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Reduced diophantine quadruples with the
binary recurrence Gn = AGn−1 −Gn−2

Murat ALP, Nurettin IRMAK and László SZALAY ∗

Abstract

Given a positive integer A 6= 2. In this paper, we show that there do
not exist two positive integer pairs {a, b} 6= {c, d} such that the values of
ac+ 1, ad+ 1 and bc+ 1, bd+ 1 are the terms of the sequence {Gn}n≥0

which satisfies the recurrence relation Gn = AGn−1 − Gn−2 with the
initial values G0 = 0, G1 = 1.

1 Introduction

A diophantine m-tuple is a set {a1, a2, . . . , am} of positive integers such that
aiaj+1 is a square for all 1 ≤ i < j ≤ m. This problem and its variations have
an extensive history starting with Diophantus. He found such a but rational
set: {1/16, 33/16, 68/16, 105/16}. Fermat was the first who could give an
integer quadruple, namely the set {1, 3, 8, 120}.

It is well-known that infinitely many integer diophantine quadruples ex-
ist (see, for instance [6]). A widely believed conjecture foreshadows that no
quintuple exists. The famous theorem of Dujella [4] states that there are only
finitely many quintuples.

A variant of the problem is obtained if one replaces the squares by the
terms of a given binary recurrence. For details, see articles [5], [8], [9] and
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[1]. The first cited paper investigates a general case and provides sufficient
and necessary conditions to be finitely many diophantine triples with terms
of the binary recurrent sequence. But the arguments in [5] give no hint how
to find the triples themselves. The other cited papers describe methods to
determine all diophantine triples for Fibonacci, Lucas and balancing numbers,
respectively.

This work follows the treatment of the above results, but there is an essen-
tial difference, the binary recurrence we investigate here contains a positive
integer parameter A. That happened also in [7], where we needed to include
a new, additional idea to show that there is no positive integer triple {a, b, c}
such that all of ab+1, ac+1 and bc+1 are in the sequence {Gn}n≥0 satisfies
the relation

Gn = AGn−1 −Gn−2 (1.1)

with the initial values G0 = 0, G1 = 1. Further, we investigated there the
analogous question for the quadruples {a, b, c, d} with abc+ 1 = Gw, bcd+ 1 =
Gx, cda + 1 = Gy and dab + 1 = Gz, and deduced the non-existence of such
quadruples.

In this paper, the following question linked to reduced quadruples will be
solved. Are there two integer pairs {a, b} and {c, d} such that ac+ 1, ad+ 1
and bc + 1, bd + 1 are in the sequence {G}? Note that this kind of reduced
quadruples were examined for higher power of integers in [2].

The Binet formula

Gn =
αn − βn

α− β
gives Gn explicitly, where

α =
A+
√
A2 − 4

2
and β =

A−
√
A2 − 4

2
.

We define {Hn} as the associated sequence of {Gn} by the usual manner. The
recurrence relation for {Gn} and {Hn} coincide, but the initial conditions in
the second case are H0 = 2 and H1 = A. Obviously, both {Gn} and {Hn} are
strictly monotone increasing sequences if A ≥ 3.

The main result of this work is the following.

Theorem 1. Suppose that A 6= 2 is a positive integer. Then there do not
exist sets {a, b} 6= {c, d} of positive integers such that

ac+ 1 = Gw,

ad+ 1 = Gx,

bc+ 1 = Gy, (1.2)

bd+ 1 = Gz
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hold for the positive integers w, x, y and z.

Observe that A = 2 would admit the sequence {Gn} as the sequence of
natural numbers and in this case, trivially, system (1.2) is satisfied by arbitrary
a, b and c, d. Further the case A = 1 provides the periodic sequence Gn =
0, 1, 1, 0,−1,−1, . . . . Hence (1.2) cannot be fulfilled with A = 1. Thus, in the
sequel, we assume A ≥ 3.

Prescribing the more strict conditions 1 ≤ a < c < b < d and changing the
order of the equations in system (1.2) we arrive at the so called cyclic variant
with length 4 of the problem:

ac+ 1 = Gw,

cb+ 1 = Gy,

bd+ 1 = Gz, (1.3)

da+ 1 = Gx.

Clearly, Theorem 1 immediately implies

Corollary 1. There is no solution to system (1.3) in positive integers a <
c < b < d.

Note that the auxiliary results we use in the proof of Theorem 1 are located
in the last section.

2 Proof of Theorem 1

Recall that A ≥ 3 is a positive integer, and suppose that 1 ≤ a < b and
1 ≤ c < d satisfy (1.2) with some positive integers w, x, y and z. Consequently,
w is the smallest, z is the largest subscript in (1.2). Then, 1·1+1 ≤ ac+1 = Gw
implies w ≥ 2. Subsequently, x ≥ 3.

Moreover, there is no restriction in assuming b < d. Indeed, if b = d holds
then we have a 6= c, b 6= c and system (1.2) contains ab+ 1, ac+ 1 and bc+ 1
generated by the triple {a, b, c}, and according to Theorem 1 of [7] it is not
possible. Now we split the proof into two parts.

Case 1. z ≤ 138

In this case, we show that there is an upper bound for the coefficient A of
the sequence {Gn}.

Lemma 1. If there exist a solution to system (1.2) then A ≤ A0 with a
suitable A0 ∈ N+.
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Proof. Clearly, the terms of the sequence {Gn} are monic polynomials in A
with deg(Gn(A)) = n−1 (n ≥ 1), the first few terms are G0(A) = 0, G1(A) =
1 and

G2(A) = A, G3(A) = A2 − 1, G4(A) = A3 − 2A, . . . .

Then, by (1.2)

ac =

√
(Gw(A)− 1) (Gx(A)− 1) (Gy(A)− 1)

Gz(A)− 1
(2.1)

must be integer for some A. If we divide the numerator in (2.1) by Gz(A)− 1,
then we obtain polynomials q(A) ∈ Z[A] and r(A) ∈ Z[A] such that

(Gw(A)− 1) (Gx(A)− 1) (Gy(A)− 1) = q (A) · (Gz (A)− 1) + r (A) ,

where deg (r (A)) < deg (Gz (A)).
Checking the eligible possibilities for w, x, y and z ( 2 ≤ w < x, y < z ≤

138) by computer, we observe that r(A) is never the constant zero polynomial,
further r (A) 6= 0 for A ≥ 3. Hence

(Gw(A)− 1) (Gx(A)− 1) (Gy(A)− 1)

(Gz (A)− 1)
= q (A) +

r (A)

Gz (A)− 1
(2.2)

follows, with non-vanishing fraction on the right hand side. If for some A the
left hand side of the equation (2.2) is an integer, then by q (A) ∈ N we deduce
that

r (A)

Gz (A)− 1

is so. But deg (r (A)) < deg (Gz (A)), so A cannot be large since

lim
A→∞

r (A)

Gz (A)− 1
= 0.

Consequently, |r (A) | ≥ Gz (A)− 1 must hold since r (A) 6= 0 and r(A)
Gz(A)−1 is

an integer, which proves A ≤ A0 with some positive integer A0. To obtain the
exact upper bound, we run a computer search with the conditions 2 ≤ w <
x, y < z ≤ 138, and we found that A0 = 2.

Then, by Lemma 1 we obtain immediately that there is no solution to
system (1.2) in the first case.
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Case 2. z ≥ 139

Put P = gcd (Gz − 1, Gx − 1). Obviously, d ≤ P . By Lemma 2 (3) and
(1), we have

P ≤ gcd (Gz−1Gz+1, Gx−1Gx+1)

≤
∏

i,j∈{±1}

gcd (Gz−i, Gx−j) =
∏

i,j∈{±1}

Ggcd(z−i,x−j). (2.3)

Let say that gcd (z − i, x− j) = (z − i)/kij is valid for some positive integer
kij .

Firstly, assume that kij ≥ 8, hold for all i, j ∈ {±1}. Then Lemma (3)
implies that

α
z−1
2 <

√
Gz < d ≤ P ≤ G2

z−1
8

G2
z+1
8

< α4( z+1
8 −0.83). (2.4)

If we compare the exponents of α in (2.4), we arrive at a contradiction.
In what follows, assume that kij ≤ 7 appears for some i and j. Let k

denote this kij . Further suppose that

z − i
k

=
x− j
`

holds for a suitable positive integer ` such that gcd (k, `) = 1.
Now, we investigate three separated cases related to k and `. Firstly,

assume that ` > k. Then z − i < x− j implies z = x+ 1 via x < z. Thus

α
z−1
2 < P = gcd (Gx − 1, Gx+1 − 1)

≤ gcd (Gx+1Gx−1, GxGx+2)

= gcd (Gx−1, Gx+2) ≤ G3 < α2.17,

lead to the contradiction z < 5.4.
Now assume ` = k. Since k and ` are coprimes, k = ` = 1 follows. By

z − i = x− j, we obtain z = x+ 2. According to Lemma 5,

α
z−1
2 < P = gcd (Gx+2 − 1, Gx − 1) < 2(A2 − 2)

hold, which together with Lemma 4 is a contradiction again by z < 7.1.
Lastly, assume that ` < k. We distinguish two cases. Analyse first when

the condition 2 ≤ k
` fulfils. Here

z =
k

`
(x− j) + i ≥ 2 (x− 1)− 1 = 2x− 3,
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which, together with Lemma (8) implies one of the following three possibilities:
z = 2x− 3, z = 2x− 2 and z = 2x− 1.

If z = 2x− 3 then, according to Lemma (6),

α
z−1
2 < P = gcd (Gx − 1, G2x−3 − 1) < α5.7

is valid. But, this is not possible.
Now, assume that z = 2x− 2. Then by Lemma 7, it follows that

α
z−1
2 < P = gcd (Gx − 1, G2x−2 − 1) < α6.4

which is impossible since z ≥ 139.
When z = 2x− 1 holds, then we get

αx−1.17 =
α2x−2

αx−0.83
<
G2x−1

Gx
=
bd+ 1

ad+ 1
<
b

a
,

and
a2αx−1.17 < ab = Gw − 1 < Gw < αw−0.83

follow. Thus
a2 < αw−x+0.34 ≤ α−0.66

mean again a contradiction.
Finally assume that k

` < 2. Note that it implies k ≥ 3. Taking any pair
(i0, j0) 6= (i, j), we have

z − i0 =
k

`
(x− j) + i− i0.

Now the goal is to calculate the best upper bound for P0 = gcd (z − i0, v − j0).
Starting with

P0 = gcd

(
k

`
(x− j) + i− i0, x− j0

)
≤ gcd (k (x− j) + `(i− i0), k(x− j0)) = |k(j0 − j) + `(i− i0)|,

we need to consider the last expression. The three cases j 6= j0, i 6= i0 and
j 6= j0, i = i0 and j = j0, i 6= i0 give P0 ≤ 2(k + `), 2k, 2`, respectively. Then
using inequality (2.3), it yields

α
z−1
2 ≤ P = gcd (Gx − 1, Gz − 1) <

∏
i,j∈{±1}

Ggcd(z−i,x−j)

≤ α
z+1
k +2(k+`)+2k+2`−4·0.83.



REDUCED DIOPHANTINE QUADRUPLES WITH THE BINARY
RECURRENCE Gn = AGn−1 −Gn−2 29

Going through the eligible pairs

(k, `) = (3, 2), (4, 3), (5, 3), (5, 4), (6, 5), (7, 4), (7, 5), (7, 6),

the previous argument provides the upper bounds

z < 105.1, 101.8, 98, 111.3, 124.1, 115.8, 127, 138.2,

respectively. The assertion of the second part of the proof contradicts any of
these upper bounds. Thus the proof of Theorem 2 is complete.

3 Lemmata

In the proof of Theorem 1, we needed some lemmata. Apart from the last
lemma of the list, and in part from Lemma 2, the proofs of them can be found
in [7]. In Lemma 2, the first two identities are known from [3]. Further, paper
[11] contains (3), the remaining two properties are also in [7].

Lemma 2. Assume that n,m ∈ N. Then the following identities hold.

1. gcd(Gn, Gm) = Ggcd(n,m),

2. gcd(Gn, Hm) = 1 or 2 or Hgcd(n,m), especially gcd(Gn, Hn) = 1 or 2,

3. (Gn − 1)(Gn + 1) = Gn−1Gn+1,

4. G2n+1 − 1 = GnHn+1,

5. 2Gn+m = GnHm +HnGm.

Lemma 3. Suppose that A ≥ 3. Then for all integers n ≥ 3, the inequalities

αn−1 < Gn < αn−0.83 (3.1)

and
αn < Hn < αn+0.004 (3.2)

hold.

Lemma 4. Suppose A ≥ 3. Then logα(2(A2 − 2)) < 3.1.

Lemma 5. Assume that n ≥ 3 and A ≥ 3 are integers. Then

gcd (Gn − 1, Gn−2 − 1) ≤ 2(A2 − 2).

Lemma 6. Any integer n ≥ 2 satisfies

gcd (G2n−3 − 1, Gn − 1) < α5.7
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Lemma 7. Any integer n ≥ 2 satisfies

gcd (G2n−2 − 1, Gn − 1) < α6.4

Lemma 8. All positive solutions to the system (1.2) satisfy z ≤ 2x− 1.

Proof. Considering the second and fourth equations of the system (1.2) we
have

d | gcd (Gx − 1, Gz − 1) .

Moreover Gz = bd+ 1 < d2, therefore
√
Gz < d holds. By (3.1), we obtain

√
αz−1 <

√
Gz < d < Gx < αx−0.83, (3.3)

which implies z − 1 < 2(x− 0.83), and then z ≤ 2x− 1.
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