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Ingarden mechanical systems with special
external forces
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Abstract

In the present paper we study a remarcable particular case of Fins-
lerian mechanical system, called Ingarden mechanical system. This is
defined by a 4-uple > ;pn = (M, F? N, Fe) where M is the configura-
tion space, F" = (M, F (z,y)) = (M, a (z,y) + B (z,y)) is an Ingarden
space, N is the Lorentz nonlinear connection and F. = alj, (z) yy* agi
are the external forces.

One associates to this system Y ;..a semispray S, or a dinamical
system on the velocity space TM. We write the generalized Maxwell

equations for the electromagnetic fields of > IFn-

1 Introduction

The general theory of Finslerian mechanical systems was realized by R. Miron
[9 ], [10] and proceeds from the Finsler geometry. It started with Finsler’s
dissertation in 1918 and its study has been developed by geometers and physi-
cists as: E.Cartan, H.Rund, L.Berwald, S.S.Chern, M.Matsumoto, R.Miron,
H.Shimada, G.S.Asanov, etc.

In this paper we introduce and investigate some geometric aspects of a
special kind of Finslerian mechanical systems.

We define a 4-uple >, pn = (M7 F?2 N, Fe) where M is the configuration
space, F' = o+ 3 is a Randers metric F? is the kinetic energy of the space, N
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is the Lorentz nonlinear connection and F, = a; p (@) yiyk 82" are the external

forces with aj.k (z) a symmetric tensor on M of type (1,2).
We call this 4-uple an Ingarden mechanical system with special external
R(}l}ces and we determine the coefficients of the canonical nonlinear connectlon

N . We also construct the canonical metrical d-connection M I F( ) of Y pn
and we write the generalized Maxwell equations.

Let M be an n-dimensional, real C'°° manifold. Denote by (T'M,r, M)
the tangent bundle of M and F™ = (M, F (z,y)) be a Finsler space, where
F:TM — R, isits fundamental function, i.e., F verifies the following axioms:

i) F is a differentiable function on T™M =TM \ {0} and it is continuous
on the null section of the projection 7 : TM — M,

ii) F is positively 1- homogeneous with respect to the variables y*;

iii) ¥ (z,y) € TM the Hessian of F? with respect y is positive defined.
Consequently, the d-tensor field g¢;; (z, y) = %% is positive defined. It is
called the fundamental tensor, or metric tensor of F™.

This definition can be extended to the case when the fundamental tensor
is of constant sygnature, when we imposed the condition det (g;; (z, y) # 0) .

It is well known that a Randers metric is a deformation of a Riemannian or
pseudo-Riemannian metric a (z, y) = /a;; (x) y’y’, showing the gravitational
field, using a 1-form 3 (z, y) = b; () ¥, representing the electromagnetic field.
Randers spaces are Finsler spaces F" = (M, F (z,y)) = (M, a (z,y) + 8 (z,y))
equipped with Cartan nonlinear connection. For F™, instead of the Car-
tan nonlinear connection, R. Miron introduced in [8] the Lorentz nonlinear
connection N determined by the Lorentz equations of the space F™ with
the metric F(x y) = a(x,y) + B(z,y). The local coefficients of N are
Nj i = 'yj ky — F; ¢ where 'y}k are the Christoffel symbols of the Riemannian

structure a = a;; (z) dz’ ® dz? and F;( x) =a"Fy; , Fy; = C% gz@.
The Finsler space F" = (M, F (z,y)) = (M, a(z, y) + B (z, y)) equipped
with the Lorentz nonlinear connection N is called an Ingarden space. It is
denoted IF™ = (F", N).

In Preliminaries we give some known results regarding the Lorentz nonlin-
ear connection and Ingarden spaces.

In section 3 we present main results and in section 4 some applications in

physical fields.

2 Preliminaries

Let F* = (M, F(x, y)) be a Finsler space with the fundamental function

F(x, y) = (2, y) + B (x, y) where o (z. y) = v/ay, (2) gy and f (x, ) =
b; () y'; a = a;; (x) dz'dx? is a pseudo-Riemannian metric on M and it gives
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the gravitational part of the metric F' ; b; (x) is an electromagnetic covector
on M and B (z, dz) = b; (z) da* is the electromagnetic 1-form field on M.
We consider the integral of action of the energy F? (z, y) along a curve ¢ : t €
[0,1] = c(t) € M:

() =[5 F? (w, %) dt = [§ [ (w, %) + 8 (2, S0)] 7t (1)

The variational problem for I (¢) leads to the Euler-Lagrange equations:

2\ ._ 8(a+B)?  d d(a+B)® i _ da’
E; (F ) T ozt Tdt oyt =0,y = dt ° (2)

The energy of F? is

epr =y 9 — F? =2F? — F? = 2, (3)

The covector field E; (F2) is expressed by

E; (F?) = Ei (o) + 2aE; (8) + 2% 8. (4)

Let us fix a parametrization of the curve ¢, by natural parameter s with
respect to Riemannian metric « (x, y) . It is given by

ds* = o® (z, %) dt*. (5)

It follows F? (2, 92) =1 and 9¢ = 0.
Along to an extremal curve ¢, canonical parametrized by (5), E; (8) is
expressed by

6!7]' ; ;Ej _ xj
E; (B) = (W - ;;%) = Fyj (z) &= (6)

One obtains [6]:
Theorem 2.1. (Miron-Hassan) In the canonical parametrization, the
Euler-Lagrange equations of the Lagrangian (o + 5)2 are given by

E; (a®) +2F; (z) o =0, y' = 42 (7)

Theorem 2.2. The Euler-Lagrange equations (7) are equivalent to the
Lorentz equations:

o

2,0 ; J k i J
T e @) GG = (@) E (8)

o
where F} (z) = a’Fy; (z) and 'y;»k are the Christoffel symbols of the Rieman-
nian metric tensor a;j (x)
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The Euler-Lagrange equations Fj; (F2) = 0 determines a canonical semis-
pray or a Dynamical System S on the total space of the tangent bundle :

S=y2 —2G2 (9)

zi oyt

where the coefficients G* (z, y) are:

[e]
2G" (z, y) = vix () y'y* — F} (2) o/ (10)
Now we can consider the nonlinear connection N with the coefficients N j’ =
‘ggj. Of course, we have

Ni=+i (x) y" = F} (2), (11)

where F/ (x) = 5 F} (z).

Since the autoparallel curves of N are given by the Lorentz equations (8),
we call it the Lorentz nonlinear connection of the Randers metric o + .

The nonlinear connection N determines the horizontal distribution, de-
noted by N too, with the property T,TM = N, ®V,, Yu € TM, V,, being the
natural vertical distribution on the tangent manifold 7M.

The local adapted basis to the horizontal and vertical vector spaces IV,

and V,, is given by (%, a%i) ,t=1,..., n, where

59 o 9 )
5zt i ’kaiykzaxi_ﬁs(x)y7+ﬂak: HE G (12)

5 0 , 0
and 7 = 52 — 7 (2) ¥° 50r o
The adapted cobasis is (dxz, (5yz) ,t=1,..., n with

by = dy' + Njda? = dy' + )y () y*da’ — Fjda! = 5y = Fjda’, ~ (13)

where Syi = dy' + %y, (x) yFdad.
The weakly torsion of N is

ik = oyt T o

The integrability tensor of N is

jk = Szk 529 °

io— NNy (15)
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Definition 2.1. The Finsler space F™ = (M, F = a + ) equipped with the
Lorentz nonlinear connection N is called an Ingarden space. It is denoted
IF™.

The fundamental tensor g;; of IF" is

9i = Elay; = lily) + il (16)
where ; = §% | 1; = 85 1, = 1; + b;.

The following results holds [8]:

Theorem 2.3. There exists an unique N-metrical connection IT (N)
(F;k, C’;k> of the Ingarden space I F™ which verifies the following axioms:

i) Vilgij = 0; Vi gij = 0;

ii) T}, = 0; S}, = 0.

The connection IT (N) has the coefficients expressed by the generalized
Christoffel symbols:

Fi —
Jjk
%

Cip =

5, Sgun Ok
(g]"' S - 5%:)

4 (17)
o (e + 3 - 5.

= =

where 52 are given by (12).

3 Main results

For a manifold M, that is the configuration space of a Finslerian dynamical
system, let us consider the tangent bundle T'M to which we refer to as the
velocity space. Suppose that there exists a Randers metric F = a+ 8 on TM
and aék (z) a symmetric tensor on the configuration space M, of type (1,2).

Definition 8.1. An Ingarden mechanical system with special external forces
s a 4-uple

> o= (M (@87 N R,

with N, the Lorentz nonlinear connection and F, = a?k (z) yy* 0(?/1' the external
forces given as a vertical vector field globaly defined on TM .

We denote F' (z,y) = a’; (z) y/y*and we can state

Theorem 3.1. [9] For the Ingarden mechanical system
Yorpn = (M, (a+ 6)2 , N, Fe) the following properties hold good:

i) The operator S defined by

S =y — (2G" — iF") (18)

oyt
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is a vector field, global defined on the velocity space T M.
ii) S is a semispray which depends only on Y p. and it is a spray if F,
are 2-homogeneous with respect to 3.
i11) The integral curves of the vector field S are the evolution curves given
by the Lagrange equations of Y ;pn:
T (o ) H =1 (e F) (19)

MI
The semispray S (18) has the coefficients G* expressed by

M1 1. ) P
2G' =2G" - 51 (z,y) =T% (z,9) ¥y -5 (z,y). (20)

MI
Thus, the canonical nonlinear connection N of the Ingarden mechanical
system ) ;. has the coefficients

M1 ,
MEoGh 1oF" . 1 k

i % 1

0= T N T g TN Ty Y

(21)

MI
This nonlinear connection N determines a direct decomposition of the
tangent space T'M into horizontal and vertical subspaces:

. MI -
T, TM = N, &V,,Yu € TM. (22)
MI
A local adapted basis to this decomposition is ((Sii, a‘}) where
i=1,n
58 1 o 3 9
= 4 (F) ~al ) — = = 447 = 23
L=t (@ 0 = et Al @)
with
W 1 k
1 =F (2) + §aik (z)y (24)
g o s 0

and 507 = Dt —’yfs (CL’)y Tyk
o MI
The adapted cobasis is (dxl, ) yl> with
ML ;o i 1 k V- i1
Sy =0y — Fj+§ajk(x)y de’ =§y* — Aldr (25)

where SyZ =dy' + 'y}k (z) yFda?.
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MI MI
We determine the torsion Tj?k and the curvature R} ;. of the canonical con-

MI
nection N by a direct calculation:

MI MI
MI- 9N N}
i = 200 ONE 0 (26)

Jk dyk dyd
MI MIMI

]\/[il 5 NZ 5 Nz o ( aN'L AkaNZ;>

ik = E Jk Afc T g0k
oy oyl Oyl Jy

SN 5N
where we have denoted R; = 5 £,

Applying the theory from the book [10] the following theorem holds:
Theorem 3.2.  Let ) pn = (M, (a—l—ﬁ) , Fe> be an Ingarden me-

MI
chanical system and N the canonical nonlinear connection of > p.. There
MI MI MI
exists an unique d-connection MIT (N> = | Fjy, Cji | determined by the

following azxioms:

MI MI
Z) vk 9ij = 0; V}g/ gij = 0,
MI M1
ZZ) T;k- =0 S;'k- =0,
where
MI Ivélgv MI MI
vk 9ij = 5£k” Fkgs] F;k YGis 28
MI 9 MI . ( )
VY 9ij = G — Cgus C% 9is

We call this connection the canonical metrical d-connection of Y~ n -

Theorem 3.3.The local coefficients of the canonical metrical d-connection

of Y ;pn are
MI J\/é] MI z»(fsz
i 1 s gb_/ 0 Ysk __ 9ik
jk = 29 < t —5a RE )

Ml 1 0, 2] 0, (29)
i 1 géJ gsk _ 995k
gk — 2g ( + OyJ dy* ) ’
MI MI

In order to calculate F’ ’k and C? i we have:
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MI o
09sj _ 69si | 4r99sj

Sxk dxk Foyr (30)

[e]
Denote V the h-covariant derivative with respect to Levi-Civita connection:
k

(o)

° 0 9sj ; ;
Ygsj = 5;,3 = Vekbij — VjkTsi- (31)
We get
5
g - ] . .
5 =V gsj + Verij + VjuGsi (32)
x k
Now we obtain
b 0
g . o . . g .
Sak = Y s T i s+ A g D (33)

and we can state:
Theorem 3.4. The canonical metrical d-connection of Y, p. has the co-
efficients

MI ) )

Y =~° B

s T (34)
ng‘k:CgZ'Iw

where

i 1 © ags j © agsk: © ag ik
A i AT J R A" _ X AT J .
k= 59 [(Ygﬁ kayr>+<ygk+ i oy Yg]k+ Dy
35
Taking into account (33) we can express the curvature tensors of

M MI MI
MIF(N): Fi Cly )

MI J\gllf;ﬁf MI }1;{-1 MI MI  pp MI MI g

7 _ ik jh s A nl] % % s
Ripp = =52 5o+ Fi Fo — Fiy Fo + Chg Ry,

MI MI MI MI  MI pMrT

. OF! . -

7 _ ik __ H i [ s 36
P = — Vi Chs +Cj Py (36)
MI ag?l acj\*l?] MI MI a1 MI

L = — — gk 4 05 CY — O, CF

Jjkh oy oy Jjk ~sh Jjh ~'sk

MI
MI o N M

: - i _
with Pl = 52 — Fij.
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4 Applications in physical fields

MI

In an Ingarden mechanical system the h-deflection tensor Djof the canonical
metrical connection no vanishes. It give rise to an interior electromagnetic
tensor which is not coincident to the exterior electromagnetic tensor Fji (x)

provided by S.
MI

The h-deflection tensor D} is given by

MI MI 5 v MI
V 5]6 +ijy _Bjky +Ak
From the relation
. . 1 . . o o o ag ko
By’ = 59”% (Y gsj + Ygsk - YW) ~g"A] 9y =y
we get
MI
b 1 .. . [o o o o) k
Dy = 59“% (Y gsj + Ygsk - ngk> ~g" A agsr I+ Al
MI
The v-deflection tensor dj, is
MI MI ‘ A
V y' = 0;.
The covariant h-tensor is
MI JV[{ 1 . /o o o ragsk i
Dy, = gis Dy, = 51/] V 9sj +Ygsk — Vi | + A] oy ¥+ gisAj.

and the covariant v-tensor is

MI MI
s
dsk = Gis dk .

The h-interior electromagnetic tensor Fis
sk

~ 1 MI MI
Fsk = 5 <Dsk Dks) .

and the v-interior electromagnetic tensor fq is

(37)

(38)

(39)
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~ 1 /MI  MI
fsk = 5 (dsk - dks > (44)

A direct calculus allows to formulate:
Theorem 4.1. The h- and v- interior electromagnetic tensors of the Ingar-
den mechanical system ;. with respect to the canonical metrical connection

MI )
N are given by

o

Foo = 59 (Vk 9sj — Vs gjk) + 3 (9is A}, — ginAL)

N (45)
fsk =0.
MI MI  MI MI  MI MI  MI
We denote Rijx = gis Ry, Rijkh = 9js Riypy Pijk = Gis P Pijkn =
MI
S
9js Piien-

By a direct calculus one proves:

Theorem 4.2. The h- interior electromagnetic tensors sz of the Ingarden
mechanical system Y . satisfies the following generalized Mazwell equations:

Mé ~ Mé ~ Mé ~ . ) MI MI MI MI MI MI
Vi Fij +V; Fixk+ V5 Foi = 3 {y’ (R-r-ijk + Ryjki +R7-kij> - <Rijk + Rjki + Rkij)}

Mé ~ M‘ﬁ ~ M‘ﬁ ~ N MI MI MI MI MI MI
Vi Fij + V] Fjx+V] Fii = 3 {yr |:<PTi_jk - P'M‘,kj) + (Prjkt - Prjilc) + (Prki_] - Prkji)}}

(46)

Conclusions. We defined in this paper a new kind of mechanical systems,
called Ingarden mechanical system with special external forces. We developed
the theory using the geometrical objects fields of the canonical metrical d-
connection. After the calculation of the h- and v-interior electromagnetic
tensors, we got a new form for the generalized Maxwell equations. The same
theory can be also used to write the Einstein equation for the gravitational
fields.
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