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Spectral characterization and Schrödinger
operator of space-like submanifolds

Shichang Shu and Tianmin Zhu

Abstract

In this paper, we would like to study space-like submanifolds in a de
Sitter spaces Sn+p

p (1). We define and discuss three Schrödinger opera-
tors LH , LR, LR/H and obtain some spectral characterizations of totally
umbilical space-like submanifolds in terms of the first eigenvalue of the
Schrödinger operators LH , LR and LR/H respectively.

1 Introduction

Let Mn+p
p (c) be an (n+ p)-dimensional connected semi-Riemannian manifold

of constant curvature c whose index is p. It is called an indefinite space form
of index p and simply a space form when p = 0. If c > 0, we call it a de Sitter
space of index p, and denote it by Sn+pp (c). A submanifold in a de Sitter space
is said to be space-like if the induced metric on the submanifold is positive
definite. It was pointed out by Marsden and Tipler [11] and Stumbles [16] that
space-like hypersurfaces with constant mean curvature in arbitrary space-time
get interested in the relativity theory. Therefore, space-like hypersurfaces in a
de Sitter space have recently been investigated by many mathematicians from
both physics and mathematical points of view, see for instance [1, 4, 10, 12].

We know that hypersurfaces with constant mean curvature in a Rieman-
nian manifold Mn+1(c) of constant sectional curvature c are critical points of
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the area functional under variations that keep constant a certain volume func-
tion. Barbosa, do Carmo and Eschenburg [3] studied the stability for hyper-
surfaces of constant mean curvature in Riemannian manifolds. In analogy with
the case of constant mean curvature, questions of stability can be considered
for hypersurfaces with constant scalar curvature. In [2], Alencar, do Carmo
and Colares extended the study of stability to hypersurfaces with constant
scalar curvature. As researched in C. Wu [17] for minimal submanifolds in a
unit sphere, A.A. Barros et al. [6] and Cheng [8] studied the first eigenvalues
of some Schrödinger operators of submanifolds with parallel mean curvature
vector or hypersurfaces with constant scalar curvature in a unit sphere and
obtained some spectral characterizations of so called Veronese surface, Clifford
torus or Riemannian product Sm(r)× Sn−m(

√
1− r2), 1 ≤ m ≤ n− 1.

In connection with the stability for hypersurfaces with constant mean cur-
vature or constant scalar curvature in Riemannian manifolds, Barbosa-Oliker
[4] and Liu-Deng [10] studied the stability for space-like hypersurfaces with
constant mean curvature or constant scalar curvature in Lorentz manifolds.
From Barbosa-Oliker [4] and [5], we know that constant mean curvature space-
like hypersurfaces are solutions to a variational problem. In fact, they are crit-
ical points of the area functional for variations that leave constant a certain
volume function.

In the present paper, we would like to study space-like submanifolds in a de
Sitter spaces Sn+pp (1). We will define and discuss three Schrödinger operators
LH , LR, LR/H and obtain some spectral characterizations of totally umbilical
space-like submanifolds in terms of the first eigenvalue of the Schrödinger
operators LH , LR and LR/H respectively.

Take an immersion ψ : Mn → Sn+pp (1) and choose a suitable pseudo-
orthonormal frame field {e1, . . . , en, en+1, . . . , en+p} adapted to the immersion
ψ and its associated coframe {ω1, . . . , ωn, ωn+1, . . . , ωn+p}. Now recall the
symmetric traceless tensor introduced by Cheng and Yau in [9], which may
be given by φ =

∑
i,j,α φ

α
ijωi ⊗ ωj ⊗ ωα, where i, j = 1, . . . , n, α = n +

1, . . . , n + p, φαij = hαij − 1
n trHαδij , H

α = (hαij) and hαij are the coefficients
of the second fundamental form in the direction eα. It is easy to verify that
|φ|2 =

∑
i,j,α(φαij)

2 = |h|2 − nH2, where |h|2 denotes the squared norm of the

second fundamental form of Mn. We know that |φ|2 ≡ 0 if and only if Mn is
totally umbilical.

Before announcing our main results, we introduce three Schrödinger oper-
ators:

LH = −∆ +
1

p
|φ|2 − n(n− 2)√

n(n− 1)
H|φ|, (1.1)

LR = −� +
1

npH
|φ|4 +

1−H2

H
|φ|2, (1.2)
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LR/H = −L+
1

npH
|φ|4 +

1−H2

H
|φ|2, (1.3)

where ∆ is the Laplace-Beltrami operator, � is the differential operator �f =∑n
i,j=1(nHδij − hn+1

ij )fij and L = � + (k/2n)∆ is a differential operator
defined by the linear combination of ∆ and �.

Now we state the spectral characterizations of totally umbilical space-like
submanifolds in terms of the first eigenvalue of the Schrödinger operators LH ,
LR and LR/H as follows:

Theorem 1.1. Let Mn be an n-dimensional compact orientable space-
like submanifold in an (n+p)-dimensional de Sitter space Sn+pp (1) with nonzero

parallel mean curvature vector field. Denote by λLH
1 the first eigenvalue of the

Schrödinger operator LH . If λLH
1 ≥ −n(1−H2), then Mn is totally umbilical.

Theorem 1.2. Let Mn be an n-dimensional compact orientable space-like
submanifold in an (n+p)-dimensional de Sitter space Sn+pp (1) with constant
scalar curvature n(n − 1)R, R < 1 and parallel normalized mean curvature
vector field. Denote by λLR

1 the first eigenvalue of the Schrödinger operator
LR. Then λLR

1 ≤ n−2√
n(n−1)

max |φ|3, and λLR
1 = n−2√

n(n−1)
max |φ|3 if and only

if Mn is totally umbilical.

Theorem 1.3. Let Mn be an n-dimensional compact orientable space-like
submanifold in an (n+p)-dimensional de Sitter space Sn+pp (1) with parallel
normalized mean curvature vector field and let the scalar curvature n(n− 1)R
be proportional to the mean curvature H of Mn, that is, there exists a con-

stant k such that n(n − 1)R = kH. Denote by λ
LR/H

1 the first eigenvalue

of the Schrödinger operator LR/H . Then λ
LR/H

1 ≤ n−2√
n(n−1)

max |φ|3, and

λ
LR/H

1 = n−2√
n(n−1)

max |φ|3 if and only if Mn is totally umbilical.

Corollary 1.4. Let Mn be an n-dimensional compact space-like hypersur-
face in an (n+ 1)-dimensional de Sitter space Sn+1

1 (1) and let the scalar cur-
vature n(n−1)R be proportional to the mean curvature H of Mn, that is, there

exists a constant k such that n(n−1)R = kH. Denote by λ
LR/H

1 the first eigen-

value of the Schrödinger operator LR/H . Then λ
LR/H

1 ≤ n−2√
n(n−1)

max |φ|3,

and λ
LR/H

1 = n−2√
n(n−1)

max |φ|3 if and only if Mn is totally umbilical.

Remark 1.5. If p = 1, then Theorem 1.1 and Theorem 1.2 reduce to
Theorem 1 and Theorem 2 of [15], respectively. Therefore, we generalize the
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previous results obtained by [15] to general submanifolds with higher codi-
mension.

2 Preliminaries

Let Sn+pp (1) be an (n+ p)-dimensional de Sitter space with index p and con-
stant curvature 1 . Let Mn be an n-dimensional connected space-like sub-
manifold immersed in Sn+pp (1). We choose a local field of semi-Riemannian
orthonormal frames e1, . . . , en+p in Sn+pp (1) such that at each point of Mn,
e1, . . . , en span the tangent space of Mn and form an orthonormal frame there.
We use the following convention on the range of indices:

1 ≤ A,B,C, . . . ≤ n+ p; 1 ≤ i, j, k, . . . ≤ n, n+ 1 ≤ α, β, γ, . . . ≤ n+ p.

Let ω1, . . . , ωn+p be its dual frame field so that the semi-Riemannian metric
of Sn+pp (1) is given by ds2 =

∑
i

ω2
i −

∑
α
ω2
α =

∑
A

εAω
2
A, where εi = 1 and

εα = −1. Then the structure equations of Sn+pp (1) are given by

dωA =
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0, (2.1)

dωAB =
∑
C

εCωAC ∧ ωCB −
1

2

∑
C,D

εCεDKABCDωC ∧ ωD, (2.2)

KABCD = εAεB(δACδBD − δADδBC). (2.3)

If we restrict these form to Mn, then

ωα = 0, n+ 1 ≤ α ≤ n+ p. (2.4)

From Cartan’s Lemma we have

ωαi
=
∑
j

hαijωj , hαij = hαji. (2.5)

The connection forms of Mn are characterized by the structure equations

dωi =

n∑
j=1

ωij ∧ ωj , ωij + ωji = 0, (2.6)

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, (2.7)
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Rijkl = (δikδjl − δilδjk)−
∑
α

(hαikh
α
jl − hαilhαjk), (2.8)

where Rijkl are the components of the curvature tensor of Mn.
Denote by h the second fundamental form of Mn. Then

h =
∑
i,j,α

hαijωi ⊗ ωj ⊗ eα. (2.9)

Denote by ξ,H and |h|2 the mean curvature vector field, the mean curva-
ture and the squared norm of the second fundamental form of Mn. Then they
are defined by

ξ =
1

n

∑
α

(
∑
i

hαii)eα, H = |ξ| = 1

n

√∑
α

(
∑
i

hαii)
2, |h|2 =

∑
i,j,α

(hαij)
2. (2.10)

Moreover, the normal curvature tensor Rαβkl, the Ricci curvature tensor
Rik and the scalar curvature n(n− 1)R are expressed as

Rαβkl =
∑
m

(hαkmh
β
ml − h

α
lmh

β
mk), (2.11)

Rik = (n− 1)δik −
∑
α

(
∑
l

hαll)h
α
ik +

∑
α,j

hαijh
α
jk, (2.12)

n(n− 1)R = n(n− 1) + |h|2 − n2H2, (2.13)

where R is the normalized scalar curvature.
Define the first and the second covariant derivatives of hαij , say hαijk and

hαijkl by∑
k

hαijkωk = dhαij +
∑
k

hαikωkj +
∑
k

hαjkωki −
∑
β

hβijωβα, (2.14)

∑
l

hαijklωl = dhαijk+
∑
m

hαmjkωmi+
∑
m

hαimkωmj +
∑
m

hαijmωmk−
∑
β

hβijkωβα.

(2.15)
We obtain the Codazzi equation by straightforward computations

hαijk = hαikj . (2.16)

It follows that the Ricci identities hold

hαijkl − hαijlk =
∑
m

hαimRmjkl +
∑
m

hαjmRmikl +
∑
β

hβijRαβkl. (2.17)
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The Laplacian of hαij is defined by ∆hαij =
∑
k

hαijkk. From (2.17) we obtain

for any α, n+ 1 ≤ α ≤ n+ p,

∆hαij =
∑
k

hαkkij +
∑
k,m

hαkmRmijk +
∑
k,m

hαimRmkjk +
∑
k,β

hβikRαβjk. (2.18)

In the case of the mean curvature vector ξ has no zero, we know that ξ/H is
a normal vector field defined globally on Mn. We define |µ|2 and |τ |2 by

|µ|2 =
∑
i,j

(hn+1
ij −Hδij)2, |τ |2 =

∑
α>n+1

∑
i,j

(hαij)
2, (2.19)

respectively. Then |µ|2 and |τ |2 are functions defined on Mn globally, which
do not depend on the choice of the orthonormal frame {e1, . . . , en}. We have

|h|2 = nH2 + |µ|2 + |τ |2. (2.20)

Since the normalized mean curvature vector field is parallel, we choose en+1 =
ξ/H, then

trHn+1 =
∑
i

hn+1
ii = nH, trHα =

∑
i

hαii = 0 (α ≥ n+ 2). (2.21)

From (2.8), (2.11), (2.18) and (2.21), by a direct calculation we have (see [7])

1

2
∆|h|2 =

∑
i,j,k,α

(hαijk)2 +
∑
i,j

hn+1
ij (nH)ij + nc(|h|2 − nH2) (2.22)

− nH
∑
α

tr(H2
αHn+1) +

∑
α,β

[tr(HαHβ)]2

+
∑
α,β

N(HαHβ −HβHα),

where Hα denote the matrix (hαij) for all α, N(A) = tr(AAt), for all matrix
A = (aij).

We need the following Lemma

Lemma 2.1 ([13]). Let A,B be symmetric n × n matrices satisfying
AB = BA and trA = trB = 0. Then

|trA2B| ≤ n− 2√
n(n− 1)

(trA2)(trB2)1/2. (2.23)

and the equality holds if and only if (n − 1) of the eigenvalues xi of B and
the corresponding eigenvalues yi of A satisfy |xi| = (trB2)1/2/

√
n(n− 1),
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xixj ≥ 0, yi = (trA2)1/2/
√
n(n− 1).

We consider a differential operator � acting on function f defined by

�f =
∑
i,j=1

(nHδij − hn+1
ij )fij , (2.24)

where df =
∑
i

fiωi,
∑
i,j

fijωj = dfi +
∑
j

fjωji. From Cheng and Yau [9], we

know that the operator � is self-adjoint if M is compact.
We can prove that � is a elliptic operator. In fact, we choose a local

orthonormal frame field {e1, . . . , en} such that hn+1
ij = λiδij . Since R < 1,

from (2.13), we have |h|2 < n2H2. If there is one i such that nH − λi ≤ 0,
then n2H2 ≤ λ2i ≤ |h|2, this is a contradiction. Thus, we have nH − λi > 0
for any i and the operator � is elliptic.

From Proposition 3.6 in Section 3, we know that the differential operator
L = �+(k/2n)∆ is elliptic. We also know that the Laplace-Beltrami operator

∆ is always elliptic. Let λLH
1 , λLR

1 and λ
LR/H

1 be the first eigenvalues of the
Schrödinger operators LH , LR and LR/H respectively. Since ∆, � and L are
elliptic operators, from (1.1), (1.2) and (1.3), we know that LH , LR and LR/H
are elliptic operators. We can use the min-max characterization of λLH

1 , λLR
1

and λ
LR/H

1 , as

λLH
1 = min

{∫
Mn fLH(f)dv∫

Mn f2dv
; f ∈ C∞(Mn), f 6≡ 0

}
, (2.25)

λLR
1 = min

{∫
Mn fLR(f)dv∫

Mn f2dv
; f ∈ C∞(Mn), f 6≡ 0

}
, (2.26)

λ
LR/H

1 = min

{∫
Mn fLR/H(f)dv∫

Mn f2dv
; f ∈ C∞(Mn), f 6≡ 0

}
. (2.27)

3 Proof of Theorems

We firstly prove the following:

Proposition 3.1. Let Mn be an n-dimensional space-like submanifold in
an (n+ p)-dimensional de Sitter space Sn+pp (1). Suppose that the normalized
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mean curvature vector field is parallel. Then

�(nH) ≥− 1

2
n(n− 1)∆R+ (|∇h|2 − n2|∇H|2) (3.1)

+ |φ|2{n− nH2 − n(n− 2)√
n(n− 1)

H|φ|+ 1

p
|φ|2}.

Proof. By a simple calculation and from (2.13), we obtain

�(nH) =
∑
i,j

(nHδij − hn+1
ij )(nH)ij (3.2)

=
1

2
∆(n2H2)− n2|∇H|2 −

∑
i,j

hn+1
ij (nH)ij

=− 1

2
n(n− 1)∆R+

1

2
∆|h|2 − n2|∇H|2 −

∑
i,j

hn+1
ij (nH)ij .

Set φαij = hαij− 1
n trHαδij and consider the symmetric tensor φ =

∑
i,j,α

φαijωiωjeα.

We easy know that φ is traceless and

N(Φα) = N(Hα)− 1

n
(trHα)2, |φ|2 =

∑
α

N(Φα) = |h|2 − nH2, (3.3)

where Φα denotes the matrix (φαij).
Since the normalized mean curvature vector field is parallel, choosing

en+1 = ξ/H, from (2.21), we infer that

φn+1
ij = hn+1

ij −Hδij , φαij = hαij , (α ≥ n+ 2),

N(Φn+1) = N(Hn+1)− nH2, N(Φα) = N(Hα), (α ≥ n+ 2), (3.4)

tr(Hn+1)3 = tr(Φn+1)3 + 3HN(Φn+1) + nH3.

From (2.22), (3.3) and (3.4), we have

1

2
∆|h|2 ≥

∑
i,j,k,α

(hαijk)2 +
∑
i,j

hn+1
ij (nH)ij + n(c−H2)|φ|2 (3.5)

− nH
∑
α

tr(Φ2
αΦn+1) +

∑
α,β

[tr(ΦαΦβ)]2.

Since we choose en+1 = ξ/H, we have ωαn+1 = 0 for all α. Consequently
Rαn+1jk = 0, from (2.11), we have

∑
i

hαijh
n+1
ik =

∑
i

hαikh
n+1
ij , that is,
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HαHn+1 = Hn+1Hα. Thus ΦαΦn+1 = Φn+1Φα. Since matrices Φα and
Φn+1 are traceless, by Lemma 2.1, we have∑

α

tr(Φ2
αΦn+1) ≤ n− 2√

n(n− 1)
|µ||φ|2 ≤ n− 2√

n(n− 1)
|φ|3, (3.6)

where the following
|µ|2 ≤ |h|2 − nH2 = |φ|2, (3.7)

is used. By the Cauchy–Schwarz inequality, we have∑
α,β

[tr(ΦαΦβ)]2 ≥
∑
α

[N(Φα)]2 ≥ 1

p
|φ|4, (3.8)

From (3.5), (3.6) and (3.8), we have

1

2
∆|h|2 ≥

∑
i,j,k,α

(hαijk)2 +
∑
i,j

hn+1
ij (nH)ij (3.9)

+ |φ|2{n− nH2 − n(n− 2)√
n(n− 1)

H|φ|+ 1

p
|φ|2}.

From (3.2) and (3.9), we see that (3.1) is true.
We state a Proposition which can be proved by making use of the similar

method due to C. Wu [17] or A.A. Barros et al. [6] for Riemannian manifold.

Proposition 3.2. Let Mn be an n-dimensional space-like submanifold in
an (n+p)-dimensional de Sitter space Sn+pp (1). Then there holds the following

|∇|φ|2|2 ≤ 4n|φ|2

n+ 2
|∇φ|2. (3.10)

From the author [14], we also have the following:

Proposition 3.3. Let Mn be an n-dimensional space-like submanifold in
an (n+ p)-dimensional de Sitter space Sn+pp (1). Suppose that the normalized
scalar curvature R is constant and R ≤ 1. Then

|∇h|2 ≥ n2|∇H|2. (3.11)

Remark 3.4. If |∇h|2 = n2|∇H|2 and R < 1, from (2.13) and the proof
of Proposition 3.3 (see [14]), we easily see that

0 ≤ n3(n− 1)(1−R)|∇H|2 ≤ S(|∇h|2 − n2|∇H|2).
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Thus, we have ∇H = 0 and H is constant.

Proof of theorem 1.1 From the definition of (2.10), we know that
H ≥ 0. For every ε > 0, from (2.25), we can introduce a smooth function
fε =

√
ε+ |φ|2 as the test function to estimate λLH

1 . We easily have

∆fε =
1

2
√
ε+ |φ|2

∆|φ|2 − 1

4(ε+ |φ|2)3/2
|∇|φ|2|2. (3.12)

Since we know that submanifolds with nonzero parallel mean curvature vector
field also have parallel normalized mean curvature vector field andH is nonzero
constant, from (3.9), we easily see that

1

2
∆|φ|2 ≥ |φ|2{n− nH2 − n(n− 2)√

n(n− 1)
H|φ|+ 1

p
|φ|2}. (3.13)

By Proposition 3.2, (3.12) and (3.13), we have

fε∆fε =
1

2
∆|φ|2 − 1

4(ε+ |φ|2)
|∇|φ|2|2

≥|φ|2{1

p
|φ|2 − n(n− 2)H√

n(n− 1)
|φ|+ n(1−H2)}

+ |∇φ|2 − 1

4(ε+ |φ|2)
|∇|φ|2|2

≥|φ|2{1

p
|φ|2 − n(n− 2)H√

n(n− 1)
|φ|+ n(1−H2)}

+ {1− n|φ|2

(n+ 2)(ε+ |φ|2)
}|∇φ|2.

Therefore, we have

fεLHfε =− fε∆fε + {1

p
|φ|2 − n(n− 2)√

n(n− 1)
H|φ|}f2ε

≤− |φ|2{1

p
|φ|2 − n(n− 2)H√

n(n− 1)
|φ|+ n(1−H2)}

− {1− n|φ|2

(n+ 2)(ε+ |φ|2)
}|∇φ|2

+ {1

p
|φ|2 − n(n− 2)√

n(n− 1)
H|φ|}(ε+ |φ|2).
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Using (2.25) with fε as a test function, we have

λLH
1

∫
Mn

(ε+|φ|2)dv = λLH
1

∫
Mn

f2ε dv ≤
∫
Mn

fεLH(fε)dv (3.14)

≤−
∫
Mn

|φ|2{1

p
|φ|2 − n(n− 2)H√

n(n− 1)
|φ|+ n(1−H2)}dv

−
∫
Mn

{1− n|φ|2

(n+ 2)(ε+ |φ|2)
}|∇φ|2dv

+

∫
Mn

{1

p
|φ|2 − n(n− 2)√

n(n− 1)
H|φ|}(ε+ |φ|2)dv.

Letting ε→∞ in (3.14), we get

λLH
1

∫
Mn

|φ|2dv ≤ −n(1−H2)

∫
Mn

|φ|2dv −
∫
Mn

2

n+ 2
|∇φ|2dv. (3.15)

Since λLH
1 ≥ −n(1 − H2), from (3.15), we have |∇φ|2 = 0. Proposition

3.2 implies that ∇|φ|2 = 0, that is, |φ|2 is constant. Therefore, we know

that 1
p |φ|

2 − n(n−2)√
n(n−1)

H|φ| is constant. From (1.1), we obtain that λLH
1 =

1
p |φ|

2 − n(n−2)√
n(n−1)

H|φ|. So we have

−n(1−H2) ≤ 1

p
|φ|2 − n(n− 2)√

n(n− 1)
H|φ|,

that is
1

p
|φ|2 − n(n− 2)√

n(n− 1)
H|φ|+ n(1−H2) ≥ 0.

Therefore, we know that the equalities in (3.13), (3.8), (3.7) and (2.23) hold
and

|φ|2{1

p
|φ|2 − n(n− 2)√

n(n− 1)
H|φ|+ n(1−H2)} = 0.

This implies that |φ|2 = 0, that is, Mn is totally umbilical, or

1

p
|φ|2 − n(n− 2)√

n(n− 1)
H|φ|+ n(1−H2) = 0.

In the second case, from the equalities in (3.8) and (3.7), we have |µ|2 = |φ|2
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and p
∑
α,β

[tr(ΦαΦβ)]2 = |φ|4. Thus, we have

|φ|4 =p{(trΦ2
n+1)2 +

∑
α>n+1

[tr(ΦαΦn+1)]2

+
∑

β>n+1

[tr(Φn+1Φβ)]2 +
∑

α,β>n+1

[tr(ΦαΦβ)]2}.

From (3.4), we have

(p− 1)|φ|4 + p
∑

α>n+1

[tr(ΦαΦn+1)]2

+ p
∑

β>n+1

[tr(Φn+1Φβ)]2 + p
∑

α,β>n+1

[tr(ΦαΦβ)]2 = 0.

Since p ≥ 1 and all parts of the above equality are nonnegative, we have
(p−1)|φ|4 = 0. Thus, |φ|2 = 0 and Mn is totally umbilical, or p = 1. If p = 1,
we know that Mn is an n-dimensional compact orientable space-like hyper-
surface in an (n+1)-dimensional de Sitter space Sn+1

1 (1) with constant mean
curvature H. From the equalities in (2.23), we infer that Mn has at most two
distinct constant principal curvatures. We conclude that Mn is totally um-
bilical from the compactness of Mn. This completes the proof of Theorem 1.1.

Proof of theorem 1.2 Since n(n − 1)R is constant and R < 1, by
Proposition 3.1 and Proposition 3.3, we have

�(nH) ≥ |φ|2{n− nH2 − n(n− 2)√
n(n− 1)

H|φ|+ 1

p
|φ|2}. (3.16)

From the assertion in Section 2, we know that the operator � is elliptic. Since
we assume that the normalized mean curvature vector en+1 = ξ/H is parallel,
we have H > 0. Thus, from (2.26), we introduce a smooth function f = H as
the test function to estimate λLR

1 . By (1.2) and (3.16), we have

LR(H) =−�(H) +
1

np
|φ|4 + (1−H2)|φ|2 (3.17)

≤− 1

np
|φ|4 − (1−H2)|φ|2 +

n− 2√
n(n− 1)

H|φ|3

+
1

np
|φ|4 + (1−H2)|φ|2 =

n− 2√
n(n− 1)

H|φ|3.
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From (2.26) and (3.17), we have

λLR
1

∫
Mn

H2dv ≤
∫
Mn

HLR(H)dv (3.18)

≤
∫
Mn

n− 2√
n(n− 1)

H2|φ|3dv

≤ n− 2√
n(n− 1)

max |φ|3
∫
Mn

H2dv.

Thus, we have

λLR
1 ≤ n− 2√

n(n− 1)
max |φ|3.

If λLR
1 = n−2√

n(n−1)
max |φ|3, then the equalities in (3.18), (3.17), (3.16), (3.11),

(3.8), (3.7) and (2.23) hold. Since the operator � is self-adjoint and Mn is
compact, from the equality of (3.16), we obtain that∫

Mn

|φ|2{1

p
|φ|2 − n(n− 2)H√

n(n− 1)
|φ|+ n(1−H2)}dv = 0.

This implies that |φ|2 = 0 and Mn is totally umbilical, or

1

p
|φ|2 − n(n− 2)H√

n(n− 1)
|φ|+ n(1−H2) = 0. (3.19)

In the second case, since R < 1 and the equality holds in (3.11), from the
Remark 3.4, we know that H is constant. From the equalities of (3.8), (3.7)
and (2.23), by the same assertion in the proof of Theorem 1.1, we know that
Mn is an n-dimensional compact orientable space-like hypersurface in de Sitter
space Sn+1

1 (1) with at most two distinct constant principal curvatures. We
conclude that Mn is totally umbilical from the compactness of Mn. If Mn is
totally umbilical, that is |φ| = 0, from (1.2), we know that λLR

1 = 1
npH |φ|

4 +
1−H2

H |φ|2 = 0. This completes the proof of Theorem 1.2.
We may also prove the following:

Proposition 3.5. Let Mn be an n-dimensional space-like submanifold
in an (n + p)-dimensional de Sitter space Sn+pp (1). If the scalar curvature
n(n−1)R is proportional to the mean curvature H of Mn, that is, there exists
a constant k such that n(n− 1)R = kH, then we have

|∇h|2 ≥ n2|∇H|2. (3.20)
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In particular, if |∇h|2 = n2|∇H|2, then H is constant.

Proof. For a fixed α, we choose a orthonormal frame field {ei} at each
point on Mn so that hαij = λαi δij . Then we have |h|2 =

∑
i,j,α

(hαij)
2 6= 0. In

fact, if |h|2 =
∑
i,α

(λαi )2 = 0 at a point of Mn, then λαi = 0 for all i and α at

this point. This implies H = 0 and R = 0 at this point. From (2.13), we have
n(n− 1) = 0. This is impossible. From (2.13) and n(n− 1)R = kH, we have

k∇iH = −2n2H∇iH + 2
∑
j,k,α

hαkjh
α
kji,

(
k

2
+ n2H)2|∇H|2 =

∑
i

(
∑
j,k,α

hαkjh
α
kji)

2 ≤
∑
i,j,α

(hαij)
2
∑
i,j,k,α

(hαijk)2 = |h|2|∇h|2.

Thus, we have

|∇h|2 − n2|∇H|2 ≥[(
k

2
+ n2H)2 − n2|h|2]|∇H|2 1

|h|2

=[
(k)2

4
+ n3(n− 1)]|∇H|2 1

|h|2
≥ 0.

If |∇h|2 = n2|∇H|2, we easily see that ∇H = 0 and H is constant. The proof
of Proposition 3.5 is completed.

Proposition 3.6. Let Mn be an n-dimensional space-like submanifold in
a de Sitter space Sn+pp (1). If n(n−1)R = kH and H > 0, then the differential
operator L = � + (k/2n)∆ is elliptic.

Proof. For a fixed α, we choose a local orthonormal frame field {e1, . . . , en}
at each point on Mn so that hαij = λαi δij . From H > 0, nH =

∑
i

hn+1
ii and∑

i

hαii = 0 for n+ 2 ≤ α ≤ n+ p on Mn, we have, for any i

(nH − λn+1
i + k/2n) =

∑
j

λn+1
j − λn+1

i

+ (1/2)[
∑
j,α

(λαj )2 − n2H2 + n(n− 1)]/(nH)

≥
∑
j

λn+1
j − λn+1

i

+ (1/2)[
∑
j

(λn+1
j )2 − (

∑
j

λn+1
j )2 + n(n− 1)]/(nH)
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=[(
∑
j

λn+1
j )2 − λn+1

i (
∑
j

λn+1
j )

− (1/2)
∑
l 6=j

λn+1
l λn+1

j + (1/2)n(n− 1)](nH)−1

=[
∑
j

(λn+1
j )2 + (1/2)

∑
l 6=j

λn+1
l λn+1

j

− λn+1
i (

∑
j

λn+1
j ) + (1/2)n(n− 1)](nH)−1

=[
∑
j 6=i

(λn+1
j )2 + (1/2)

∑
l 6=j

l,j 6=i

λn+1
l λn+1

j + (1/2)n(n− 1)](nH)−1

=(1/2)[
∑
j 6=i

(λn+1
j )2 + (

∑
j 6=i

λn+1
j )2 + n(n− 1)](nH)−1 > 0.

Thus, L is an elliptic operator. The proof of Lemma 3.6 is completed.

Proof of theorem 1.3 Since n(n − 1)R = kH, by Proposition 3.1 and
Proposition 3.5, we have

L(nH) ≥ |φ|2{n− nH2 − n(n− 2)√
n(n− 1)

H|φ|+ 1

p
|φ|2}. (3.21)

From Proposition 3.6, we know that the operator L is elliptic. Since we assume
that the normalized mean curvature vector en+1 = ξ/H is parallel, we have
H > 0. Thus, from (2.27), we introduce a smooth function f = H as the test

function to estimate λ
LR/H

1 . By (1.3) and (3.21), we have

LR/H(H) =− L(H) +
1

np
|φ|4 + (1−H2)|φ|2 (3.22)

≤− 1

np
|φ|4 − (1−H2)|φ|2 +

n− 2√
n(n− 1)

H|φ|3

+
1

np
|φ|4 + (1−H2)|φ|2 =

n− 2√
n(n− 1)

H|φ|3.

Thus

λ
LR/H

1

∫
Mn

H2dv ≤
∫
Mn

HLR/H(H)dv (3.23)

≤
∫
Mn

n− 2√
n(n− 1)

H2|φ|3dv

≤ n− 2√
n(n− 1)

max |φ|3
∫
Mn

H2dv.
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We have λ
LR/H

1 ≤ n−2√
n(n−1)

max |φ|3. If λ
LR/H

1 = n−2√
n(n−1)

max |φ|3, then the

equalities in (3.23), (3.22), (3.21), (3.20), (3.8), (3.7) and (2.23) hold. By the
same method of the proof of Theorem 1.2, we know that if and only if Mn is
totally umbilical. This completes the proof of Theorem 1.3.
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