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Nonuniform exponential stability for evolution
families on the real line

Claudia Isabela Morariu and Petre Preda

Abstract

The purpose of the present paper is to investigate the problem of
nonuniform exponential stability of evolution families on the real line
using the input-output technique known in the literature as the
Perron method for the study of exponential stability. In this manuscript
we describe an evolution family on the real line and we present sufficient
conditions for the nonuniform exponential stability of an evolution fam-
ily on the real line that does not have exponential growth.

1 Indroduction

One of the most important asymptotic properties of a differential system is
the exponential dichotomy, notion introduced by O. Perron in 1930 in [14].

J.L. Daleckij and M.G. Krein in [5], J.L. Massera and J.J. Schäffer in [11,
Chapter 8] have obtained dichotomy results for differential equations on R, for
the infinite dimensional case and W.A. Coppel in [4] and P. Hartman in [6]
for the finite dimensional case.

In 1974 M.G. Krein and J.L. Daleckij in [5, Theorem 4.1, p. 81] shows
that if A ∈ B(X) then σ(A) ∩ iR = ∅ if and only if the differential equation
ẋ(t) = Ax(t) + f(t) has an unique solution x ∈ C, for all f ∈ C, where C

represents the Banach space of the continuous and bounded functions on R
and σ(A) represent the spectrum of the operator A.
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An important contribution in the study of the asymptotic behaviour of the
dynamical systems described by the evolution families is represented by [3],
published in 1999 by C. Chicone and Y. Latushkin. Another important results
in the study of the evolution equations were obtained by B.M. Levitan and
V.V. Zhikov in [9] and A. Pazy in [13]. Some of the results were extended for
the evolution families with nonuniform exponential growth by L. Barreira and
C. Valls in [1] and [2].

In 1998 Y. Latushkin, T. Randolph and R. Schnaubelt in [8] study the
dichotomy on R for the evolution families with uniform exponential growth
through the assigned evolution semigroup. The dichotomy on R+ was studied
by N. Van Minh, F. Räbiger and R. Schnaubelt in [12] and N.T. Huy in [7].

Similar results for the dichotomy on the real line were obtained by A.L.
Sasu and B. Sasu in [15] and A.L. Sasu in [16]. All the above results are
obtained for t0 ∈ R+. In [15] and [16] are considered systems described by
evolution families with exponential growth on the real line. It can also be
mentioned the results obtained by M. Marin and O. Florea in [10] as well as
K. Sharma and M. Marin in [17].

It is known that the exponential dichotomy is a generalization of the ex-
ponential stability, so it is expected that the above results in more stringent
conditions should imply the exponential stability on R.

The main purpose of this paper is to give a sufficient condition for the
nonuniform exponential stability of an evolution family without exponential
growth on the real line using the concept of Perron condition.

Section 2 is devoted to the preliminaries while Section 3 is dedicated to
the main results. First there are specified the following concepts: evolution
family on R, nonuniform exponentially stable evolution family and uniformly
stable evolution family. In Definition 3.1 we describe when we say that an
evolution family satisfies the Perron condition. The Theorem 3.3 will be used
in the demonstration of one of the most important result of this paper, namely
Theorem 3.4.

Further in Definition 3.5 it is specified when an evolution family satisfies
the (p,∞)− Perron condition, where p > 1 and in Theorem 3.7 is presented
another important result related to the nonuniform exponential stability of an
evolution family. For the last result, considering p = 1, we obtain a charac-
terization for the uniform exponential stability of an evolution family on the
real line.

2 Preliminaries

Let X be a Banach space and B(X) the Banach algebra of all linear and
bounded operators acting on X. We will denote by ‖ · ‖ the norm on X and
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B(X) and ∆ = {(t, t0) ∈ R2 : t ≥ t0}.

Definition 2.1. An application Φ : ∆ → B(X),Φ = {Φ(t, t0)}t≥t0 , is called
an evolution family on R if it satisfies the following properties:

(i) Φ(t, t) = I, for all t ∈ R, where I is the identity operator on X;

(ii) Φ(t, τ)Φ(τ, t0) = Φ(t, t0), for all t ≥ τ ≥ t0;

(iii) The map Φ(·, t0)x is continuous on [t0,∞), for all x ∈ X and
Φ(t, ·)x is continuous on (−∞, t], for all x ∈ X.

We mention the following function spaces:

C = {f : R→ R : f is continuous and bounded},

C00 = {f ∈ C : lim
t→−∞

f(t) = lim
t→∞

f(t) = 0},

Lp(X) = {f : R→ X : f is measurable and

∞∫
−∞

‖f(t)‖pdt <∞}, where p ∈ [1,∞)

and

L∞(X) = {f : R→ X : f is measurable and ess sup
t∈R
‖f(t)‖ <∞}.

The norm on C and C00 is |||f ||| = sup
t∈R
‖f(t)‖.

The norms on Lp(X) and L∞(X) are denoted by

‖f‖p =

( ∞∫
−∞

‖f(t)‖pdt
) 1

p

, respectively ‖f‖∞ = ess sup
t∈R
‖f(t)‖.

Let {Φ(t, t0)}t≥t0 be an evolution family on R.

Definition 2.2. We say that the evolution family {Φ(t, t0)}t≥t0 is nonuniform
exponentially stable if there exists N : R→ R∗+ and ν > 0 such that

‖Φ(t, t0)x‖ ≤ N(t0)e−ν(t−t0)‖x‖, for all t ≥ t0 and x ∈ X.

Definition 2.3. We say that the evolution family {Φ(t, t0)}t≥t0 is uniformly
stable if there exists a constant N > 0 such that

‖Φ(t, t0)x‖ ≤ N‖x‖, for all t ≥ t0 and x ∈ X.
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3 Main results

Definition 3.1. We say that the evolution family {Φ(t, t0)}t≥t0 satisfies the
Perron condition if:

(i) For all f ∈ C00 it results that xf ∈ C, where xf (t) =
t∫
−∞

Φ(t, τ)f(τ)dτ ;

(ii) If there is w ∈ C such that w(t) = Φ(t, s)w(s), for all t ≥ s, it results
that w = 0.

Remark 3.2. If {Φ(t, t0)}t≥t0 satisfies the Perron condition then

xf (t) = Φ(t, s)xf (s) +

t∫
s

Φ(t, τ)f(τ)dτ, for all t ≥ s.

Theorem 3.3. If {Φ(t, t0)}t≥t0 satisfies the Perron condition then there is a
constant K > 0 such that

|||xf ||| ≤ K|||f |||, for all f ∈ C00.

Proof. Let U : C00 → C, defined by Uf = xf . We notice that U is a linear
operator and we will prove that it is closed.

Let (fn)n∈N be a sequence in C00, f ∈ C00 and g ∈ C such that

fn → f in C00 and Ufn → g in C.

We have that

Ufn(t) = xfn(t) = Φ(t, s)xfn(s) +

t∫
s

Φ(t, τ)fn(τ)dτ, for all t ≥ s (3.1)

and∥∥∥∥∥∥
t∫
s

Φ(t, τ)fn(τ)dτ −
t∫
s

Φ(t, τ)f(τ)dτ

∥∥∥∥∥∥ ≤
t∫
s

‖Φ(t, τ)(fn(τ)− f(τ))‖dτ. (3.2)

Since the function τ 7→ Φ(t, τ)x : [s, t]→ X is continuous, so it is bounded,
we have that there is Ms,t,x > 0 such that

‖Φ(t, τ)x‖ ≤Ms,t,x, for all t ∈ R and x ∈ X



NONUNIFORM EXPONENTIAL STABILITY FOR EVOLUTION FAMILIES ON
THE REAL LINE 203

and from the Uniform Boundedness Principle it results that there is Ms,t > 0
such that

‖Φ(t, τ)x‖ ≤Ms,t‖x‖, for all t ∈ R and x ∈ X.

From the relation (3.2) it follows that

t∫
s

‖Φ(t, τ)(fn(τ)− f(τ))‖dτ ≤Ms,t

t∫
s

‖fn(τ)− f(τ)‖dτ

≤Ms,t(t− s)|||fn − f ||| −−−−→
n→∞

0.

From the relation (3.1), for n→∞, it results that

g(t) = Φ(t, s)g(s) +

t∫
s

Φ(t, τ)f(τ)dτ, for all t ≥ s.

We consider now w(t) = g(t) − xf (t) = Φ(t, s)w(s), for all t ≥ s, which
implies that w = 0 because w ∈ C. It follows that g = xf = Uf .

We obtain that U is a closed operator and by the Closed Graph Theorem
it is also bounded. Therefore there is K > 0 such that

|||xf ||| ≤ K|||f |||, for all f ∈ C00.

Theorem 3.4. If {Φ(t, t0)}t≥t0 satisfies the Perron condition then
{Φ(t, t0)}t≥t0 is nonuniform exponentially stable.

Proof. Let x ∈ X, t0 ∈ R, δ > 0 and

χδt0 : R→ R+, χ
δ
t0(t) =


0, t < t0
4
δ (t− t0), t0 ≤ t < t0 + δ

2

4− 4
δ (t− t0), t0 + δ

2 ≤ t < t0 + δ

0, t ≥ t0 + δ.

It follows that χδt0 ∈ C00 and |||χδt0 ||| = 2.

Now we consider f : R → X, f(t) = χ1
t0(t)Φ(t, t0)x. Thus f ∈ C00 and

|||f ||| ≤ 2 supt∈[t0,t0+1] ‖Φ(t, t0)‖‖x‖ = 2M(t0)‖x‖, where
M(t0) = supt∈[t0,t0+1] ‖Φ(t, t0)‖.
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We obtain that

xf (t) =

t∫
−∞

Φ(t, τ)f(τ)dτ =

t∫
t0

χ1
t0(τ)dτΦ(t, t0)x =


0, t < t0

(t− t0)Φ(t, t0)x, t ∈ [t0, t0 + 1)

Φ(t, t0)x, t ≥ t0 + 1.

But xf ∈ C and from Theorem 3.3 it results that there is K > 0 such that

‖Φ(t, t0)x‖ ≤ K|||f ||| ≤ 2KM(t0)‖x‖, for all t ≥ t0 + 1 and x ∈ X.

For t ∈ [t0, t0 + 1) we have that ‖Φ(t, t0)x‖ ≤M(t0)‖x‖. Therefore

‖Φ(t, t0)x‖ ≤ L(t0)‖x‖, for all t ≥ t0 and x ∈ X,

where L(t0) = M(t0) max{1, 2K}.
We set now x ∈ X, t0 ∈ R, δ > 0 and

g : R→ X, g(t) = χδt0(t)Φ(t, t0)x.

It follows that g ∈ C00 and |||g||| ≤ 2L(t0)‖x‖.
We obtain that

xg(t) =

t∫
−∞

Φ(t, τ)g(τ)dτ =

t∫
t0

χδt0(τ)dτΦ(t, t0)x =


0, t < t0

(t− t0)Φ(t, t0)x, t ∈ [t0, t0 + δ)

δΦ(t, t0)x, t ≥ t0 + δ.

But xg ∈ C and from Theorem 3.3 it results that there is K > 0 such that

δ‖Φ(t, t0)x‖ ≤ K|||g||| ≤ 2KL(t0)‖x‖, for all t ≥ t0 + δ, x ∈ X and δ > 0.

For δ = t− t0 it follows that

(t− t0)‖Φ(t, t0)x‖ ≤ 2KL(t0)‖x‖, for all t ≥ t0 and x ∈ X.

Let now x ∈ X, n ∈ N∗, t0 ∈ R, δ > 0 and

y : R→ X, y(t) =


0, t < t0

(t− t0)Φ(t, t0)x, t ∈ [t0, t0 + δ]

δ(1− nt+ nt0 + nδ)Φ(t, t0)x, t ∈ (t0 + δ, t0 + δ + 1
n ]

0, t > t0 + δ + 1
n .

It follows that y ∈ C00 and |||y||| ≤ 2KL(t0)‖x‖.
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We obtain that

xy(t) =

t∫
−∞

Φ(t, τ)y(τ)dτ =

t∫
t0

Φ(t, τ)y(τ)dτ =
(t− t0)2

2!
Φ(t, t0)x,

for all t ∈ [t0, t0 + δ] and δ > 0.

But xy ∈ C and from Theorem 3.3 it results that there is K > 0 such that

(t− t0)2

2!
‖Φ(t, t0)x‖ ≤ 2K2L(t0)‖x‖, for all t ≥ t0 and x ∈ X.

Let x ∈ X, t0 ∈ R, n ∈ N∗, δ > 0 and

h : R→ X, h(t) =



0, t < t0
(t− t0)2

2!
Φ(t, t0)x, t ∈ [t0, t0 + δ]

δ2

2!
(1− nt+ nt0 + nδ)Φ(t, t0)x, t ∈ (t0 + δ, t0 + δ + 1

n ]

0, t > t0 + δ + 1
n .

It results that h ∈ C00 and |||h||| ≤ 2K2L(t0)‖x‖.
We obtain that

xh(t) =

t∫
−∞

Φ(t, τ)h(τ)dτ =

t∫
t0

Φ(t, τ)h(τ)dτ =
(t− t0)3

3!
Φ(t, t0)x,

for all t ∈ [t0, t0 + δ] and δ > 0.

But xh ∈ C and from Theorem 3.3 it follows that there is K > 0 such that

(t− t0)3

3!
‖Φ(t, t0)x‖ ≤ 2K3L(t0)‖x‖, for all t ≥ t0 and x ∈ X.

Inductively we obtain that

(t− t0)n

n!
‖Φ(t, t0)x‖ ≤ 2KnL(t0)‖x‖, for all t ≥ t0, x ∈ X and n ∈ N.

Sharing with 2nKn it results that

(t− t0)n

2nKnn!
‖Φ(t, t0)x‖ ≤ 2

1

2n
L(t0)‖x‖, for all t ≥ t0 and x ∈ X.
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We have that

∞∑
n=0

(t− t0)n

2nKnn!
‖Φ(t, t0)x‖ ≤ 2

∞∑
n=0

1

2n
L(t0)‖x‖, for all t ≥ t0 and x ∈ X,

or equivalently

e
(t−t0)

2k ‖Φ(t, t0)x‖ ≤ 4L(t0)‖x‖, for all t ≥ t0 and x ∈ X.

So

‖Φ(t, t0)x‖ ≤ 4L(t0)e−
(t−t0)

2k ‖x‖, for all t ≥ t0 and x ∈ X.

Denoting by N(t0) = 4L(t0) and ν =
1

2K
we will obtain that there exists

N : R→ R∗+ and ν > 0 such that

‖Φ(t, t0)x‖ ≤ N(t0)e−ν(t−t0)‖x‖, for all t ≥ t0 and x ∈ X,

so {Φ(t, t0)}t≥t0 is nonuniform exponentially stable.

Definition 3.5. We say that the evolution family {Φ(t, t0)}t≥t0 satisfies the
(p,∞)-Perron condition if:

(i) For all f ∈ Lp(X) it results that xf ∈ L∞(X), where

xf (t) =

t∫
−∞

Φ(t, τ)f(τ)dτ ;

(ii) If there is w ∈ L∞(X) such that w(t) = Φ(t, s)w(s), for all t ≥ s, it
results that w = 0.

Theorem 3.6. If {Φ(t, t0)}t≥t0 satisfies the (p,∞)-Perron condition there is
a constant K > 0 such that

‖xf‖∞ ≤ K‖f‖p, for all f ∈ Lp(X).

Proof. Let U : Lp(X) → L∞(X), defined by Uf = xf . We notice that U is a
linear operator and we will prove that it is closed.

Let (fn)n∈N be a sequence in Lp(X), f ∈ Lp(X) and g ∈ L∞(X) such that

fn → f in Lp(X) and Ufn → g in L∞(X).
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Using the same technique as in Theorem 3.3 we obtain that

g(t) = Φ(t, s)g(s) +

t∫
s

Φ(t, τ)f(τ)dτ, for all t ≥ s.

Considering w(t) = g(t) − xf (t) = Φ(t, s)w(s), ∀ t ≥ s, it follows that
w = 0 because w ∈ L∞(X). It results that g = xf a.e and thus g = xf = Uf
in L∞(X).

We obtain that U is a closed operator and by the Closed Graph Theorem
it is also bounded. Therefore there is K > 0 such that

||xf ||∞ ≤ K||f ||p, for all f ∈ Lp(X).

Theorem 3.7. If {Φ(t, t0)}t≥t0 satisfies the (p,∞)-Perron condition, p > 1
then there exists N : R→ R∗+ and ν > 0 such that

‖Φ(t, t0)x‖ ≤ N(t0)e−ν(t−t0)
1− 1

p ‖x‖, for all t ≥ t0 and x ∈ X.

Proof. Let x ∈ X, t0 ∈ R and

f : R→ X, f(t) = ϕ[t0,t0+1](t)Φ(t, t0)x,

where ϕ[t0,t0+1] denotes the characteristic function of the interval [t0, t0 + 1].
It results that

f ∈ Lp(X) and ‖f‖p ≤M(t0)‖x‖,where M(t0) = sup
t∈[t0,t0+1]

‖Φ(t, t0)‖.

We have that

xf (t) =

t∫
−∞

Φ(t, τ)f(τ)dτ =

=

t∫
t0

ϕ[t0,t0+1](τ)dτΦ(t, t0)x =


0, t < t0

(t− t0)Φ(t, t0)x, t ∈ [t0, t0 + 1)

Φ(t, t0)x, t ≥ t0 + 1.

But xf ∈ L∞(X) and from Theorem 3.4 it results that there is K > 0 such
that

‖Φ(t, t0)x‖ ≤ K‖f‖p ≤ KM(t0)‖x‖, for all t ≥ t0 + 1 and x ∈ X.
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For t ∈ [t0, t0 + 1) we have that ‖Φ(t, t0)x‖ ≤M(t0)‖x‖. Therefore

‖Φ(t, t0)x‖ ≤ L(t0)‖x‖, for all t ≥ t0 and x ∈ X,

where L(t0) = M(t0) max{1,K}.
Let now x ∈ X, t0 ∈ R, δ > 0 and

g : R→ X, g(t) = ϕ[t0,t0+δ](t)Φ(t, t0)x.

It results that g ∈ Lp(X) and ‖g‖p ≤ δ
1
pL(t0)‖x‖.

We have that

xg(t) =

t∫
−∞

Φ(t, τ)g(τ)dτ =

=

t∫
t0

ϕ[t0,t0+δ](τ)dτΦ(t, t0)x =


0, t < t0

(t− t0)Φ(t, t0)x, t ∈ [t0, t0 + δ)

δΦ(t, t0)x, t ≥ t0 + δ.

But xg ∈ L∞(X) and from Theorem 3.4 it results that there is K > 0 such
that

δ‖Φ(t, t0)x‖ ≤ K‖g‖p ≤ KL(t0)δ
1
p ‖x‖, for all t ≥ t0 + δ, x ∈ X and δ > 0.

If we put δ = t− t0 then we obtain that

(t− t0)‖Φ(t, t0)x‖ ≤ KL(t0)(t− t0)
1
p ‖x‖, for all t ≥ t0 and x ∈ X,

or equivalently

(t− t0)1−
1
p ‖Φ(t, t0)x‖ ≤ KL(t0)‖x‖, for all t ≥ t0 and x ∈ X.

Now we consider

h : R→ X, h(t) = ϕ[t0,t0+δ](t)(t− t0)1−
1
p Φ(t, t0)x.

It results that h ∈ Lp(X) and ‖h‖p ≤ KL(t0)δ
1
p ‖x‖.

We have that

xh(t) =

t∫
−∞

Φ(t, τ)h(τ)dτ =

t∫
t0

(τ − t0)1−
1
pϕ[t0,t0+δ](τ)dτΦ(t, t0)x.
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If t ≥ t0 + δ then xh(t) =
(t− t0)2−

1
p

2− 1
p

Φ(t, t0)x.

But xh ∈ L∞(X) and from Theorem 3.4 there is K > 0 such that

(t− t0)2−
1
p

2!
‖Φ(t, t0)x‖ ≤ K‖h‖p ≤ K2L(t0)(t−t0)

1
p ‖x‖, for all t ≥ t0 and x ∈ X.

Inductively we obtain that

(t− t0)n(1−
1
p )

n!
‖Φ(t, t0)x‖ ≤ KnL(t0)‖x‖.

By sharing with 2nKn it results that

(t− t0)n(1−
1
p )

2nKnn!
‖Φ(t, t0)x‖ ≤ L(t0)

2n
‖x‖.

Thus
∞∑
n=0

(t− t0)n(1−
1
p )

2nKnn!
‖Φ(t, t0)x‖ ≤

∞∑
n=0

L(t0)

2n
‖x‖,

or equivalently

e
1

2K (t−t0)
1− 1

p ‖Φ(t, t0)x‖ ≤ 2L(t0)‖x‖.

We have that

‖Φ(t, t0)x‖ ≤ 2L(t0)e−
1

2K (t−t0)
1− 1

p ‖x‖, for all t ≥ t0 and x ∈ X.

Denoting by N(t0) = 2L(t0) and ν = 1
2K we will obtain that there exists

N : R→ R∗+ and ν > 0 such that

‖Φ(t, t0)x‖ ≤ N(t0)e−ν(t−t0)
1− 1

p ‖x‖, for all t ≥ t0 and x ∈ X.

Further we will analyze the case (1,∞).

Theorem 3.8. {Φ(t, t0)}t≥t0 satisfies the (1,∞)-Perron condition if and only
if {Φ(t, t0)}t≥t0 is uniformly stable.

Proof. Necessity. Let t0 ∈ R, δ > 0, x ∈ X such that Φ(t, t0)x 6= 0, for all
t ≥ t0 and

f : R→ X, f(t) = ϕ[t0,t0+δ](t)
Φ(t, t0)x

‖Φ(t, t0)x‖
,
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where ϕ[t0,t0+δ] denotes the characteristic function of the interval [t0, t0 + δ].
It results that f ∈ L1(X) and ‖f‖1 = δ.
We have that

xf (t) =

t∫
−∞

Φ(t, τ)f(τ)dτ =

t0+δ∫
t0

dτ

‖Φ(τ, t0)x‖
Φ(t, t0)x, for all t ≥ t0 + δ.

But xf ∈ L∞(X) and by Theorem 3.4 it results that there is K > 0 such
that

1

δ

t0+δ∫
t0

dτ

‖Φ(τ, t0)x‖
‖Φ(t, t0)x‖ ≤ K, for all x ∈ X and δ > 0.

For δ → 0 we obtain that

‖Φ(t, t0)x‖ ≤ K‖x‖, for all t ≥ t0 and x ∈ X.

Let now t0 ∈ R, x ∈ X and t1 > t0 such that Φ(t1, t0)x = 0. It implies
that

Φ(t, t0)x = 0, for all t ≥ t1.
Denoting by σ = inf{t ≥ t0 : Φ(t, t0)x = 0} it follows that Φ(σ, t0)x = 0,

or equivalently Φ(t, t0)x 6= 0, for all t ∈ [t0, σ). Therefore

‖Φ(t, t0)x‖ ≤ K‖x‖, for all t ≥ t0 and x ∈ X.

Sufficiency. We consider f ∈ L1(X) and xf (t) =
t∫
−∞

Φ(t, τ)f(τ)dτ. We have

that

‖xf (t)‖ ≤
t∫

−∞

N‖f(τ)‖dτ ≤ N‖f‖1 <∞, for all t ∈ R.

It result that xf ∈ L∞(X).
Let now w ∈ L∞(X) such that w(t) = Φ(t, s)w(s), for all t ≥ s. We also

set t ∈ R and s ∈ [t− 1, t]. It follows that

‖w(t)‖ ≤ N‖w(s)‖, for all s ∈ [t− 1, t].

We obtain that

‖w(t)‖ ≤ N
t∫

t−1

‖w(s)‖ds ≤ N‖w‖∞ <∞, for all t ≥ s,

thus ‖w(t)‖ = 0, for all t ∈ R, so w = 0.
In this way we obtain that the evolution family is uniformly stable.
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Vasile Pârvan Blvd. No. 4, 300223 Timişoara, Romania.
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Email: preda@math.uvt.ro


