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Some remarks on a fractional
integro-differential inclusion with boundary
conditions

Aurelian Cernea

Abstract

We study the existence of solutions for fractional integrodifferential
inclusions of order ¢ € (1, 2] with families of mixed, closed, strip and in-
tegral boundary conditions. We establish Filippov type existence results
in the case of nonconvex set-valued maps.

1 Introduction

Differential equations with fractional order have recently proved to be strong
tools in the modelling of many physical phenomena. As a consequence there
was an intensive development of the theory of differential equations and inclu-
sions of fractional order ([13, 15, 16] etc.). Applied problems require definitions
of fractional derivative allowing the utilization of physically interpretable ini-
tial conditions. Caputo’s fractional derivative, originally introduced in [6] and
afterwards adopted in the theory of linear visco elasticity, satisfies this demand.
Very recently several qualitative results for fractional integro-differential equa-
tions were obtained in [1, 10, 12, 14, 17, 18] etc.

This paper is concerned with the following fractional integro-differential
inclusion

Dix(t) € F(t,z(t),V(x)(t)) a.e. ([0,T)), (1)
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where ¢ € (1,2], D? is the Caputo fractional derivative, F': [0,7] x R x R —
P(R) is a set-valued map and V : C([0,T],R) — C([0,T],R) is a nonlinear
Volterra integral operator defined by V(z)(t) = fot k(t,s,xz(s))ds with k(., ., .) :
[0,7] x R x R — R a given function.

We study (1) subject to four families of boundary conditions:

i) Mixed boundary conditions

Tx'(0) = —ax(0) — bx(T), Tx'(T)=bz(0)+ dz(T). (2)
ii) Closed boundary conditions
2(T) = ax(0) + T2’ (0), Tx'(T) = ~vx(0)+ 6Tx'(0), (3)

where a,b,d, o, 8,7, € R are given constants.
iii) Strip boundary conditions

B 5
z(0) = a/ x(s)ds, x(1) :n/ x(s)ds, (4)

where oc,n€e Rand 0<a< <y <d <1
iv) Nonlocal Riemann-Liouville type integral boundary conditions

2(0) = al“(p), (1) = bI2(0), (5)

where a,b € R, v,w, u,0 € (0,1) and I7(.) is the Riemann-Liouville fractional
integral of order q.

The aim of this note is to show that Filippov’s ideas ([7]) can be suit-
ably adapted in order to obtain the existence of solutions for problems (1)-(2),
(1)-(3), (1)-(4) and (1)-(5). Recall that for a differential inclusion defined by
a lipschitzian set-valued map with nonconvex values, Filippov’s theorem ([7])
consists in proving the existence of a solution starting from a given ”quasi” so-
lution. Moreover, the result provides an estimate between the ”quasi” solution
and the solution obtained.

We note that in the case when F' does not depend on the last variable,
existence results for problems (1)-(2), (1)-(3), (1)-(4) and (1)-(5) may be found
in [7,8,9]. In fact, the results in the present paper extend the main results in
[7,8,9] to fractional integrodifferential inclusions.

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

Let (X,d) be a metric space. Recall that the Pompeiu-Hausdorff distance of
the closed subsets A, B C X is defined by

dy(A, B) = max{d*(A, B),d"(B,A)}, d*(A, B) = sup{d(a, B);a € A},
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where d(z, B) = infycp d(z,y).

Let I = [0,T], we denote by C'(I,R) the Banach space of all continuous
functions from I to R with the norm ||z(.)||c = sup,c; |z(t)| and L*(I,R) is
the Banach space of integrable functions u(.) : I — R endowed with the norm

T
()l = fy lu()ldt.
Definition 2.1. a) The fractional integral of order o > 0 of a Lebesgue
integrable function f : (0,00) — R is defined by

1o f(t) = / “‘F("Z;)‘_f(s)ds,

provided the right-hand side is pointwise defined on (0,00) and I'(.) is the
(Euler’s) Gamma function defined by I'(ar) = [~ t*"te'dt.

b) The Caputo fractional derivative of order @ > 0 of a function f :
[0,00) — R is defined by

« 1 K —a+n—1 g(n
Dcf(t)—m/o (t—s) £ (s)ds,

where n = [o] + 1. It is assumed implicitly that f is n times differentiable
whose n-th derivative is absolutely continuous.

We recall (e.g., [13]) that if « > 0 and f € C(I,R) or f € L*™(I,R) then
(DEIf)(E) = (1),

The next two technical results are proved in [2].
Lemma 2.2. The unique solution x(.) € C(I,R) of problem

Dix(t) = f(t) ae. ([0,T]), (6)

with boundary conditions (2) is given by x(t) = fOT G1(t,s)f(s)ds, where
G1(.,.) is the Green function defined by

(t—s)~' L([T(b+d)+(b2fad)t](Tfs)q’l+
F(q)bt 1A11>T T Q*2Tr(q)
Gt ) | VI 0scicr
v 1 /[T(b+d)+(b>—ad)t](T—s)? ! [(a4b)t—(14b)T)(T—5)7—2
ar TT(q) + Ta-1) )
if 0<t<s<T,

with Ay = (1 +b)(b+d) — (a+b)(d—1) #0.
Note that

T9-1

N b+ d+b*—ad| + (¢ —1)|a — 1
I'(q)

Gi(t,s)| <
| 1( S)' |A1|

(1

)= M, Vtsel.
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Lemma 2.3. The unique solution x(.) € C(I,R) of problem (6)-(3) is given
by x(t fo Go(t, s) f(s)ds, where the Green function defined by

(=)'~ [L(1=8)+4t)(T—s5)*~*

Tlq) E(T . TT(q) +
1—a)t—(1— _g)a—2 .
Ga(t, s) = =k (r(qﬁ—)n]( : ) if 0<s<t<T,
2L, 5) - 7([T(1—5)+'yt](T—s) + [(1—a)t—(1—B)T|(T—s)9~ 2)
Az TT(q) Ta=1)

if 0<t<s<T,

with Ay =v(1—B8) 4+ (1 —a)(1 =6) #0.
Note that

7! [1—0+9[+(¢—1)|a—g]

ool = gy Ut Bl :

— M, Vtsecl

For simplicity, in the following results T = 1.

The next result is proved in [3].
Lemma 2.4. For a given function f(.) € C(I,R) the unique solution of
problem (6)-(4) is given by

2(t) = rig Jot = 9" (5)ds + F[-(3(6* = 7*) ~ D+
tn(8 =) = DUy S5— 1 (m)dm)ds + X [5(5 — o)~
(0(8 — o) = Dty [2(fy Ch— fm)dm)ds — [y i f(s)ds],

where

A =[50 =) = Dlfo(B — a) = 1] = [Z(8* — a)]In(3 —7) — 1] £ 0.
Denote A(t,s) = “3— ?‘; Xjo.(), B(t;s) = xF[—(3(0* =) — 1) +
Hn(6—7) = DI (B=5)"x(0,81 (5)—(a—5)TX0.01 ()], C(t,5) = w5 (82 —a?) -
(s (t

GG a)—l)t]q[(5 )X[o&] )= (v =8) X041 (8)], D(t,5) = —
+B(t,s)+C(t,s)+D(t, s),
S. Then the solution z(.)
(s

)ds. Moreover, for any

1 o (R2
AT (q) (58—
a?)—(o(B—a)—1)t](1—s)?" 1 and G3(t, s) = A(t, s)
where xs(.) is the characteristic functlon of the set
)f

in Lemma 3 may be written as (¢ fo Gs(t, s
t,s € I we have

1 o N, 5 B+ af
|G(t,s)| < @‘f‘mﬂgw =) =1+ n0—v) = 1] +
1
|A[L(q)

1582 = o)+ lo(8 — @) — 1]

Q3

(07 4+~ + 1] =: Ms.
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The proof of the following lemma may be found in [4].
Lemma 2.5. For a given f(.) € C(I,R) the unique solution of the problem

(6)-(5) is given by

_g)atw—1
2(t) = iy Jy (t = )77 f(s)ds + (e1 — tea) [y VR f(s)ds+
9 S q+ -
(s + cst)b | %Jv(s)ds - Jy (1= 5)71 f(s)ds],

where

a bov+1 ap“tt 1 ap” a
“ c( F(V—I—Q))’ “ I'(w+2)’ @ c( F(w—l—l))7 c c(
bev w b0u+1 w—+1 bev
—o ) o= (- ) (- )+ (1 - ).
I'v+1) Mw+1) F'v+2)" TIw+2) I'v+1)

It is implicitly assumed that ¢ # 0.

s qgtw—1
Denote Ay (t,s) = % X[0,4(5), Bi(t,s) = (c1 —tC4)%X[0,H](8)7
q+ s)a—1
Cy(t,s) = blea + cyf)%xﬁ),g](s), Di(t,s) = —(cs + est) U 5k— and

Ga(t,s) = Ai(t,s) + Bi(t,s) + Ci(t,s) + Di(t, s), then the solution z(.) in
Lemma 4 may be written as z(t) = fol G4(t, s)f(s)ds. Moreover, for any t, s € I
we have

Galt,5)| < gy + (el + lea) ¥y
(\02|+|C3|)% =: M,

gatv—

o bl(leal + lesl) Gt

I'(g+w

3 The main results
In order to prove our results we need the following hypotheses.

Hypothesis. i) F(.,.): I x R x R — P(R) has nonempty closed values and
is L(I) ® B(R x R) measurable.

ii) There exists L(.) € L*(I,(0,00)) such that, for almost allt € I, F(t,.,.)
is L(t)-Lipschitz in the sense that
dH(F(tv T, yl)a F(t7 T2, y2)) < L(t)(|$1 _xQ‘ + |y1 _y2|) Vo, Z2,Y1,Y2 € R.

iii) k(.,.,.) : I x R x R — R is a function such that Vx € R, (t,s) —
k(t, s, x) is measurable.
iv) |k(t,s,z) — k(t,s,9)| < L(t)|lx —y| ae. (t,s) eI xI, Vz,yeR.

We use next the following notations

M(t) = L(t)(l—i—/OtL(u)du), el Moz/OTM(t)dt
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Theorem 3.1. Assume that Hypothesis is satisfied and MiMy < 1. Let
y(.) € C(I,R) be such that Ty’ (0) = —ay(0) — by(T), Ty'(T) = by(0) + dy(T)
and there exists p(.) € LY (I,Ry) with d(D3y(t), F(t,y(t),V(y)(t))) < p(t) a.e.

().
Then there exists x(.) € C(I,R) a solution of problem (1)-(2) satisfying
foralltel

T
o) = 0| < 7557 | PO 7)

Proof. The set-valued map t — F(t,y(t),V(y)(t)) is measurable with closed
values and

F(t,y(t), V(y)(6) n{Dey(t) + p(t)[=1,1]} # 0 a.e. ().

It follows (e.g., Theorem 1.14.1 in [5]) that there exists a measurable se-
lection f1(t) € F(t,y(t),V(y)(t)) a.e. (I) such that

[f1(t) = Dey(@)| < p(t) a.e. (I) (8)

Define z(t) = fOT G1(t, s) f1(s)ds and one has

lz1(t) —y(t)] < M1/0 p(t)dt.

We claim that it is enough to construct the sequences z,(.) € C(I,R),
fn() € LY(I,R), n > 1 with the following properties

T
() = /0 Gt 8) fu(s)ds, tel, (9)
fn(t) € F(t,zn_1(t), V(zn_1)(t)) a.e. (1), (10)

[frr(t)=fu(D)] SL(t)(Iwn(t)—wn—l(t)H/O L(8)|zn(s)=wn-1(s)|ds) a.e.(I)
(11)

If this construction is realized then from (8)-(11) we have for almost all

tel
T

(et (8) — 2 (£)] < My (My M) /O p(t)dt ¥n € N.

Indeed, assume that the last inequality is true for n — 1 and we prove it
for n. One has

|%Hw—mwsé|ammmmmm—anms
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T t1
M1/0 L(t1)[|xn(t1) — p-1(t1)] —|—/O L(s)|zn(s) — zn_1(s)|ds|dty < My

/O L(tl)(1+/01L(s)ds)dt1.M{LM5H/o p(t)dt:Ml(MlMo)”/O p(t)dt

Therefore {z,(.)} is a Cauchy sequence in the Banach space C(I, R), hence
converging uniformly to some z(.) € C(I,R). Therefore, by (11), for almost
all t € I, the sequence {f,(t)} is Cauchy in R. Let f(.) be the pointwise limit
of £\

Moreover, one has

oalt) “UOLE [0 o D @ —OlS

T
My 7 oty + Y (M [ play) (M My = M 0

On the other hand, from (8), (11) and (12) we obtain for almost all ¢ € T

[fa(t) = Day(0)] < 75 | fira (1) = fi0)] + /1)) = D2y(#)] <
LH)Mde Ot ).
Hence the sequence f,,(.) is integrably bounded and therefore f(.) € L*(I,R).

Using Lebesgue’s dominated convergence theorem and taking the limit in
(9), (10) we deduce that z(.) is a solution of (1)-(2). Finally, passing to the
limit in (12) we obtained the desired estimate on z(.).

It remains to construct the sequences x,(.), fn(.) with the properties in
(9)-(11). The construction will be done by induction.

Since the first step is already realized, assume that for some N > 1 we
already constructed z,(.) € C(I,R) and f,(.) € LY(I,R), n = 1,2,..N
satisfying (9), (11) for n = 1,2,...N and (10) for n = 1,2,..N — 1. The
set-valued map ¢t — F (t xn(t), V(z: ~)(t)) is measurable. Moreover, the map
t— Lt)(Jan(t) —axn-_1(t)] + fo s)|xn(s) — xn_1(8)|ds) is measurable. By
the lipschitzianity of F(t,.) we have that for almost all t € T

E(t,an () 0 {fn () + LO(en () =2y (B)]+
Jo L(s)lwn () — wn—1(s)lds)[—1, 1]} # 0.

Theorem 1.14.1 in [5] yields that there exist a measurable selection fyy1(.) of
F(.,zn(.),V(2n)(.)) such that for almost all t € T

[fna(t) = fv(@)] < L) (lon () — 2y -1 (8)] +/0 L(s)|zn(s) — xn—1(s)lds).

We define zy41(.) as in (9) with n = N + 1. Thus fy41(.) satisfies (10)
and (11) and the proof is complete. O
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The proofs of the next three theorems are similar to the proof of Theorem
3.1.
Theorem 3.2. Assume that Hypothesis is satisfied and MaMy < 1. Let
y(.) € C(I,R) be such that y(T) = ay(0)+ BTy’ (0), Ty'(T) = vy(0)+ 6Ty’ (0)
and there ezists p(.) € L'(I,R) with d(Diy(t), F(t,y(t,V(y)(t)))) < p(t) a.e.
(I).

Then there exists x(.) € C(I,R) a solution of problem (1)-(3) satisfying
foralltel

o)~ 0| < {537 | PO

Theorem 3.3. Assume that Hypothesis is satisfied and M3My < 1. Let
y(.) € C(I,R) be such that y(0) = O’ff y(s)ds, y(1) = nij(s)ds and there
exists p(.) € LY(I,Ry) with d(Dly(t), F(t,y(t),V(y)(t))) < p(t) a.e. (I).

Then there exists x(.) € C(I,R) a solution of problem (1)-(4) satisfying
forallt el

o) =) < T35 | o0

Theorem 3.4. Assume that Hypothesis is satisfied and MyMy < 1 Let y(.) €
C(I,R) be such that y(0) = al“y(u), y(1) = bI"y(0) and there exists p(.) €
LY, R) with d(Dy(t), F(t,y(0), V()(1) < p(t) ae. (I).

Then there exists x(.) € C(I,R) a solution of problem (1)-(5) satisfying
foralltel

o) = 0| < {3757 | plo)

Remark 3.5. If F(.,.,.) does not depend on the last variable the fractional
integrodifferential inclusion (1) reduces to

Dix(t) € F(t,z(t)) a.e. ()

and Theorem 3.1 yields Theorem 3.3 in [7], Theorem 3.2 yields Theorem 3.4
in [7], Theorem 3.3 yields Theorem 3.4 in [8] and Theorem 3.4 yields Theorem
3.5 in [9].
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