we=0, n+l1<a<n+p. (2.4)
From Cartan’s Lemma we have

Wa, = »_hSwj, R =hS;. (2.5)
J
The connection forms of M™ are characterized by the structure equations

dw; = Zwij ANwj, wij +wjp = 0, (26)
j=1

1
dwij = Zwik Nwgj — 5 Z Rijklwk N wy, (27)
% Kl
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Rijrr = (600 — adjn) — > _(hiuhS — hhS), (2-8)

«

where R;ji; are the components of the curvature tensor of M™.
Denote by h the second fundamental form of M™. Then

h= Z hiw; ® wj ® eq. (2.9)
i,J,Q

Denote by &, H and |h|? the mean curvature vector field, the mean curva-
ture and the squared norm of the second fundamental form of M™. Then they
are defined by

E= -3 ea, H=lél= - [S R 0P = 3% (210)
* ‘ a g ij,a

Moreover, the normal curvature tensor R,gyi, the Ricci curvature tensor
R;j and the scalar curvature n(n — 1)R are expressed as

Rapr = Z( (/:mhfizl B ?mhfizk)v (2.11)

m

Rig = (n— )6 — Y (O hi)hs + Y hshS, (2.12)
e} l a,g

n(n — 1R =n(n—1)+ |h|* —n*H?, (2.13)
where R is the normalized scalar curvature.
Define the first and the second covariant derivatives of hf;, say hf}, and
h%kl by
D hgwn = dhS + Y M + > hSywki — Y hwa, (2.14)
k k k B

Z h%klwl = dh?jk + Z h%jkwmi + Z Rmg + Z h?jmwmk — Z hfjkwga.
l m m m B

(2.15)
We obtain the Codazzi equation by straightforward computations

ik = ik (2.16)

It follows that the Ricci identities hold

h?jkl — ?jlk = Z h?mijkl + Z h?mRmik:l + Z hiﬂjRaﬁkl' (2.17)
B

m m
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The Laplacian of h; is defined by Ahg; = 3" hiy, . From (2.17) we obtain
k

for any a,m+1 < a < n+p,

Ah% = Z hkkzg + Z hkm mijk + Z hszmkjk + Z hszaﬁJk (218)
k k,m k,m k,B

In the case of the mean curvature vector £ has no zero, we know that £/H is
a normal vector field defined globally on M™. We define |u|? and |7|? by

> = (st = Hoy)?, = >0 > (kg (2.19)

,] a>n+1 4,5

respectively. Then |u|? and |7|? are functions defined on M™ globally, which
do not depend on the choice of the orthonormal frame {es,...,e,}. We have

P = nH? + ] + |72, (2.20)

Since the normalized mean curvature vector field is parallel, we choose €, =
&/H, then

trHm Y — Zhn+1 —nH, trH® = Zh?i =0 (a>n+2). (2.21)

From (2.8), (2.11), (2.18) and (2.21), by a direct calculation we have (see [7])

1
5A|h\2 =3 (h$y) +Zh”+1 (nH)ij + ne(|h|? — nH?) (2.22)
i,5,k,a
anZtr (H2Hpni1) + Y _[tr(HoHpg))?
o
+Y  N(HoHg — HgH,),
o

where H, denote the matrix (hf;) for all a, N(A) = tr(AA"), for all matrix
A= (aij).

We need the following Lemma

Lemma 2.1 ([13]). Let A, B be symmetric n X n matrices satisfying
AB = BA and trA =trB =0. Then

-2
trA?B| < — %2
vn(n—1)
and the equality holds if and only if (n — 1) of the eigenvalues x; of B and
the corresponding eigenvalues y; of A satisfy |z;| = (trB*)Y/2/\/n(n — 1),

(trA%)(trB%)1/2, (2.23)



SPECTRAL CHARACTERIZATION AND SCHRODINGER OPERATOR 247

zix; >0, y; = (trA2)Y2/\/n(n - 1).

We consider a differential operator [] acting on function f defined by

Df = Z (nHéU - h?j+1)fij7 (224)

ij=1
where df = " fiwi, > fijw; = dfi + Y fjwj;. From Cheng and Yau [9], we

7 %,
know that the operator][l is self—adjoin’g if M is compact.

We can prove that [ is a elliptic operator. In fact, we choose a local
orthonormal frame field {ey,...,e,} such that hs*' = Aid;;. Since R < 1,
from (2.13), we have |h|? < n?H?2. If there is one i such that nH — \; < 0,
then n?H? < A\? < |h|?, this is a contradiction. Thus, we have nH — \; > 0
for any 7 and the operator [ is elliptic.

From Proposition 3.6 in Section 3, we know that the differential operator
L =0+ (k/2n)A is elliptic. We also know that the Laplace-Beltrami operator

A is always elliptic. Let AX# AL® and )\fR/ 7 be the first eigenvalues of the
Schrédinger operators Ly, Lr and Ly, respectively. Since A, [J and L are
elliptic operators, from (1.1), (1.2) and (1.3), we know that Ly, L and Ly, g

are elliptic operators. We can use the min-max characterization of Al# A\L#

L
and A} as

LH _ . f n fLH(f)dU o0 n
AH = mm{ManfQ‘h” feex(M"), f# 0}, (2.25)
W fL d
ALs :mm{W; feG‘X’(M”)j;?éO}, (2.26)
R/H . n fL (f)d oo n
/\1L /e _ mm{fM anRf/;Idv U; feex (M), f# o}, (2.27)

3 Proof of Theorems

We firstly prove the following:

Proposition 3.1. Let M™ be an n-dimensional space-like submanifold in
an (n + p)-dimensional de Sitter space S;+P(1). Suppose that the normalized
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mean curvature vector field is parallel. Then

O(nH) > — %n(n “ AR+ (VA2 = n?|VHP) (3.1)
+ (6 n —ni? - j%w +1ioP).

Proof. By a simple calculation and from (2.13), we obtain

O(nH) =Y (nHd;; — b5t (nH);; (3.2)
Z]
:; (n*H?) — n?|VH|? - Zh"“ (nH);

1 2_ 2 2 n+1
=— 5n(n—1)AR+§A|h| —n°|VH| —izj:hij (nH);j.

Set ¢y = he;— trH“éw and consider the symmetric tensor ¢ = > ¢% WiWj€q .

i.j,a
We easy know that ¢ is traceless and

N(®,) = N(H, )—f(trH . o2 = ZN = |h|> —nH?,  (3.3)

where @, denotes the matrix (¢}).

Since the normalized mean curvature vector field is parallel, choosing
ent1 = &/H, from (2.21), we infer that

Gt = Wi — Héij, 6% = hi, (a > n+2),
N((I)ﬂ-l-l) = N(Hn+1) - nsz N((pa) = N(ch>7 (a Z n -+ 2)7 (34)

tr(Hpy1)® = t0(®y41)® + 3HN (P4 1) + nH>.

From (2.22), (3.3) and (3.4), we have

1
FAE > 3 (e + LG )y nle— o (39

.5,k

—nHZtr (B2Pps1) + Y _[tr(Pa®s))”.
o

Since we choose e,+1 = £/H, we have wyn+1 = 0 for all a. Consequently
Ront1jk = 0, from (2.11), we have z:h“h”Jrl Zho‘ h"“7 that is,

15" Yik
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H,H,+1 = Hy+1H,. Thus ¢,9,,1 = ®,,1P,. Since matrices ®, and
®,,+1 are traceless, by Lemma 2.1, we have

n—2
(P Ppy1) 7lull¢\2 ——I¢l’, (3.6)
Z ! Vn(n—1) Vn(n—1)
where the following
uf* < b —nH? = |9, (3.7)

is used. By the Cauchy—Schwarz inequality, we have

1
Sl > D@ > Lt 55)
a,B

From (3.5), (3.6) and (3.8), we have

%A|h\2 > > (hey)? Zh”“ (nH); (3.9)
1,5,k
20, 2 n(n —2) Lo
+[¢]"{n —nH mHWHpMﬁI 2

From (3.2) and (3.9), we see that (3.1) is true.
We state a Proposition which can be proved by making use of the similar
method due to C. Wu [17] or A.A. Barros et al. [6] for Riemannian manifold.

Proposition 3.2. Let M™ be an n-dimensional space-like submanifold in
an (n+p)-dimensional de Sitter space S;*P(1). Then there holds the following

4In|o
wio < Mg (3.10)
From the author [14], we also have the following:

Proposition 3.3. Let M™ be an n-dimensional space-like submanifold in
an (n + p)-dimensional de Sitter space Sy+?(1). Suppose that the normalized
scalar curvature R is constant and R < 1. Then

|Vh|? > n?|VH|?. (3.11)

Remark 3.4. If |Vh|? = n?|VH|? and R < 1, from (2.13) and the proof
of Proposition 3.3 (see [14]), we easily see that

0<n*(n—1)(1—R)|VH|*> < S(|Vh|? = n?|VH?).
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Thus, we have VH = 0 and H is constant.

Proof of theorem 1.1 From the definition of (2.10), we know that
H > 0. For every € > 0, from (2.25), we can introduce a smooth function
fe = /e +|®|? as the test function to estimate )\{“H. We easily have

1
2y/e +[9]?

Since we know that submanifolds with nonzero parallel mean curvature vector
field also have parallel normalized mean curvature vector field and H is nonzero
constant, from (3.9), we easily see that

1

WIVWIQ- (3.12)

Afe = A‘¢|2 -

n(n — 2)

1 2 20, _ o172 _

H|g| + }me. (3.13)

By Proposition 3.2, (3.12) and (3.13), we have
1

JeAfe :%A|¢|2 - WWWPF
2,1 2_”(”_2)H n(l — H2
>|o| {p|¢\ 7\/m\¢|+ (1-H%)}
2 1 2
+|Vo|* - NEENPE )|V\¢| |
s nn—2)H _ {2
> { lo]” — WW‘F n(1 )}
TS —1 1)

(n+2)(e +19?)
Therefore, we have

n(n —2)
Vn(n—1)

el = Mo =D g g
<= 9P (I0f — D= lol + (1 — 1))

fLuf —— fAf + {%W - H|o[} £

_ fn%’% 2
e v
1 2_n(n7) 2
+lof — SR e+ iof)
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Using (2.25) with f. as a test function, we have

A?{/ @+meU:A?j/ Pdv< [ fLu(f)dv (3.14)
n J\/[ n

Mmn

_ 2bige M 2DH, L Ea
< [ oo = Eslol 41— )

_ _Lﬂz 20y
L O e 1T

/ (o - ’ﬁ?gﬂ¢m-+w%m

Letting ¢ — oo in (3.14), we get
2
AfH/i WPdvg—ﬁdl—[ﬂ)/,|¢FMMi/ ———|Vé|?dv.  (3.15)
n Mn M N +2
Since AL#" > —n(1 — H?), from (3.15), we have |[V¢[> = 0. Proposition

3.2 implies that V|¢|? = 0, that is, |¢|? is constant. Therefore, we know
that l|(;S|2 - "("72H|¢| is constant. From (1.1), we obtain that A7 =

Ve
Slol* — \/"MHMS\ So we have
—nlt - 1) < Sl - =Dl
n(n —1)

that is ) )
Yot = D) 41 - ) >0
vn(n—1)
Therefore, we know that the equalities in (3.13), (3.8), (3.7) and (2.23) hold
and ( 2)
n(n —

This implies that |¢|? = 0, that is, M™ is totally umbilical, or

ol 0
W{HW

n(n —2)
n(n —1)

In the second case, from the equalities in (3.8) and (3.7), we have |u|? = |¢|?

%wﬁ— H|§| +n(1 — H2) = 0.
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and p Y [tr(®,Pg)]? = |¢|*. Thus, we have
a,p

oI* =p{(tr®711)* + D [tr(PaPpi1)]?
a>n+1

+ Y (@ @)+ ) [(2a®p)P)

B>n+1 a,Bf>n+1

From (3.4), we have

=Dl +p Y [tr(PaPni1))?

a>n+1
+p D [t @en @)+ Y [r(Da®p)]* =0
B>n+1 a,f>n+1

Since p > 1 and all parts of the above equality are nonnegative, we have
(p—1)|¢|* = 0. Thus, |¢|*> = 0 and M™ is totally umbilical, or p = 1. If p = 1,
we know that M™ is an n-dimensional compact orientable space-like hyper-
surface in an (n+1)-dimensional de Sitter space ST+ (1) with constant mean
curvature H. From the equalities in (2.23), we infer that M™ has at most two
distinct constant principal curvatures. We conclude that M™ is totally um-
bilical from the compactness of M™. This completes the proof of Theorem 1.1.

Proof of theorem 1.2 Since n(n — 1)R is constant and R < 1, by
Proposition 3.1 and Proposition 3.3, we have

n(n — 2)
Vn(n—1)

From the assertion in Section 2, we know that the operator O is elliptic. Since
we assume that the normalized mean curvature vector e, 11 = £/ H is parallel,
we have H > 0. Thus, from (2.26), we introduce a smooth function f = H as
the test function to estimate A%, By (1.2) and (3.16), we have

O(nH) > |6 {n —nH? - ol +216P). (316)

Ly(H) = - O(H) + nipw* +(1— H?)|g[? (3.17)
e gz P2 3
< ol = 0P
1 2|2 — n—2 3
bl (= B0 = LAl
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From (2.26) and (3.17), we have

A H%dv < HLg(H)dv (3.18)
Mn Mn
n—2
< [ A _mePdv
Mn /n(n—1)
-2
< nimax\gbp H?dv.
n(n —1) Mn
Thus, we have
-2
)\ILR < T2 max 9]3.
n(n—1)

If \Fr = =2 max |¢[3, then the equalities in (3.18), (3.17), (3.16), (3.11),

v/n(n—1)
(3.8), (3.7) and (2.23) hold. Since the operator O is self-adjoint and M™ is
compact, from the equality of (3.16), we obtain that

2,1 2_”(”‘2)1{ n(l — H*\do —
. PG lof? 2ol 4 (1 — Ho =0,

This implies that |¢|?> = 0 and M™ is totally umbilical, or

"("*Q)?W +n(l— H?) =0. (3.19)

VAt 1)

In the second case, since R < 1 and the equality holds in (3.11), from the
Remark 3.4, we know that H is constant. From the equalities of (3.8), (3.7)
and (2.23), by the same assertion in the proof of Theorem 1.1, we know that
M™ is an n-dimensional compact orientable space-like hypersurface in de Sitter
space ST (1) with at most two distinct constant principal curvatures. We
conclude that M™ is totally umbilical from the compactness of M™. If M™ is
totally umbilical, that is [¢| = 0, from (1.2), we know that AL* = TLT%H|¢|4 +

%WP = 0. This completes the proof of Theorem 1.2.
We may also prove the following;:

1
~|o|* —
p

Proposition 3.5. Let M™ be an n-dimensional space-like submanifold
in an (n + p)-dimensional de Sitter space S;p*P(1). If the scalar curvature
n(n—1)R is proportional to the mean curvature H of M™, that is, there exists
a constant k such that n(n — 1)R = kH, then we have

|Vh|? > n?|VH|?. (3.20)
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In particular, if [Vh|> = n?|VH|?, then H is constant.

Proof. For a fixed «, we choose a orthonormal frame field {e;} at each

point on M™ so that hfy = A{d;;. Then we have |h]> = 37 (h$)* # 0. In
i,J,Q

fact, if [h]?2 = D2(A?)? = 0 at a point of M", then \¥ = 0 for all i and « at

this point. Thié implies H = 0 and R = 0 at this point. From (2.13), we have

n(n — 1) = 0. This is impossible. From (2.13) and n(n — 1)R = kH, we have

KV H = —202HV,H +2 Y hish,,

Jiksox
k [ [e3% [0 [}
(5 +n2H)2|VH|2 = Z(Z hkj kji)2 < Z(hij)2 Z ( ijk)2 = ‘h|2|Vh|2-
i gk i,J,a ,5,k,a

Thus, we have
1

k
VAP = n?|VH]? 2{(5 +n?H)* = n* ) VA o

(k)? s 2 1
= - 1)]|IVH > 0.
[ i +n’(n—1)]|VH] Ok >0
If |[Vh|? = n?|VH|?, we easily see that VH = 0 and H is constant. The proof

of Proposition 3.5 is completed.

Proposition 3.6. Let M™ be an n-dimensional space-like submanifold in
a de Sitter space Sy*P(1). If n(n—1)R = kH and H > 0, then the differential
operator L = O+ (k/2n)A is elliptic.

Proof. For a fixed «, we choose a local orthonormal frame field {ey,...,e,}
at each point on M™ so that h{; = A{d;;. From H > 0, nH = ST and

>hE=0forn+2<a<n+pon M", we have, for any 4
n4+1 _ n+1 n+1
(nH — NPT 4 k/2n) =Y AT = A
J

+ (1/2)[2@;*)2 —n?H? +n(n—1)]/(nH)
> Z )\}l-‘rl o )\;L-‘rl

+ (/2D (5 - (Z NS 4 n(n = 1))/ (nH)

J J
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:[(Z )\;}Jrl)? _ )\;:wrl(z )\;}+1)

— (1/2) Y AN 4 (1/2)n(n - 1)) (nH) T
l#j
=D (1/2) Y aptiapt
J I#35
- A?“(Z N 4 (1/2)n(n = D) (nH)

=D+ (1/2) Y0 NI+ (1/2)n(n — 1] (nH) 7

J#i 1%

1,774
=1/ A2+ QAT 4 n(n - 1)](nH) "' > 0.
J#i J#i

Thus, L is an elliptic operator. The proof of Lemma 3.6 is completed.

Proof of theorem 1.3 Since n(n — 1)R = kH, by Proposition 3.1 and
Proposition 3.5, we have

n(n — 2)

vn(n—1)

From Proposition 3.6, we know that the operator L is elliptic. Since we assume
that the normalized mean curvature vector e,+1 = &/H is parallel, we have
H > 0. Thus, from (2.27), we introduce a smooth function f = H as the test

function to estimate )\fR/H. By (1.3) and (3.21), we have

L(nH) > |6 {n — nH? - H|g| + ]%|¢>|2}. (3.21)

1

Lrp(H)=—L(H) + 77p|<1>|4 +(1—H)o (3.22)

AV R N WAL I S = PAE

<= el = @ Hf + o

1y 72\ 412 — n—2 3

+ ool + (L= HJof = —T=Hlof”

Thus

Ao [ < /Mn HLp s (H)dv (3.23)

n—2
< ———H?|¢|*dv
Mn \/n(nf 1) | |
—2
" max|¢|3/ H?dv.
MTL

= vn(n—1)
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We have \™/" < \/T%maxw. If ALF/H = \/%maxw, then the
equalities in (3.23), (3.22), (3.21), (3.20), (3.8), (3.7) and (2.23) hold. By the

same method of the proof of Theorem 1.2, we know that if and only if M™ is
totally umbilical. This completes the proof of Theorem 1.3.
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