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Ingarden mechanical systems with special
external forces

Otilia Lungu and Valer Nimineţ

Abstract

In the present paper we study a remarcable particular case of Fins-
lerian mechanical system, called Ingarden mechanical system. This is
defined by a 4-uple

∑
IFn =

(
M,F 2, N, Fe

)
where M is the configura-

tion space, Fn = (M,F (x, y)) = (M,α (x, y) + β (x, y)) is an Ingarden
space, N is the Lorentz nonlinear connection and Fe = aijk (x) yjyk ∂

∂yi

are the external forces.
One associates to this system

∑
IFna semispray S, or a dinamical

system on the velocity space TM. We write the generalized Maxwell
equations for the electromagnetic fields of

∑
IFn .

1 Introduction

The general theory of Finslerian mechanical systems was realized by R. Miron
[9 ], [10] and proceeds from the Finsler geometry. It started with Finsler’s
dissertation in 1918 and its study has been developed by geometers and physi-
cists as: E.Cartan, H.Rund, L.Berwald, S.S.Chern, M.Matsumoto, R.Miron,
H.Shimada, G.S.Asanov, etc.

In this paper we introduce and investigate some geometric aspects of a
special kind of Finslerian mechanical systems.

We define a 4-uple
∑
IFn =

(
M, F 2, N, Fe

)
where M is the configuration

space, F = α+ β is a Randers metric F 2 is the kinetic energy of the space, N
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is the Lorentz nonlinear connection and Fe = aijk (x) yjyk ∂
∂yi are the external

forces with aijk (x) a symmetric tensor on M of type (1, 2).
We call this 4-uple an Ingarden mechanical system with special external

forces and we determine the coefficients of the canonical nonlinear connection
MI

N . We also construct the canonical metrical d-connection MIΓ(
MI

N ) of
∑
IFn

and we write the generalized Maxwell equations.
Let M be an n-dimensional, real C∞ manifold. Denote by (TM, τ,M)

the tangent bundle of M and Fn = (M,F (x, y)) be a Finsler space, where
F : TM → R+ is its fundamental function, i.e., F verifies the following axioms:

i) F is a differentiable function on TM̃ = TM\ {0} and it is continuous
on the null section of the projection τ : TM →M ;

ii) F is positively 1- homogeneous with respect to the variables yi;
iii) ∀ (x, y) ∈ TM̃ the Hessian of F 2 with respect yi is positive defined.

Consequently, the d-tensor field gij (x, y) = 1
2
∂2F 2

∂yi∂yj is positive defined. It is
called the fundamental tensor, or metric tensor of Fn.

This definition can be extended to the case when the fundamental tensor
is of constant sygnature, when we imposed the condition det (gij (x, y) 6= 0) .

It is well known that a Randers metric is a deformation of a Riemannian or
pseudo-Riemannian metric α (x, y) =

√
aij (x) yiyj , showing the gravitational

field, using a 1-form β (x, y) = bi (x) yi, representing the electromagnetic field.
Randers spaces are Finsler spaces Fn = (M,F (x, y)) = (M,α (x, y) + β (x, y))
equipped with Cartan nonlinear connection. For Fn, instead of the Car-
tan nonlinear connection, R. Miron introduced in [8] the Lorentz nonlinear
connection N determined by the Lorentz equations of the space Fn with
the metric F (x, y) = α (x, y) + β (x, y). The local coefficients of N are
N i
j = γijky

k − F ij , where γijk are the Christoffel symbols of the Riemannian

structure a = aij (x) dxi ⊗ dxj and F ij (x) = aisFsj , Fsj = ∂bs
∂xj − ∂bj

∂xs .
The Finsler space Fn = (M, F (x, y)) = (M, α (x, y) + β (x, y)) equipped
with the Lorentz nonlinear connection N is called an Ingarden space. It is
denoted IFn = (Fn, N).

In Preliminaries we give some known results regarding the Lorentz nonlin-
ear connection and Ingarden spaces.

In section 3 we present main results and in section 4 some applications in
physical fields.

2 Preliminaries

Let Fn = (M, F (x, y)) be a Finsler space with the fundamental function
F (x, y) = α (x, y) + β (x, y) where α (x, y) =

√
aij (x) yiyj and β (x, y) =

bi (x) yi; a = aij (x) dxidxj is a pseudo-Riemannian metric on M and it gives
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the gravitational part of the metric F ; bi (x) is an electromagnetic covector
on M and β (x, dx) = bi (x) dxi is the electromagnetic 1-form field on M .
We consider the integral of action of the energy F 2 (x, y) along a curve c : t ∈
[0, 1]→ c (t) ∈M :

I (c) = ∫10 F 2
(
x, dxdt

)
dt = ∫10

[
α
(
x, dxdt

)
+ β

(
x, dxdt

)]2
dt (1)

The variational problem for I (c) leads to the Euler-Lagrange equations:

Ei
(
F 2
)

:= ∂(α+β)2

∂xi − d
dt
∂(α+β)2

∂yi = 0, yi = dxi

dt . (2)

The energy of F 2 is

εF 2 = yi ∂F
2

∂yi − F
2 = 2F 2 − F 2 = F 2. (3)

The covector field Ei
(
F 2
)

is expressed by

Ei
(
F 2
)

= Ei
(
α2
)

+ 2αEi (β) + 2dαdt
∂α
∂yi . (4)

Let us fix a parametrization of the curve c, by natural parameter s with
respect to Riemannian metric α (x, y) . It is given by

ds2 = α2
(
x, dxdt

)
dt2. (5)

It follows F 2
(
x, dxds

)
= 1 and dα

ds = 0.
Along to an extremal curve c, canonical parametrized by (5), Ei (β) is

expressed by

Ei (β) =
(
∂bj
∂xi − ∂bi

∂xj

)
dxj

ds = Fij (x) dxj

ds . (6)

One obtains [6]:
Theorem 2.1. (Miron-Hassan) In the canonical parametrization, the

Euler-Lagrange equations of the Lagrangian (α+ β)
2

are given by

Ei
(
α2
)

+ 2Fij (x) yj = 0, yi = dxi

ds . (7)

Theorem 2.2. The Euler-Lagrange equations (7) are equivalent to the
Lorentz equations:

d2xi

ds2 + γijk (x) dxj

ds
dxk

ds =
◦
F ij (x) dxj

ds , (8)

where
◦
F ij (x ) = aisFsj (x ) and γijk are the Christoffel symbols of the Rieman-

nian metric tensor aij (x) .
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The Euler-Lagrange equations Ei
(
F 2
)

= 0 determines a canonical semis-
pray or a Dynamical System S on the total space of the tangent bundle :

S = yi ∂
∂xi − 2Gi ∂

∂yi , (9)

where the coefficients Gi (x, y) are:

2Gi (x, y) = γijk (x) yjyk −
◦
F ij (x) yj . (10)

Now we can consider the nonlinear connection N with the coefficients N i
j =

∂Gi

∂yj . Of course, we have

N i
j = γijk (x) yk − F ij (x) , (11)

where F ij (x) = 1
2

◦
F ij (x) .

Since the autoparallel curves of N are given by the Lorentz equations (8),
we call it the Lorentz nonlinear connection of the Randers metric α+ β.

The nonlinear connection N determines the horizontal distribution, de-
noted by N too, with the property TuTM = Nu⊕Vu, ∀u ∈ TM , Vu being the
natural vertical distribution on the tangent manifold TM .

The local adapted basis to the horizontal and vertical vector spaces Nu

and Vu is given by
(

δ
δxi ,

∂
∂yi

)
, i = 1, ..., n , where

δ

δxi
=

∂

∂xi
−Nk

i

∂

∂yk
=

∂

∂xi
− γkis (x) ys

∂

∂yk
+ F ki

∂

∂yk
=

◦
δ

δxi
+ F ki

∂

∂yk
(12)

and
◦
δ
δxi = ∂

∂xi − γkis (x) ys ∂
∂yk

.

The adapted cobasis is
(
dxi, δyi

)
, i = 1, ..., n with

δyi = dyi +N i
jdx

j = dyi + γijk (x) ykdxj − F ijdxj =
◦
δ y

i − F ijdxj , (13)

where
◦
δ yi = dyi + γijk (x) ykdxj .

The weakly torsion of N is

T ijk =
∂Ni

j

∂yk
− ∂Ni

k

∂yj = 0. (14)

The integrability tensor of N is

Rijk =
δNi

j

δxk − δNi
k

δxj . (15)
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Definition 2.1. The Finsler space Fn = (M, F = α+ β) equipped with the
Lorentz nonlinear connection N is called an Ingarden space. It is denoted
IFn.

The fundamental tensor gij of IFn is

gij = F
α (aij − l̃i l̃j) + lilj (16)

where l̃i = ∂α
∂yi , li = ∂F

∂yi , li = l̃i + bi.

The following results holds [8]:
Theorem 2.3. There exists an unique N -metrical connection IΓ (N) =(

F ijk, C
i
jk

)
of the Ingarden space IFn which verifies the following axioms:

i) ∇Hk gij = 0; ∇Vk gij = 0;
ii) T ijk = 0; Sijk = 0.
The connection IΓ (N) has the coefficients expressed by the generalized

Christoffel symbols:  F ijk = 1
2g
is
(
δgsj
δxk + δgsk

δxj − δgjk
δxs

)
Cijk = 1

2g
is
(
∂gsj
∂yk

+ ∂gsk
∂yj −

∂gjk
∂ys

)
,

(17)

where δ
δxi are given by (12).

3 Main results

For a manifold M , that is the configuration space of a Finslerian dynamical
system, let us consider the tangent bundle TM to which we refer to as the
velocity space. Suppose that there exists a Randers metric F = α+ β on TM̃
and aijk (x) a symmetric tensor on the configuration space M , of type (1, 2).

Definition 3.1. An Ingarden mechanical system with special external forces
is a 4-uple ∑

IFn
=
(
M, (α+ β)

2
, N, Fe

)
,

with N, the Lorentz nonlinear connection and Fe = aijk (x) yjyk ∂
∂yi the external

forces given as a vertical vector field globaly defined on TM .
We denote F i (x, y) = aijk (x) yjykand we can state

Theorem 3.1. [9] For the Ingarden mechanical system∑
IFn =

(
M, (α+ β)

2
, N, Fe

)
the following properties hold good:

i) The operator S defined by

S = yi ∂
∂xi −

(
2Gi − 1

2F
i
)

∂
∂yi (18)
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is a vector field, global defined on the velocity space TM .
ii) S is a semispray which depends only on

∑
IFn and it is a spray if Fe

are 2-homogeneous with respect to yi.
iii) The integral curves of the vector field S are the evolution curves given

by the Lagrange equations of
∑
IFn :

d2xi

dt2 + Γijk
(
x, dxdt

)
dxj

dt
dxk

dt = 1
2F

i
(
x, dxdt

)
. (19)

The semispray S (18) has the coefficients
MI

Gi expressed by

2
MI

Gi = 2Gi − 1

2
F i (x, y) = Γijk (x, y) yjyk − 1

2
F i (x, y) . (20)

Thus, the canonical nonlinear connection
MI

N of the Ingarden mechanical
system

∑
IFn has the coefficients

MI

N i
j =

∂
MI

Gi

∂yj
= N i

j −
1

4

∂F i

∂yj
= N i

j −
1

2
aijk (x) yk. (21)

This nonlinear connection
MI

N determines a direct decomposition of the
tangent space TM̃ into horizontal and vertical subspaces:

TuTM̃ =
MI

Nu⊕Vu,∀u ∈ TM̃. (22)

A local adapted basis to this decomposition is

(
MI

δ
δxi ,

∂
∂yi

)
i=1,n

where

MI

δ

δxi
=

◦
δ

δxi
+

(
F ji (x) +

1

2
ajik (x) yk

)
∂

∂yj
=

◦
δ

δxi
+Aji

∂

∂yj
(23)

with

Aji = F ji (x) +
1

2
ajik (x) yk (24)

and
◦
δ
δxi = ∂

∂xi − γkis (x) ys ∂
∂yk

.

The adapted cobasis is

(
dxi,

MI

δ yi
)

with

MI

δ yi =
◦
δ y

i −
(
F ij +

1

2
aijk (x) yk

)
dxj =

◦
δ y

i −Aijdxj (25)

where
◦
δ yi = dyi + γijk (x) ykdxj .
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We determine the torsion
MI

T ijk and the curvature
MI

Rijk of the canonical con-

nection
MI

N by a direct calculation:

MI

T ijk =
∂
MI

N i
j

∂yk
− ∂

MI

N i
k

∂yj
= 0 (26)

MI

Rijk =

MI

δ
MI

N i
j

δyk
−

MI

δ
MI

N i
k

δyj
=

◦
Rijk +

(
Ajk

∂N i
j

∂yj
−Akj

∂N i
k

∂yk

)
, (27)

where we have denoted
◦
Rijk =

◦
δ N

i
j

δxk −
◦
δ N

i
k

δxj .
Applying the theory from the book [10] the following theorem holds:

Theorem 3.2. Let
∑
IFn =

(
M, (α+ β)

2
, Fe

)
be an Ingarden me-

chanical system and
MI

N the canonical nonlinear connection of
∑
IFn . There

exists an unique d-connection MIΓ

(
MI

N

)
=

(
MI

F ijk,
MI

Cijk

)
determined by the

following axioms:

i)
MI

∇Hk gij = 0;
MI

∇Vk gij = 0,

ii)
MI

T ijk = 0;
MI

Sijk = 0,
where

MI

∇Hk gij =
MI

δ gij
δxk −

MI

F sik gsj −
MI

F sjk gis
MI

∇Vk gij =
∂gij
∂yk
−

MI

Csik gsj −
MI

Csjk gis

. (28)

We call this connection the canonical metrical d-connection of
∑
IFn .

Theorem 3.3.The local coefficients of the canonical metrical d-connection
of
∑
IFn are 

MI

F ijk = 1
2g
is

(
MI

δ gsj
δxk +

MI

δ gsk
δxj −

MI

δ gjk
δxs

)
MI

Cijk = 1
2g
is
(
∂gsj
∂yk

+ ∂gsk
∂yj −

∂gjk
∂ys

)
.

(29)

In order to calculate
MI

F ijk and
MI

Cijk we have:
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MI

δgsj
δxk

=

◦
δ gsj
δxk

+Ark
∂gsj
∂yr

(30)

Denote
◦
∇
k

the h-covariant derivative with respect to Levi-Civita connection:

◦
∇
k
gsj =

◦
δ gsj
δxk

− γiskgij − γijkgsi. (31)

We get

◦
δ gsj
δxk

=
◦
∇
k
gsj + γiskgij + γijkgsi (32)

Now we obtain

MI

δ gsj
δxk

=
◦
∇
k
gsj + γiskgij + γijkgsi +Ark

∂gsj
∂yr

(33)

and we can state:
Theorem 3.4. The canonical metrical d-connection of

∑
IFn has the co-

efficients 
MI

F ijk = γijk +Bijk
MI

Cijk = Cijk,

(34)

where

Bijk =
1

2
gis
[(
◦
∇
k
gsj +Ark

∂gsj
∂yr

)
+

(
◦
∇
j
gsk +Arj

∂gsk
∂yr

)
−
(
◦
∇
s
gjk +Ars

∂gjk
∂yr

)]
.

(35)
Taking into account (33) we can express the curvature tensors of

MIΓ

(
MI

N

)
=

(
MI

F ijk,
MI

Cijk

)
:

MI

Rijkh =
MI

δ
MI

F i
jk

δxh −
MI

δ
MI

F i
jh

δxk +
MI

F sjk

MI

F ish−
MI

F sjh

MI

F isk +
MI

Cihs
MI

Rskh
MI

P ijkh =
∂

MI

F i
jk

∂yh
−

MI

∇Hk
MI

Cihs +
MI

Cijs
MI

P skh
MI

Sijkh =
∂

MI

Ci
jk

∂yh
− ∂

MI

Ci
jh

∂yk
+

MI

Csjk

MI

Cish−
MI

Csjh

MI

Cisk

(36)

with
MI

P ijk =
∂

MI

Ni
j

∂yk
−

MI

F ijk.
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4 Applications in physical fields

In an Ingarden mechanical system the h-deflection tensor
MI

Di
kof the canonical

metrical connection no vanishes. It give rise to an interior electromagnetic
tensor which is not coincident to the exterior electromagnetic tensor Fik (x)
provided by β.

The h-deflection tensor
MI

Di
k is given by

MI

Di
k =

MI

∇Hk yi =

MI

δ yi

δxk
+

MI

F ikj y
j = Bijky

j +Aik (37)

From the relation

Bijky
j =

1

2
gisyj

(
◦
∇
k
gsj +

◦
∇
j
gsk −

◦
∇
s
gjk

)
+

1

2
gisArj

∂gsk
∂yr

yj (38)

we get

MI

Di
k =

1

2
gisyj

(
◦
∇
k
gsj +

◦
∇
j
gsk −

◦
∇
s
gjk

)
+

1

2
gisArj

∂gsk
∂yr

yj +Aik. (39)

The v-deflection tensor
MI

dik is

MI

dik =
MI

∇Vk yi = δik. (40)

The covariant h-tensor is

MI

Dsk = gis
MI

Di
k =

1

2
yj
(
◦
∇
k
gsj +

◦
∇
j
gsk −

◦
∇
s
gjk

)
+

1

2
Arj

∂gsk
∂yr

yj + gisA
i
k. (41)

and the covariant v-tensor is

MI

dsk = gis
MI

dsk . (42)

The h-interior electromagnetic tensor
≈
F
sk

is

≈
Fsk =

1

2

(
MI

Dsk −
MI

Dks

)
. (43)

and the v-interior electromagnetic tensor
≈
fsk is
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≈
fsk =

1

2

(
MI

dsk −
MI

dks .

)
(44)

A direct calculus allows to formulate:
Theorem 4.1. The h- and v- interior electromagnetic tensors of the Ingar-

den mechanical system
∑
IFn with respect to the canonical metrical connection

MI

N are given by

≈
Fsk = 1

2y
j

(
◦
∇k gsj −

◦
∇s gjk

)
+ 1

2

(
gisA

i
k − gikAis

)
≈
fsk = 0.

(45)

We denote
MI

Rijk = gis
MI

Rsjk,
MI

Rijkh = gjs
MI

Rsikh,
MI

Pijk = gis
MI

P sjk,
MI

Pijkh =

gjs
MI

P sikh.
By a direct calculus one proves:

Theorem 4.2. The h- interior electromagnetic tensors
≈
Fij of the Ingarden

mechanical system
∑
IFnsatisfies the following generalized Maxwell equations:

MI

∇H
k

≈
Fij +

MI

∇H
i

≈
Fjk +

MI

∇H
j

≈
Fki = 1

2

{
yr

(
MI
Rrijk +

MI
Rrjki +

MI
Rrkij

)
−

(
MI
Rijk +

MI
Rjki +

MI
Rkij

)}
MI

∇V
k

≈
Fij +

MI

∇V
i

≈
Fjk +

MI

∇V
j

≈
Fki = 1

2

{
yr

[(
MI
Prijk −

MI
Prikj

)
+

(
MI
Prjki−

MI
Prjik

)
+

(
MI
Prkij −

MI
Prkji

)]}
(46)

Conclusions. We defined in this paper a new kind of mechanical systems,
called Ingarden mechanical system with special external forces. We developed
the theory using the geometrical objects fields of the canonical metrical d-
connection. After the calculation of the h- and v-interior electromagnetic
tensors, we got a new form for the generalized Maxwell equations. The same
theory can be also used to write the Einstein equation for the gravitational
fields.
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