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(o, B, A, 0,m, Q2),—Neighborhood for some
families of analytic and multivalent functions
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Abstract

In the present investigation, we give some interesting results related
with neighborhoods of p—valent functions. Relevant connections with
some other recent works are also pointed out.

1 Introduction and Definitions

Let A demonstrate the family of functions f(z) of the form
f(z) =2+ Z anz"
n=2

which are analytic in the open unit disk U ={z € C: |z| < 1}.

We denote by A,(n) the class of functions f(z) normalized by
oo
flz) =2+ Z arsp?"P (n,p € N:={1,2,3,...}) (1)
k=n

which are analytic and p-valent in U.
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Upon differentiating both sides of (1) m times with respect to z, we have

m m = k+ —m
R P R DY (e D ki )

(p

(n,p e Nym € Ny :=NU{0};p > m).

We show by A,(n,m) the class of functions of the form (2) which are
analytic and p-valent in U.

The concept of neighborhood for f(z) € A was first given by Goodman [7].
The concept of §-neighborhoods Nj(f) of analytic functions f(z) € A was first
studied by Ruscheweyh [8]. Walker [12], defined a neighborhood of analytic
functions having positive real part. Later, Owa et al.[13] generalized the results
given by Walker. In 1996, Altintag and Owa [14] gave (n, §)-neighborhoods for
functions f(z) € A with negative coeflicients. In 2007, (n,d)-neighborhoods
for p-valent functions with negative coefficients were considered by Srivastava
et al. [4], and Orhan [5]. Very recently, Orhan et al.[l], introduced a new
definition of (n,d)-neighborhood for analytic functions f(z) € A. Orhan et
al’s [1] results were generalized for the functions f(z) € A and f(z) € Ap(n)
by many author (see, [6, 9, 10, 15]).

In this paper, we introduce the neighborhoods (a,ﬂ,)\,m,é,ﬂ)p — N(g)
and (a, 8, A\, m,6,9),, — M(g) of a function ) (z) when f(z) € Ap(n).

Using the Salagean derivative operator [3]; we can write the following equal-
ities for the function f(™)(z) given by

DO (z) = M (2)

/
1 p(m) _ (m)
D) = s (1)
. m k+p m k‘-l—p) k4+p—m
(p = zp +Z ) tp )lakﬂ,z P

D*f"™(2) = D(Df"™(2))

P! k+p m)?(k + p)! .
Zp 4 a tpom
m) Z 2(k+p—m)!

T -
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D2 f") (z) = DD ™) (2))

_ p' Zp—m (k +p m) (k +p)‘ a Zk+p—7n
~ - +;<p @k +p—m)
We define F : A,(n,m) — Ap(n, m) such that
m _ m >\Z m !
TUE) = (1 =0 (D) + =S (D7)
_ ot (k+p)lk+p—m)? A+ Me(p—m)"") 4o,
T o-m)! *,; (p—m)®(k+p —m)! e

(3)
(0<A<1; QmeNy; p>m).
Let F(\, m, ) denote class of functions of the form (3) which are analytic
in U.

For f,g € F(\,m,Q), f said to be («, 5, A\, m, 6, Q)p—neighborhood for g if
it satisfies

eI (f(2) BT (9" (2))

prmfl prmfl

‘<6 (ze W)

for some —r < a—F<mand ¢ > pom=)t 1), V/2[1 = cos(a — B)]. We show this
neighborhood by («, 8,A,m,4,%),, — (g)

Also, we say that f € (a, 8, A\, m, 4, Q)p — M(g) if it satisfies

T (2) P (g™ (2))

Zp—m Zp—m

’<6 (ze W)

for some — 7t <a— B <7wand 9§ >@+Ll)!\/2[1 —cos(a — B)].

We give some results for functions belonging to («, 8, A, m, d, Q)p — N(g)
and (o, B8, A\, m, 4, Q)p — M(g).
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2 Main Results

Now we can establish our main results.

Theorem 2.1. If f € F(\,m,Q) satisfies

|€iaak+p — eiﬁbk+p|

i (k+p— m9+1(k+p)(1+/\k(p m)~?

= m)?(k+p—m)!
p!
§5—m\/2[1 — cos(a — )] (4)

for some —m < a—p <m p>m and 5>p pos 1),\/21—cosoz B)], then
f € (e, 8,A\,m,0,Q), — N(g).

Proof. By virtue of (3), we can write

ST () €T (g ()

prmfl zpfmfl
= p'(p 7,04 zaz k+p m Q+1(k+p) (1+)\k(p ’I’)’L) 1)a Zk
o m)®(k +p —m)! o

k
bk+pZ

p'(p m) s _ s\~ (ktp— m““(kﬂo) (1+Ak(p—m)~)
E: w20k + p—m)

p!
< m 2[1 — COS(CK — ,8)}
(k+p— m)QH(Ier:D) A+ Me(p—m) ™) | ia ip
*Z M)k + p—m)! " axsp = e bry .

If

Z(k+p m) ¥ (k + p)!(L + Ak(p —m)~*

e i3
T

k=n

p!
§5*m\/2[1 — cos(a — B)],
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then we observe that

T () BT (g (2))

prmfl prmfl

<0 (zel).

Thus, f € (a, 8, A\, m, 6, Q)p — N(g). This evidently completes the proof of
Theorem 2.1. O

Remark 2.2. In its special case when
m=Q=A=a=0and 8= q, (5)
in Theorem 2.1 yields a result given earlier by Altuntas et al. ([9] p.3, Theorem

1).

We give an example for Theorem 2.1.

Example 2.1. For given

' oo
g(z) = ﬁz’)_m + Z Brip(a, B, A, m, §,Q)2MP7™ € F(\,m, Q)
’ k=n
(n,pe N={1,2,3,..}; p>m; Q,m € Ny)
we consider
' oo
flz)= ﬁz”_m + Z Apip(a, B\, m, 8,Q)2FP=™ € F(\ m, Q)
’ k=n

(n,pe N={1,2,3,...}; p>m; Q,m e Ny)

with
" _(p—m) (pm1)|‘/ 1 —cos(a—=B)Hk+p—m)n+p-1)
ST T Ak —m) )k p—m) (k- p— DIk +p)P(k+p—1)
+€i(B7Q)Bk+p.

Then we have that

— (k+p— m9+1(k+p)(1+>\k(p m)=Y) | . ,

ia g o ZBB
2 m)?(k +p —m)! e iy = By

k=n
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(9= 1) (5= L Bl = conta ] > !
=(n - —— — cos(a — .
P —m 1) & Gt p— 1k +7)
(6)
Finally, in view of the telescopic series, we obtain
00 ¢
1 1 1
= 1' — 7
g(k+p—1)(k+p) Cinoo;{k+p—l kﬂJ ™

. [ 1 1 }
= lim —
(—oo|n+p—1 C(+p
_
n+p—1
Using (7) in (6), we get

i (k+p—m)?" (k+p)(1+Me(p—m)~?)

e A — B
(p—m)®(k +p—m)! i i

k=n

_ P!
Therefore, we say that f € (a, 8, A, m,, Q)p — N(g).
Also, Theorem 2.1 gives us the following corollary.

Corollary 2.3. If f € F(\,m,Q) satisfies

oo

3 (k+p—m)*(k+p)!(1+ Xk(p —m)~*

)
(p—m)?(k+p—m) llakrpl = brtpll

k=n

< §—

([)—717]1!—1)!\/2[1 — cos(a — f)]

for some —m < aa—f < w and 5>(p+!71)!\/2[1—cos(a—ﬂ)], and

arg(ak4p) — arg(bp4p) = —a (n,p e N={1,2,3,...}; m € No, p > m), then
f € (aaﬁa A7m76a Q)p - N(g)

Proof. By Theorem 2.1, we see the inequality (4) which implies that f €
(a,ﬂ,)\,m, 559)1) - N(g)

Since arg(ag+p)—arg(bptp) = B—ay if arg(agtp) = Aptp, we see arg(byyp) =
O4p — B + o Therefore,

gy — ewbkﬂ, = €' |apyp| P — eth |brtp] et@ntp—B+a)
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= (lak+p| - ‘karpl)ei(aHP—i_a)

implies that 4 '
’elaaker - elﬂbk+p| = ||ak-+p| — [br+pl| - (8)

Using (8) in (4) the proof of the corollary is complete.

Next, we can prove the following theorem.

Theorem 2.4. If f € F(A\, m,Q) satisfies

i(kﬂa—m) (k+p)(1+Xe(p—m)™1)

i o 'LBb
(b~ )k p—m) |e Ajtp — €Pbpip

k=n

< \/2 —cos(a — )] (z€eU).

forsome—7r<a—ﬁ<7r p>mand 5> ),\/2 — cos(a — 3)] then
fe(a,B,A,m,0,Q), — M(g).

The proof of this theorem is similar with Theorem 2.1.

Corollary 2.5. If f € F(\,;m,Q) satisfies

o (k+p—m)%(k + p)l(1+ Xe(p —m)~?)
2 (p—m)%(k+p—m)!

lak-tp| = br1spl|

k=n
<4 \/2 —cos(a—P)] (zel).
forsome—ﬁ<a—ﬁ<7r p>mand 6>( \/21—cos(a—ﬁ)] and
arg(ag+p) — arg(br+p) = B — a, then f € (o, B, A, m, 6 Q), — M(g).

Our next result as follows.

Theorem 2.6. If f € («, 5, /\,m,é,Q)p —N(9),0<a< <7 p>mand
arg(e®agyp — ePbiy,) = ko, then

Z (k+p— m)ﬂ“(ker) (14 Xk(p—m)~!

. ’
)20k +p—m)! sy = b

|
v j(cosa — cos 3).

<5_(p—m—1).
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Proof. For f € (a, 8, \, m, 4, Q)p — N(g), we have

TN () (g (2)

p—m—1 p—m—1

pl(e’ —e'?) i i (k+p—m)® (k4 p)!I(1+ Xe(p —m) ")

(ewaker - ewkarp)zk
(p—m-—1 2 (p —m)2(k +p —m)!

=n

pl(e’™ — ) (k+p-—m) T k+p)!A+rpp-m)~H ; ik
—m-1r + Z (= m)2(k+p—m) (€ ansp — €Pbyyp)eF? s
P !

=n

< 4.

Let us consider z such that argz = —¢. Then zF = |z|k e~ For such a
point z € U, we see that

Zp—m—1 Zp—m—1

€T (f(2) ei’*wg(z))‘

e Capyp — eiﬁbk-%—p) |z|k’

plle™ =) S (k+p—m)? T (k+p)!A+Xe(p—m)" ")
PEET S P —m)2(k+p—m)!

L i3 k
|ema1«+p —e bk+p| 21® +

B i(k+p—m)““(k+p)!<1+Ak(p—m)*1>
T I\Z (p—m)%(k+p—m)!

p!(cos o — cos B) 2
(p—m—1)!

+ (p!(sina sinﬁ)ﬂé < 6.

(p—m—1)!

This implies that

i

e anip — e Pbryp| 2" +

(i (k +p—m)® 1 (k + p)l(1 + Mk(p — m)~1) pl(cos o — Cos,@)>2
k=n

(0 —m)2(k +p—m)! (p—m =1
< 6%,
or
p! L (k+p—m)?T 4+ P!+ X -m)"Y) | ;
G m oo A+ LT a—" e apip — Pl 2"
: k=n :

<46

for z € U. Letting |z|] — 17, we have that

o~ (bt —m)* kA Me(p—m)Y) | e, sy
2 (0 —m)?(k +p —m)! ¢ e B

p!
S S L — - .
<9 p— 1)!(00504 cos 3)
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Remark 2.7. Applying the parametric substitutions listed in (5), Theorem
2.4 and 2.6 would yield a set of known results due to Altuntas et al. ([9] p.5,
Theorem 4; p.6, Theorem 7).

Theorem 2.8. If f € (a,ﬂ,)\,m,é,Q)p - M(9),0 < a < B < 7 and

arg(e@ayyp — ePbyi,) = ko, then

fi%+p—mW%+MKL%W@—mT

)
2o’ _ 1,3b
(b= m)?(k +p—m)! ke =P

k=n

p!
<d+ |(cosﬂ—cosa).

(p—m—1)
The proof of this theorem is similar with Theorem 2.6.

Remark 2.9. Taking A\=a=Q=m =0, § =« and p = 1,in Theorem 2.8,
we arrive at the following theorem due to Orhan et al.[1].

Theorem 2.10. If f € (a,8) — N(g) and arg(a, — e®b,) = (n —1)p (n =
2,3,4,...), then

oo
Zn ‘an—embn| <¢d+cosa—1.

n=2

We give an application of following lemma due to Miller and Mocanu [2]
(see also, [11]).
Lemma 2.1. Let the function
wW(2) = bp2" + by12" T Fbp02" TP H L (2 €N)

be regular in U with w(z) # 0, (n € W). If 20 = roe'® (1o < 1) and |w(zo)| =
max|.|<, |w(z)|, then zow'(20) = quw(z0) where q is real and ¢ > n > 1.

Applying the above lemma, we derive

Theorem 2.11. If f € F(\,m, Q) satisfies

it ( £(m) Bt (m)
AR e L)) ;@mf”)<5@+n—my75j£%jﬁ 20— cos(a — B)]
for some —t <a—-B<mp>mand §> (W&o—m—l)!) 2[1 — cos(a — B)],
then
iagr( pOm) B glm) |
e Z(Z_m (2)) e Z(f_m () ' <5+ ﬁ 2[1 —cos(a—pB)] (z€U).
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Proof. Let us define w(z) by

iag (m) iBg (m) ! . .

e (.f (z)> _ € (g (Z)) — p (67,(,!_67,5) +5w(z) (9)

ZP—m ZP—m (p—m)!

Then w(z) is analytic in U and w(0) = 0. By logarithmic differentiation, we
get from (9) that

0T (10(2)) ~ T () pom dur(z)
SF(fM() = ePF(() 2 E(ein—ei®) + bu(z)
Since
o () PTG pem | dwe)
ZPmm <(pf:n)! (eio—eif) + 6w(z)) : Gl (€ —e'?) 4 dw(z)’
we see that
et g(£(m)(y eBF (M) (4 | . ) zwl(z

This implies that

eEF (FM(2)) P F (g (2)) p! io _iB
ap—m—1 - ap—m—1 = '(p—YrL—l)!(e —e'”) + dw(z) (p—m+

2wi(2) > ‘ _

w(z)

We claim that

eia ¢ p(m) 2 eiﬁ 1 (o (m) 2 |
gsz(_fm_l( )) _ ip(;gm—l( )) ‘ < 6(p—m+n) - (p+'71)' 2[1 - COS(Oé - 6)}
in U.

Otherwise, there exists a point zp € U such that zow'(z9) = qw(zg) (by
Miller and Mocanu’s Lemma) where w(z) = € and ¢ > n > 1.
Therefore, we obtain that

T (F () el‘ﬂ?'(ng))' _ ‘ e 15 m q>]
Zp—mt Zhmt p—m—1)!
>d(p+qg—m)— ‘#!_:l)!(eia_eiﬂ)‘
>0(p+n—m)— ﬁl,l)u 2[1 — cos(a — B)].

This contradicts our condition in Theorem 2.11.



(a, B, A, 8,m,Q),—NEIGHBORHOOD FOR SOME FAMILIES OF ANALYTIC
AND MULTIVALENT FUNCTIONS 235

Hence, there is no zyp € U such that |w(zo)| = 1. This means that |w(z)| < 1
for all z € U.
Thus, have that

emff(ﬂm)(z))eiﬁ&%g(m)(z))’ _ ‘ Pi’- (€ —eif) + 6w (z)

ZP—m Zpmm (p —m)!
| . )
< Ll 4 alule)
< (5—1-(pf!m)!\/2[1—cos(a—/8)}.

O

Upon setting m =0, a = p,p = F and = « in Theorem 2.11, we have
the following corollary given by Sagséz et al.[6].

Corollary 2.12. If f € p(2, \) satisfies

el (f(2) P9 (9(2))

zp—1 zp—1

\ < 6(p + ) — p/2lT —cos(p — )

for some —r < a—p <mand §> (ﬁ) \/2[1 —cos(a — B)], then

eo(f(2)  €Pplg(2))

zP zP

'<5+\/2[lcos(gao¢)] (zel).
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