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Some remarks on a fractional
integro-differential inclusion with boundary

conditions

Aurelian Cernea

Abstract

We study the existence of solutions for fractional integrodifferential
inclusions of order q ∈ (1, 2] with families of mixed, closed, strip and in-
tegral boundary conditions. We establish Filippov type existence results
in the case of nonconvex set-valued maps.

1 Introduction

Differential equations with fractional order have recently proved to be strong
tools in the modelling of many physical phenomena. As a consequence there
was an intensive development of the theory of differential equations and inclu-
sions of fractional order ([13, 15, 16] etc.). Applied problems require definitions
of fractional derivative allowing the utilization of physically interpretable ini-
tial conditions. Caputo’s fractional derivative, originally introduced in [6] and
afterwards adopted in the theory of linear visco elasticity, satisfies this demand.
Very recently several qualitative results for fractional integro-differential equa-
tions were obtained in [1, 10, 12, 14, 17, 18] etc.

This paper is concerned with the following fractional integro-differential
inclusion

Dq
cx(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, T ]), (1)
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where q ∈ (1, 2], Dq
c is the Caputo fractional derivative, F : [0, T ]×R×R→

P(R) is a set-valued map and V : C([0, T ],R) → C([0, T ],R) is a nonlinear

Volterra integral operator defined by V (x)(t) =
∫ t

0
k(t, s, x(s))ds with k(., ., .) :

[0, T ]×R×R→ R a given function.
We study (1) subject to four families of boundary conditions:
i) Mixed boundary conditions

Tx′(0) = −ax(0)− bx(T ), Tx′(T ) = bx(0) + dx(T ). (2)

ii) Closed boundary conditions

x(T ) = αx(0) + βTx′(0), Tx′(T ) = γx(0) + δTx′(0), (3)

where a, b, d, α, β, γ, δ ∈ R are given constants.
iii) Strip boundary conditions

x(0) = σ

∫ β

α

x(s)ds, x(1) = η

∫ δ

γ

x(s)ds, (4)

where σ, η ∈ R and 0 < α < β < γ < δ < 1.
iv) Nonlocal Riemann-Liouville type integral boundary conditions

x(0) = aIωx(µ), x(1) = bIνx(θ), (5)

where a, b ∈ R, ν, ω, µ, θ ∈ (0, 1) and Iqx(.) is the Riemann-Liouville fractional
integral of order q.

The aim of this note is to show that Filippov’s ideas ([7]) can be suit-
ably adapted in order to obtain the existence of solutions for problems (1)-(2),
(1)-(3), (1)-(4) and (1)-(5). Recall that for a differential inclusion defined by
a lipschitzian set-valued map with nonconvex values, Filippov’s theorem ([7])
consists in proving the existence of a solution starting from a given ”quasi” so-
lution. Moreover, the result provides an estimate between the ”quasi” solution
and the solution obtained.

We note that in the case when F does not depend on the last variable,
existence results for problems (1)-(2), (1)-(3), (1)-(4) and (1)-(5) may be found
in [7,8,9]. In fact, the results in the present paper extend the main results in
[7,8,9] to fractional integrodifferential inclusions.

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance of
the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
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where d(x,B) = infy∈B d(x, y).
Let I = [0, T ], we denote by C(I,R) the Banach space of all continuous

functions from I to R with the norm ||x(.)||C = supt∈I |x(t)| and L1(I,R) is
the Banach space of integrable functions u(.) : I → R endowed with the norm

||u(.)||1 =
∫ T

0
|u(t)|dt.

Definition 2.1. a) The fractional integral of order α > 0 of a Lebesgue
integrable function f : (0,∞)→ R is defined by

Iαf(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the
(Euler’s) Gamma function defined by Γ(α) =

∫∞
0
tα−1e−tdt.

b) The Caputo fractional derivative of order α > 0 of a function f :
[0,∞)→ R is defined by

Dα
c f(t) =

1

Γ(n− α)

∫ t

0

(t− s)−α+n−1f (n)(s)ds,

where n = [α] + 1. It is assumed implicitly that f is n times differentiable
whose n-th derivative is absolutely continuous.

We recall (e.g., [13]) that if α > 0 and f ∈ C(I,R) or f ∈ L∞(I,R) then
(Dα

c I
αf)(t) ≡ f(t).

The next two technical results are proved in [2].
Lemma 2.2. The unique solution x(.) ∈ C(I,R) of problem

Dq
cx(t) = f(t) a.e. ([0, T ]), (6)

with boundary conditions (2) is given by x(t) =
∫ T

0
G1(t, s)f(s)ds, where

G1(., .) is the Green function defined by

G1(t, s) :=


(t−s)q−1

Γ(q) − 1
∆1

( [T (b+d)+(b2−ad)t](T−s)q−1

TΓ(q) +

+ [(a+b)t−(1+b)T ](T−s)q−2

Γ(q−1) ) if 0 ≤ s < t ≤ T,
− 1

∆1
( [T (b+d)+(b2−ad)t](T−s)q−1

TΓ(q) + [(a+b)t−(1+b)T ](T−s)q−2

Γ(q−1) )

if 0 ≤ t < s ≤ T,

with ∆1 = (1 + b)(b+ d)− (a+ b)(d− 1) 6= 0.
Note that

|G1(t, s)| ≤ T q−1

Γ(q)
· (1 +

|b+ d+ b2 − ad|+ (q − 1)|a− 1|
|∆1|

) =: M1 ∀t, s ∈ I.
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Lemma 2.3. The unique solution x(.) ∈ C(I,R) of problem (6)-(3) is given

by x(t) =
∫ T

0
G2(t, s)f(s)ds, where the Green function defined by

G2(t, s) :=


(t−s)q−1

Γ(q) − 1
∆2

( [T (1−δ)+γt](T−s)q−1

TΓ(q) +

+ [(1−α)t−(1−β)T ](T−s)q−2

Γ(q−1) ) if 0 ≤ s < t ≤ T,
1

∆2
( [T (1−δ)+γt](T−s)q−1

TΓ(q) + [(1−α)t−(1−β)T ](T−s)q−2

Γ(q−1) )

if 0 ≤ t < s ≤ T,

with ∆2 = γ(1− β) + (1− α)(1− δ) 6= 0.
Note that

|G2(t, s)| ≤ T q−1

Γ(q)
· (1 +

|1− δ + γ|+ (q − 1)|α− β|
|∆2|

) =: M2 ∀t, s ∈ I.

For simplicity, in the following results T = 1.
The next result is proved in [3].

Lemma 2.4. For a given function f(.) ∈ C(I,R) the unique solution of
problem (6)-(4) is given by

x(t) = 1
Γ(q)

∫ t
0
(t− s)q−1f(s)ds+ σ

∆ [−(η2 (δ2 − γ2)− 1)+

t(η(δ − γ)− 1)]
∫ β
α

(
∫ s

0
(s−m)q−1

Γ(q) f(m)dm)ds+ 1
∆ [σ2 (β2 − α2)−

(σ(β − α)− 1)t][η
∫ δ
γ

(
∫ s

0
(s−m)q−1

Γ(q) f(m)dm)ds−
∫ 1

0
(1−s)q−1

Γ(q) f(s)ds],

where

∆ = [
η

2
(δ2 − γ2)− 1)][σ(β − α)− 1]− [

σ

2
(β2 − α2)][η(δ − γ)− 1] 6= 0.

Denote A(t, s) = (t−s)q−1

Γ(q) χ[0,t](s), B(t, s) = σ
∆Γ(q) [−(η2 (δ2 − γ2) − 1) +

t(η(δ−γ)−1)] 1
q [(β−s)qχ[0,β](s)−(α−s)qχ[0,α](s)], C(t, s) = 1

∆Γ(q) [σ2 (β2−α2)−
(σ(β−α)−1)t]ηq [(δ− s)qχ[0,δ](s)− (γ− s)qχ[0,γ](s)], D(t, s) = − 1

∆Γ(q) [σ2 (β2−
α2)−(σ(β−α)−1)t](1−s)q−1 and G3(t, s) = A(t, s)+B(t, s)+C(t, s)+D(t, s),
where χS(.) is the characteristic function of the set S. Then the solution x(.)

in Lemma 3 may be written as x(t) =
∫ 1

0
G3(t, s)f(s)ds. Moreover, for any

t, s ∈ I we have

|G3(t, s)| ≤ 1

Γ(q)
+

σ

|∆|Γ(q)
[|η

2
(δ2 − γ2)− 1|+ |η(δ − γ)− 1|]β

q + αq

q
+

1

|∆|Γ(q)
[|σ

2
(β2 − α2)|+ |σ(β − α)− 1|][η

q
(δq + γq) + 1] =: M3.
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The proof of the following lemma may be found in [4].
Lemma 2.5. For a given f(.) ∈ C(I,R) the unique solution of the problem
(6)-(5) is given by

x(t) = 1
Γ(q)

∫ t
0
(t− s)q−1f(s)ds+ (c1 − tc4)

∫ µ
0

(µ−s)q+ω−1

Γ(q+ω) f(s)ds+

(c2 + c3t)[b
∫ θ

0
(θ−s)q+ν−1

Γ(q+ν) f(s)ds− 1
Γ(q)

∫ 1

0
(1− s)q−1f(s)ds],

where

c1 =
a

c
(1− bθν+1

Γ(ν + 2)
), c2 =

aµω+1

cΓ(ω + 2)
, c3 =

1

c
(1− aµω

Γ(ω + 1)
), c4 =

a

c
(1−

− bθν

Γ(ν + 1)
), c = (1− aµω

Γ(ω + 1)
)(1− bθν+1

Γ(ν + 2)
) +

aµω+1

Γ(ω + 2)
(1− bθν

Γ(ν + 1)
).

It is implicitly assumed that c 6= 0.

Denote A1(t, s) = (t−s)q−1

Γ(q) χ[0,t](s), B1(t, s) = (c1− tc4) (µ−s)q+ω−1

Γ(q+ω) χ[0,µ](s),

C1(t, s) = b(c2 + c3t)
(θ−s)q+ν−1

Γ(q+ν) χ[0,θ](s), D1(t, s) = −(c2 + c3t)
(1−s)q−1

Γ(q) and

G4(t, s) = A1(t, s) + B1(t, s) + C1(t, s) + D1(t, s), then the solution x(.) in

Lemma 4 may be written as x(t) =
∫ 1

0
G4(t, s)f(s)ds.Moreover, for any t, s ∈ I

we have

|G4(t, s)| ≤ 1
Γ(q) + (|c1|+ |c4|)µ

q+ω−1

Γ(q+ω) + |b|(|c2|+ |c3|) θ
q+ν−1

Γ(q+ν) +

(|c2|+ |c3|) 1
Γ(q) =: M4

3 The main results

In order to prove our results we need the following hypotheses.

Hypothesis. i) F (., .) : I ×R×R → P(R) has nonempty closed values and
is L(I)⊗B(R×R) measurable.

ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, ., .)
is L(t)-Lipschitz in the sense that

dH(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1−x2|+ |y1−y2|) ∀ x1, x2, y1, y2 ∈ R.

iii) k(., ., .) : I × R × R → R is a function such that ∀x ∈ R, (t, s) →
k(t, s, x) is measurable.

iv) |k(t, s, x)− k(t, s, y)| ≤ L(t)|x− y| a.e. (t, s) ∈ I × I, ∀x, y ∈ R.

We use next the following notations

M(t) := L(t)(1 +

∫ t

0

L(u)du), t ∈ I, M0 =

∫ T

0

M(t)dt.
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Theorem 3.1. Assume that Hypothesis is satisfied and M1M0 < 1. Let
y(.) ∈ C(I,R) be such that Ty′(0) = −ay(0)− by(T ), Ty′(T ) = by(0) + dy(T )
and there exists p(.) ∈ L1(I,R+) with d(Dq

cy(t), F (t, y(t), V (y)(t))) ≤ p(t) a.e.
(I).

Then there exists x(.) ∈ C(I,R) a solution of problem (1)-(2) satisfying
for all t ∈ I

|x(t)− y(t)| ≤ M1

1−M1M0

∫ T

0

p(t)dt. (7)

Proof. The set-valued map t → F (t, y(t), V (y)(t)) is measurable with closed
values and

F (t, y(t), V (y)(t)) ∩ {Dq
cy(t) + p(t)[−1, 1]} 6= ∅ a.e. (I).

It follows (e.g., Theorem 1.14.1 in [5]) that there exists a measurable se-
lection f1(t) ∈ F (t, y(t), V (y)(t)) a.e. (I) such that

|f1(t)−Dq
cy(t)| ≤ p(t) a.e. (I) (8)

Define x1(t) =
∫ T

0
G1(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤M1

∫ T

0

p(t)dt.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R),
fn(.) ∈ L1(I,R), n ≥ 1 with the following properties

xn(t) =

∫ T

0

G1(t, s)fn(s)ds, t ∈ I, (9)

fn(t) ∈ F (t, xn−1(t), V (xn−1)(t)) a.e. (I), (10)

|fn+1(t)−fn(t)| ≤ L(t)(|xn(t)−xn−1(t)|+
∫ t

0

L(s)|xn(s)−xn−1(s)|ds) a.e. (I)

(11)
If this construction is realized then from (8)-(11) we have for almost all

t ∈ I

|xn+1(t)− xn(t)| ≤M1(M1M0)n
∫ T

0

p(t)dt ∀n ∈ N.

Indeed, assume that the last inequality is true for n − 1 and we prove it
for n. One has

|xn+1(t)− xn(t)| ≤
∫ T

0

|G1(t, t1)|.|fn+1(t1)− fn(t1)|dt1 ≤
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M1

∫ T

0

L(t1)[|xn(t1)− xn−1(t1)|+
∫ t1

0

L(s)|xn(s)− xn−1(s)|ds]dt1 ≤M1∫ T

0

L(t1)(1 +

∫ t1

0

L(s)ds)dt1.M
n
1 M

n−1
0

∫ T

0

p(t)dt = M1(M1M0)n
∫ T

0

p(t)dt

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some x(.) ∈ C(I,R). Therefore, by (11), for almost
all t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the pointwise limit
of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1
i=1 |xi+1(t)− xi(t)| ≤

M1

∫ T
0
p(t)dt+

∑n−1
i=1 (M1

∫ T
0
p(t)dt)(M1M0)i =

M1

∫ T
0
p(t)dt

1−M1M0
.

(12)

On the other hand, from (8), (11) and (12) we obtain for almost all t ∈ I

|fn(t)−Dq
cy(t)| ≤

∑n−1
i=1 |fi+1(t)− fi(t)|+ |f1(t)−Dq

cy(t)| ≤
L(t)

M1

∫ T
0
p(t)dt

1−M1M0
+ p(t).

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in

(9), (10) we deduce that x(.) is a solution of (1)-(2). Finally, passing to the
limit in (12) we obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in
(9)-(11). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we
already constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N
satisfying (9), (11) for n = 1, 2, ...N and (10) for n = 1, 2, ...N − 1. The
set-valued map t → F (t, xN (t), V (xN )(t)) is measurable. Moreover, the map

t→ L(t)(|xN (t)− xN−1(t)|+
∫ t

0
L(s)|xN (s)− xN−1(s)|ds) is measurable. By

the lipschitzianity of F (t, .) we have that for almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)(|xN (t)− xN−1(t)|+∫ t
0
L(s)|xN (s)− xN−1(s)|ds)[−1, 1]} 6= ∅.

Theorem 1.14.1 in [5] yields that there exist a measurable selection fN+1(.) of
F (., xN (.), V (xN )(.)) such that for almost all t ∈ I

|fN+1(t)− fN (t)| ≤ L(t)(|xN (t)− xN−1(t)|+
∫ t

0

L(s)|xN (s)− xN−1(s)|ds).

We define xN+1(.) as in (9) with n = N + 1. Thus fN+1(.) satisfies (10)
and (11) and the proof is complete.



A FRACTIONAL INTEGRO-DIFFERENTIAL INCLUSION 80

The proofs of the next three theorems are similar to the proof of Theorem
3.1.
Theorem 3.2. Assume that Hypothesis is satisfied and M2M0 < 1. Let
y(.) ∈ C(I,R) be such that y(T ) = αy(0)+βTy′(0), Ty′(T ) = γy(0)+δTy′(0)
and there exists p(.) ∈ L1(I,R) with d(Dq

cy(t), F (t, y(t, V (y)(t)))) ≤ p(t) a.e.
(I).

Then there exists x(.) ∈ C(I,R) a solution of problem (1)-(3) satisfying
for all t ∈ I

|x(t)− y(t)| ≤ M2

1−M2M0

∫ T

0

p(t)dt.

Theorem 3.3. Assume that Hypothesis is satisfied and M3M0 < 1. Let

y(.) ∈ C(I,R) be such that y(0) = σ
∫ β
α
y(s)ds, y(1) = η

∫ δ
γ
y(s)ds and there

exists p(.) ∈ L1(I,R+) with d(Dq
cy(t), F (t, y(t), V (y)(t))) ≤ p(t) a.e. (I).

Then there exists x(.) ∈ C(I,R) a solution of problem (1)-(4) satisfying
for all t ∈ I

|x(t)− y(t)| ≤ M3

1−M3M0

∫ 1

0

p(t)dt.

Theorem 3.4. Assume that Hypothesis is satisfied and M4M0 < 1 Let y(.) ∈
C(I,R) be such that y(0) = aIωy(µ), y(1) = bIνy(θ) and there exists p(.) ∈
L1(I,R+) with d(Dq

cy(t), F (t, y(t), V (y)(t))) ≤ p(t) a.e. (I).
Then there exists x(.) ∈ C(I,R) a solution of problem (1)-(5) satisfying

for all t ∈ I

|x(t)− y(t)| ≤ M4

1−M4M0

∫ 1

0

p(t)dt.

Remark 3.5. If F (., ., .) does not depend on the last variable the fractional
integrodifferential inclusion (1) reduces to

Dq
cx(t) ∈ F (t, x(t)) a.e. (I)

and Theorem 3.1 yields Theorem 3.3 in [7], Theorem 3.2 yields Theorem 3.4
in [7], Theorem 3.3 yields Theorem 3.4 in [8] and Theorem 3.4 yields Theorem
3.5 in [9].
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