A note on "The nearest symmetric fuzzy solution for a symmetric fuzzy linear system"

Ghassan Malkawi, Nazihah Ahmad and Haslinda Ibrahim

Abstract

This paper provides accurate approximate solutions for the symmetric fuzzy linear systems in (Allahviranloo et al.[1]).

1 Introduction

The following section reviews basic definitions of fuzzy theory, which will be needed in the sequel:

Definition 1.1. Let X be a universal set. Then, we define the fuzzy subset \tilde{A} of X by its membership function $\mu_{\tilde{A}}: X \rightarrow[0,1]$ which assigns to each element $x \in X$ a real number $\mu_{\tilde{A}}(x)$ in the interval $[0,1]$; where the value $\mu_{\tilde{A}}(x)$ represents the grade of membership of x in \tilde{A}. A fuzzy set \tilde{A} is written as:

$$
\tilde{A}=\left\{\left(x, \mu_{\tilde{A}}(x)\right), x \in X, \mu_{\tilde{A}}(x) \in[0,1]\right\}
$$

Definition 1.2. A fuzzy set \tilde{A} in $X=\mathbb{R}^{n}$ is convex fuzzy set if:

[^0]\[

$$
\begin{gathered}
\forall x_{1}, x_{2} \in X, \forall \lambda \in[0,1], \\
\mu_{\tilde{A}}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left(\mu_{\tilde{A}}\left(x_{1}\right), \mu_{\tilde{A}}\left(x_{2}\right)\right) .
\end{gathered}
$$
\]

Definition 1.3. Let \tilde{A} be a fuzzy set defined on the set of real numbers \mathbb{R}. \tilde{A} is called normal fuzzy set if there exist $x \in \mathbb{R}$ such that $\mu_{\tilde{A}}(x)=1$.

Definition 1.4. A fuzzy number is a normal and convex fuzzy set, with its membership function $\mu_{\tilde{A}}(x)$ defined in real line \mathbb{R} and piecewise continuous.

Definition 1.5. A fuzzy number $\tilde{A}=\left(a_{1}, a_{2} ; \alpha, \beta\right)_{L R}$ is said to be an $L-R$ fuzzy number, where its membership function satisfy

$$
\mu_{\tilde{A}}(x)=\left\{\begin{array}{lll}
L\left(\frac{a_{1}-x}{\alpha}\right), & x \leq a_{1} & \alpha>0 \\
1, & a_{1} \leq x \leq a_{2}, \\
R\left(\frac{x-a_{2}}{\beta}\right), & a_{2} \leq x & \beta>0
\end{array}\right.
$$

Where $a_{1} \leq a_{2}$, and α and β are the left and right spreads, respectively; and the functions $L(),. R($.$) , which are called left and right shape function,$ satisfying:
(1) $L(),. R($.$) are non-increasing from \mathbb{R}^{+}$to $[0,1]$,
(2) $L(0)=R(0)=1, \quad L(1)=R(1)=0$.

Also, if $\alpha=\beta$ and $L(x)=R(x)$ for all $x \in \mathbb{R}$ we say \tilde{A} is a symmetric L-L fuzzy number.

Definition 1.6. (Allahviranloo et al.[1]) Let the shape functions $L(),. \underset{\tilde{A}}{R(.)}$ are fixed. Consider two $L-R$ fuzzy numbers as $\tilde{A}=\left(a_{1}, a_{2} ; \alpha, \beta\right)$, and $\tilde{B}=$ $\left(b_{1}, b_{2} ; \gamma, \eta\right)$. We define the distance between \tilde{A} and \tilde{B} as follows:

$$
d(\tilde{A}, \tilde{B})=\sqrt{\frac{\left[\left(a_{1}-b_{1}\right)-(\alpha-\gamma)\right]^{2}+\left[\left(a_{2}-b_{2}\right)+(\beta-\eta)\right]^{2}+\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}}{4}} .
$$

Definition 1.7. A vector $\tilde{X}=\left(\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right)$, where $\tilde{x}_{i}, 1 \leq i \leq n$ are $L-R$ fuzzy numbers, is called an $L-R$ fuzzy vector.

Definition 1.8. (Allahviranloo et al.[1]) For two L-R fuzzy vectors $\tilde{X}=$ $\left(\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right), \tilde{Y}=\left(\tilde{y}_{1}, \tilde{y}_{2}, \ldots, \tilde{y}_{n}\right)$ we defined

$$
D_{p}(\tilde{X}, \tilde{Y})=\left(\sum_{i=1}^{n} d^{p}\left(\tilde{x}_{i}, \tilde{y}_{i}\right)\right)^{\frac{1}{p}}
$$

as distance between them, where $p \geq 1$.

2 Numerical examples

In this section we provide proposed solutions for the examples in [1].
Example 2.1. (Allahviranloo et al.[1])
According to [1], the symmetric exact solution for S - L-FLS is:

$$
\tilde{X}_{v}=\left[\begin{array}{c}
\left(x_{1}^{1}, x_{2}^{1} ; \alpha_{x}^{1}, \alpha_{x}^{1}\right) \\
\left(x_{1}^{2}, x_{2}^{2} ; \alpha_{x}^{2}, \alpha_{x}^{2}\right) \\
\left(x_{1}^{3}, x_{2}^{3} ; \alpha_{x}^{3}, \alpha_{x}^{3}\right)
\end{array}\right]=\left[\begin{array}{c}
(1,2 ; 2,2) \\
(-1,1 ; 1,1) \\
(2,4 ; 3,3)
\end{array}\right] .
$$

But \tilde{X}_{v} does not correspond to the system, for instance if $b_{1}^{1}=2$ is examined in vector \tilde{B}, we get :

$$
(-1)(2)+(-1)(1)+(1)(2)=-1,
$$

By using Definition 1.8. we produce $D_{2}\left(A \tilde{X}_{v}, \tilde{B}\right)=D_{1}\left(A \tilde{X}_{v}, \tilde{B}\right)=3$.
However, the symmetric exact solution corresponds to the system by solving the associated linear system is as follows:

$$
\begin{aligned}
& \tilde{X}_{e}=\left[\begin{array}{c}
\left(-\frac{5}{4},-\frac{1}{4} ; 2,2\right) \\
(-7,-5 ; 1,1) \\
\left(-\frac{13}{4},-\frac{5}{4} ; 3,3\right)
\end{array}\right], \\
& D_{p}\left(A \tilde{X}_{e}, \tilde{B}\right)=0, \forall p \geq 1 .
\end{aligned}
$$

Example 2.2 (Allahviranloo et al.[1])
According to[1], the nearest symmetric approximate solution is:

$$
\tilde{X}_{v}=\left[\begin{array}{c}
\left(x_{1}^{1}, x_{2}^{1} ; \alpha_{x}^{1}, \alpha_{x}^{1}\right) \\
\left(x_{1}^{2}, x_{2}^{2} ; \alpha_{x}^{2}, \alpha_{x}^{2}\right) \\
\left(x_{1}^{3}, x_{2}^{3} ; \alpha_{x}^{3}, \alpha_{x}^{3}\right)
\end{array}\right]=\left[\begin{array}{c}
(2,2, ; 2,2) \\
(0.8333,3.1667 ; 1,1) \\
(0.5,0.5 ; 1,1)
\end{array}\right]
$$

$$
\text { then } A \tilde{X}_{v}=\left[\begin{array}{c}
\left(b_{1}^{1}, b_{2}^{1} ; \alpha_{b}^{1}, \alpha_{b}^{1}\right) \\
\left(b_{1}^{2}, b_{2}^{2} ; \alpha_{b}^{2}, \alpha_{b}^{2}\right) \\
\left(b_{1}^{3}, b_{2}^{3} ; \alpha_{b}^{3}, \alpha_{b}^{3}\right)
\end{array}\right]=\left[\begin{array}{c}
(-3.8334,0.8334 ; 5,5) \\
(-4.6667,-2.3333 ; 4,4) \\
(-2.6667,-0.3333 ; 6,6)
\end{array}\right],
$$

In fact, there are many nearer (symmetric or non-symmetric) approximate solutions based on the distance metric function in Definition 1.8.

In this note, we illustrate two cases for approximate fuzzy solutions.

Case 1: Symmetric approximate solution

The following L - L fuzzy vector \tilde{X}_{1} is a symmetric approximate solution for the system, with distance metric function smaller than distance of solution \tilde{X}_{v} in [1].

Given
$\tilde{X}_{1}=\left[\begin{array}{c}(2,2 ; 1,1) \\ (0.75,3.25 ; 0.75,0.75) \\ (0.5,0.5 ; 2.5,2.5)\end{array}\right]$, then $A \tilde{X}_{1}=\left[\begin{array}{c}(-4,1 ; 5,5) \\ (-4.75,-2.25 ; 4.25,4.25) \\ (-2.75,-0.25 ; 5.25,5.25)\end{array}\right]$,
and the following result is obtained using Definition 1.8.

$$
\begin{aligned}
& D_{1}\left(A \tilde{X}_{1}, \tilde{B}\right)=0.707107 \\
& D_{2}\left(A \tilde{X}_{1}, \tilde{B}\right)=0.559017
\end{aligned}
$$

Case2: Non-symmetric approximate solution

The following L - R fuzzy number vector \tilde{X}_{2} is a non-symmetric approximate solution for the system, with distance metric function smaller than distance of solution \tilde{X}_{v} in [1].

Given

$$
\tilde{X}_{2}=\left[\begin{array}{c}
\left(\frac{13}{6}, \frac{13}{6} ; \frac{7}{6}, \frac{5}{6}\right) \\
\left(\frac{5}{6}, \frac{10}{3} ; \frac{5}{6}, \frac{2}{3}\right) \\
\left(\frac{1}{2}, \frac{1}{2} ; \frac{5}{2}, \frac{5}{2}\right)
\end{array}\right] \text {, then } A \tilde{X}_{2}=\left[\begin{array}{c}
(-4,1 ; 5,5) \\
\left(-5,-\frac{5}{2} ; 4, \frac{9}{2}\right) \\
\left(-3,-\frac{1}{2} ; 5, \frac{11}{2}\right)
\end{array}\right] \text {, }
$$

and we produce the following results

$$
\begin{aligned}
& D_{1}\left(A \tilde{X}_{2}, \tilde{B}\right)=0.809017 \\
& D_{2}\left(A \tilde{X}_{2}, \tilde{B}\right)=0.612372
\end{aligned}
$$

Note:

Our new solutions are obtained by using distance metric function which not only provides $L-L$ fuzzy number vector, but also $L-R$ fuzzy number vector.

References

[1] T. Allahviranloo, E. Haghi, M. Ghanbari, The nearest symmetric fuzzy solution for a symmetric fuzzy linear system, An. St. Univ. Ovidius Constanta, 20(2012), 151-172.
[2] T. Allahviranloo, R. Nuraei, M. Ghanbari, E. Haghi, and A. A. Hosseinzadeh, A new metric for $L-R$ fuzzy numbers and its application in fuzzy linear systems, Soft Computing, 16(2012), 1743-1754.
[3] M. Dehghan, B. Hashemi, M. Ghatee, Computational methods for solving fully fuzzy linear systems, Applied Mathematics and Computation, 179(2006), 328-343.

Ghassan Malkawi,
College of Arts \& Sciences,
University Utara Malaysia,
06010 Sintok, Kedah, Malaysia.
Email: gassan_malkawi@yahoo.com

Nazihah Ahmad,
College of Arts \& Sciences,
University Utara Malaysia,
06010 Sintok, Kedah, Malaysia.
Email: nazihah@uum.edu.my

Haslinda Ibrahim,
College of Arts \& Sciences,
University Utara Malaysia,
06010 Sintok, Kedah, Malaysia.
Email: linda@uum.edu.my

[^0]: Key Words: Symmetric $L-L$ fuzzy number, Symmetric $L-L$ fuzzy linear system, Nonlinear programming problem.

 2010 Mathematics Subject Classification: Primary 46G05, 46L05; Secondary 47A30, 47B47.

 Received: March, 2013.
 Revised: February, 2014.
 Accepted: February, 2014.

